2019-2020学年浙江省温州市八年级(上)期末数学试卷

合集下载

2019-2020学年八年级上学期期中考试数学试卷(附解答)

2019-2020学年八年级上学期期中考试数学试卷(附解答)

2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣15.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣38.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.89.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.2410.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二.填空题(共6小题)11.2x2y3•(﹣7x3y)=.12.点P(﹣3,4)关于原点对称的点的坐标是.13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为(用含x的式子表示)16.计算:40372﹣8072×2019=.三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是,余式是;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为.(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意.故选:C.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.x3•x2=x5,故本选项不合题意;B.x2与x4不是同类项,所以不能合并,故本选项不合题意;C.(x4)3=x8,故本选项不合题意;D.x7÷x=x6,故本选项符合题意.故选:D.3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C 【分析】证明△ADB≌△ADC即可解决问题.【解答】解:∵AB=AC,BD=DC,AD=AD,∴△ADB≌△ADC(SSS),∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC,故B,C,D正确,故选:A.4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣1【分析】各项化简得到结果,即可作出判断.【解答】解:A、原式=x2+2xy+y2,不符合题意;B、原式=8m6,不符合题意;C、原式=x2﹣4x+4,不符合题意;D、原式=x2﹣1,符合题意,故选:D.5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°【分析】由“SAS”可证△ABD≌△ACE,可得∠ABD=∠2=30°,由三角形外角性质可求解.【解答】解:∵∠BAC=∠DAE,∴∠1=∠CAE,且AD=AE,AB=AC,∴△ABD≌△ACE(SAS)∴∠ABD=∠2=30°,∴∠3=∠2+∠ABD=52°,故选:B.7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣3【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p,r【解答】解:∵(x+p)(x+5)=x2+(p+5)x+5p=x2+rx﹣10,∴p+5=r,5p=﹣10,解得:p=﹣2,r=3.故选:C.8.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.8【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,故选:A.9.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.24【分析】根据正方形和三角形的面积的和差即可求解.【解答】解:根据题意,得∵a+b=9,ab=12,∴(a+b)2=92∴a2+2ab+b2=81,∴a2+b2=81﹣24=57,∴阴影部分的面积为:a2﹣b(a﹣b)=(a2﹣ab+b2)=(57﹣12)=22.5.故选:B.10.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题;【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠ABM+∠CBN=30°,∴∠NBH=∠CBH+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二.填空题(共6小题)11.2x2y3•(﹣7x3y)=﹣14x5y4.【分析】原式利用单项式乘以单项式法则计算即可求出值.【解答】解:原式=﹣14x5y4,故答案为:﹣14x5y412.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2 .【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为24°.【分析】由等腰三角形的性质可得∠B=∠C,由“SAS”可证△BED≌△CDF,可得∠CDF =∠BED,由三角形外角的性质可得∠EDF=∠B=70°,即可求∠A的度数.【解答】解:∵AB=AC∴∠B=∠C,又∵BE=CD,BD=CF∴△BED≌△CDF(SAS)∴∠CDF=∠BED∵∠EDC=∠B+∠BED=∠CDF+∠EDF∴∠EDF=∠B=78°∴∠C=∠B=78°∴∠A=180°﹣78°﹣78°=24°故答案为:24°.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为5x2﹣4x﹣19 (用含x的式子表示)【分析】分为两种情况:①当三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2时,②当三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,看看是否符合三角形的三边关系定理,符合时求出即可.【解答】解:分为两种情况:①当等腰三角形的腰为(x+2)(2x﹣5)时,三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2,此时符合三角形的三边关系定理,此时三角形的周长是:(x+2)(2x﹣5)+(x+2)(2x﹣5)+(x﹣1)2=2x2﹣x﹣10+2x2﹣x﹣10+x2﹣2x+1=5x2﹣4x﹣19;②当等腰三角形的腰为(x﹣1)2时,三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,∵(x﹣1)2+(x﹣1)2=2x2﹣4x+2,(x+2)(2x﹣5)=2x2﹣x﹣10,x>5,∴(x﹣1)2+(x﹣1)2﹣(x+2)(2x﹣5)=(2x2﹣4x+2)﹣(2x2﹣x﹣10)=﹣3x+12<0,∴(x﹣1)2+(x﹣1)2<(x+2)(2x﹣5),∴此时不符合三角形的三边关系定理,此时不存在三角形.故答案为:5x2﹣4x﹣19.16.计算:40372﹣8072×2019= 1 .【分析】把8072×2019变为4038×4036,再套用平方差公式计算得结果.【解答】解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:1三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y【分析】直接利用乘法公式进而化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=[x2+4y2+4xy﹣(x2﹣4y2)]÷2y=(8y2+4xy)÷2y=4y+2x.18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.【分析】证明△ABE≌△CDF(HL),推出∠AEB=∠CFD可得结论.【解答】证明:∵AB⊥l于点B,CD⊥1于点D,∴∠ABE=∠CDF=90°,∵BF=DE,∴DF=BE,∵AE=CF,∴Rt△ABE≌Rt△CDF(HL),∴∠AEB=∠CFD,∴AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.【分析】用尺规作外角∠BAE的平分线AD,再进行证明即可.【解答】解:如图所示:AD即为所求作的图形.证明:∵AD∥BC,∴∠DAE=∠C,∠DAB=∠B,∵AD平分∠BAE,∴∠DAE=∠DAB,∴∠B=∠C,∴AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BDAD=14,从而得到△ABC的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABD的周长是14,即AB+BD+AD=14,∴AB+BC+AC=AB+BD+CD+AC=14+10=24,即△ABC的周长是24.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.【分析】(1)根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;(2)根据题意列出等式,化简即可求出.【解答】解:(1)ab﹣(a﹣2)(b﹣2)=ab﹣(ab﹣2a﹣2b+4)=ab﹣ab+2a+2b﹣4=2a+2b﹣4,∴新长方形的面积比原长方形的面积减少了(2a+2b﹣4)平方厘米;(2)由题意知2a+2b﹣4=ab,∴ab=6a+6b﹣12,(a﹣6)(b﹣6)=ab﹣6a﹣6b+36=6a+6b﹣12﹣6a﹣6b+36=24.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是x2﹣2x+3 ,余式是 1 ;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.【分析】(1)根据整式除法的竖式计算方法,这个进行进行计算即可;(2)根据整式除法的竖式计算方法,要使x3﹣x2+ax+b能被x2+2x+2整除,即余式为0,可以得到a、b的值.【解答】解:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)=x2﹣2x+3 (1)故答案为:x2﹣2x+3,1.(2)由题意得:∵x3﹣x2+ax+b能被x2+2x+2整除,∴a﹣2=﹣6,b=﹣6,即:a=﹣4,b=﹣6.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.【分析】(1)作点A关于直线l的对称点A′,连接AA′交直线1于点D,此时使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,根据对称性和30度角所对直角边等于斜边的一半即可证明AD=2BD.【解答】解:(1)如图所示:作点A关于直线l的对称点A′,连接AA′,与直线l交于点D,则点D即为所求作的点.(2)根据对称性可知:AC=A′C,AD=A′D,∵△ABC为等边三角形,∴AC=BC=AB,∠ACB=60°=∠BAC,∴A′C=BC,∴∠A′=∠A′BC=30°,∠A′=∠DAA′=30°,∴∠ABD=90°,∴AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为(﹣1,4).(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.【分析】(1)作CH⊥y轴于H,如图1,易得OA=3,OB=1根据等腰直角三角形的性质得BA=BC,∠ABC=90°,再利用等角的余角相等得到∠CBH=∠BAO,则可根据“AAS”证明△ABO≌△BCH,得到OB=CH=1,OA=BH=3,所以C(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,由“ASA”可证△AFC≌△AFH,可得CF=FH=m,由“AAS”可证△ABE≌△CBH,可得AE=CH=2m;(3)如图3,过点A作AN⊥DF于点N,由“AAS”可证△ABH≌△ADN,可得AN=AH,BH =DN,由“HL”可证Rt△ANF≌Rt△AHF,可得NF=FH,即可得结论.【解答】解:(1)作CH⊥y轴于H,如图1,∵点A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴OB=CH=1,OA=BH=3,∴OH=OB+BH=1+3=4,∴C(﹣1,4),故答案为:(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,∴∠CBH=90°,∵CF⊥AO,∴∠BCH+∠H=90°,而∠HAF+∠H=90°,∴∠BCH=∠HAF,且∠ABC=∠CBH=90°,AB=CB,∴△ABE≌△CBH(AAS),∴AE=CH,∵AO平分∠BAC,∴∠CAF=∠HAF,且AF=AF,∠AFH=∠AFC,∴△AFC≌△AFH(ASA)∴CF=FH=m,∴AE=CH=2m;(3)BF=2FH+DF,理由如下:如图3,过点A作AN⊥DF于点N,∵∠CAE=∠BAE,∠AOB=∠AOD,∴∠ADB=∠ABD,∴AD=AB,且∠ADF=∠ABF,∠AHB=∠AND=90°,∴△ABH≌△ADN(AAS)∴AN=AH,BH=DN,∵在Rt△ANF和Rt△AHF中,AN=AH,AF=AF,∴Rt△ANF≌Rt△AHF(HL)∴NF=FH,∵BF=BH+FH=DN+FH∴BF=DF+NF+FH=2FH+DF.。

八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)

八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)

东城区2019-2020学年度第一学期期末教学统一检测初二数学 2020.1一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m 微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B. 3910-⨯C. 30.910-⨯D. 40.910-⨯ 2. 下列等式中,从左到右的变形是因式分解的是A .()m a b ma mb +=+B .23313(1)1x x x x -+=-+ C .()()23212x x x x ++=++ D .22(2)+4+4a a a +=3.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是A.①B.②C.③D.④4. 下列各式计算正确的是 A.2133a aa -⋅= B.236()ab ab = C.22(2)4x x -=- D.824623x x x ÷=5. 对于任意的实数x ,总有意义的分式是A.152--x x B.231x x -+ C.x x 812+ D.21x -6.如图,△ABC 中,∠A =40°,AB 的垂直平分线分别交AB ,AC 于点D ,E ,连接BE ,则∠BEC 的大小为A.40°B.50°C.80°D.100°7.若分式2213x x -+的值为正数,则x 需满足的条件是 A. x 为任意实数 B. 12x < C. 12x >D. 12x >- 8. 已知△ABC ,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB ,AC 上,且这组对应边所对的顶点重合于点M ,点M 一定在A.∠A 的平分线上B.AC 边的高上C.BC 边的垂直平分线上D.AB 边的中线上9.如图,已知∠MON 及其边上一点A .以点A 为圆心,AO 长为半径画弧,分别交OM ,ON于点B 和C .再以点C 为圆心,AC 长为半径画弧,恰好经过点B .错误的结论是 A. AOC ABC S S =△△ B. ∠OCB =90° C. ∠MON =30° D. OC =2BC10. 已知OP 平分∠AOB ,点Q 在OP 上,点M 在OA 上,且点Q ,M 均不与点O 重合.在OB 上确定点N ,使QN =QM ,则满足条件的点N 的个数为A.1 个B.2个C.1或2个D.无数个二、填空题(本题共16分,每小题2分) 11. 因式分解:39a a -= _ . 12. 已知 -2是关于x 的分式方程23x kx x -=+的根,则实数k 的值为________ . 13. 如图,BE 与CD 交于点A ,且∠C =∠D .添加一个条件: ,使得△ABC ≌△AED .BA CM第8题图 第9题图14. 如图,将长方形纸片ABCD 折叠,使顶点A ,C 重合,折痕为EF .若∠BAE =28°,则∠AEF 的大小为 °.15. 如图,等边△ABC 中,AD 是BC 边上的中线,且AD =4,E ,P 分别是AC ,AD 上的动点,则C P +EP 的最小值等于 .16. 我国古代数学曾有许多重要的成就,其中“杨辉三角” (如图)就是一例. 这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数.(1)()5a b +展开式中4a b 的系数为 ;(2)()7a b +展开式中各项系数的和为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:3+23x x x +-. 18.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程. 已知:线段m ,n 及∠O .求作:△ABC ,使得线段m ,n 及∠O 分别是它的两边和一角. 作法:如图,① 以点O 为圆心,m 长为半径画弧,分别交∠O 的两边于点M ,N ; ② 画一条射线AP ,以点A 为圆心,m 长为半径画弧,交AP 于点B ; ③ 以点B 为圆心,MN 长为半径画弧,与第②步中所画的弧相交于点D ; ④ 画射线AD ;⑤ 以点A 为圆心,n 长为半径画弧,交AD 于点C ; ⑥ 连接BC ,则△ABC 即为所求作的三角形. 请回答:(1)步骤③得到两条线段相等,即 = ; (2)∠A =∠O 的作图依据是 ; (3)小红说小明的作图不全面,原因是 .19.计算:()201π533-⎛⎫- ⎪⎝⎭.20.如图,在△ABC 和△ADE 中,∠BAC =∠DAE ,AD =AE .连接BD ,CE,∠ABD =∠ACE . 求证:AB =AC .21. 计算:2()()()4()2m n m n m n m m n m ⎡⎤+-+---÷⎣⎦.B22. 解方程:2151=24xx x +--- . 23.在三角形纸片ABC 中,∠B =90°,∠A =30°,AC =4,点E 在AC 上,AE =3.将三角形纸片按图1方式折叠,使点A 的对应点A '落在AB 的延长线上,折痕为ED ,A E '交BC 于点F .(1)求∠CFE 的度数;(2)如图2,,继续将纸片沿BF 折叠,点A '的对应点为A '',A F ''交DE 于点G .求线段DG 的长.图1 图224. 如图,△ABC .(1)尺规作图:过点C 作AB 的垂线交AB 于点O .不写作法,保留作图痕迹;(2)分别以直线AB ,OC 为x 轴,y 轴建立平面直角坐标系,使点B ,C 均在正半轴上.若AB=7.5,OC =4.5,∠A =45°,写出点B 关于y 轴的对称点D 的坐标; (3)在(2)的条件下,求△ACD 的面积.25. 先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中a 是满足|3|3a a -=-的最大整数.26. 列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积. (1) 在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.A'F E C A GA'F E C设首届进博会企业平均展览面积为x 平方米,把下表补充完整: 届别总面积(平方米)企业平均展览面积(平方米)首 届 270 000x第二届 330 000(2)根据以上分析,列出方程(不解..方程).27. 在ABC 中,AB >BC ,直线l 垂直平分AC .(1)如图1,作∠ABC 的平分线交直线l 于点D ,连接AD ,CD . ①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2) 如图2,直线l 与ABC 的外角∠ABE 的平分线交于点D ,连接AD ,CD . 求证:∠BAD =∠BCD .28.对于△ABC 及其边上的点P ,给出如下定义:如果点1M ,2M ,3M ,……,n M 都在 △ABC 的边上,且 123n PM PM PM PM ====L L ,那么称点1M ,2M ,3M ,……,n M 为△ABC 关于点P 的等距点,线段1PM ,2PM ,3PM ,……,n PM 为△ABC 关于点P 的等距线段.(1)如图1,△ABC 中,∠A <90°,AB =AC ,点P 是BC 的中点.①点B ,C △ABC 关于点P 的等距点,线段P A ,PB △ABC 关于点P 的等距线段;(填“是”或“不是”)②△ABC 关于点P 的两个等距点1M ,2M 分别在边AB ,AC 上,当相应的等距线段最短时,在图1中画出线段1PM ,2PM ;(2)△ABC 是边长为4的等边三角形,点P 在BC 上,点C ,D 是△ABC 关于点P 的等距lE D A C B lA B 图1 图2点,且PC =1,求线段DC 的长;(3)如图2,在Rt △ABC 中,∠C =90°,∠B =30°.点P 在BC 上,△ABC 关于点P 的等距点恰好有四个,且其中一个是点C . 若BC a =,直接写出PC 长的取值范围.(用含a 的式子表示)图1 图2东城区2019-2020学年度第一学期期末教学统一检测初二数学参考答案及评分标准 2020.1一、选择题(本题共20分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCCADC二、填空题(本题共16分,每小题2分)11.()()33a a a +- 12. 2 13.答案不唯一,但必须是一组对应边,如:AC =AD 14. 59 15. 4 16. 5 ;128三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17. 解: 原式()()()()332=223x x x x x -+++-L L L L 分()()2336423x x x x x -++=+-L L L L 分 ()()26523x x x +=+-L L L L 分 18.(1)BD ,MN ;……………………1分(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;……………………3分 (3)小明没有对已知中的边和角的位置关系分类讨论. ……………………5分19.解:()-201π53⎛⎫- ⎪⎝⎭94=-+……………………4分=……………………5分20.证明:∵∠BAC =∠DAE,∴∠BAC -∠CAD =∠DAE -∠CAD.即∠BAD =∠CAE. ……………………2分 在△BAD 和△CAE 中,,BAD CAE ABD ACE AD AE ∠∠∠∠⎧⎪⎨⎪⎩=,=,=∴△BAD ≌△CAE (AAS ). …………………… 4分 ∴ AB =AC. …………………… 5分2222222()()()4()2(243454)2m (22)2m n m n m n m m n mm n m mn n m mn m mn m m n ⎡⎤+-+---÷⎣⎦=-+-+-+÷=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯÷=-+⋯⋯⋯⋯⋯⋯⋯21.解:分分分B()()()222124532453112343x x x x x x x x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++--=++-+==-=-⋯⋯⋯⋯⋯⋯⋯⋯⋯22.解:分分分经检验:13x =-是原方程的解. ∴13x =-.……………………5分23.解:(1)∵∠A =30°,∴∠A '=30°. ……………………1分 ∵∠A BF '=90°, ∴∠A FB '=60°. ……………………2分∵∠CFE =∠A FB ',∴∠CFE =60°. ……………………3分(2)∵点A 与点A '关于直线DE 对称,∴DE ⊥AA '.∵∠A =30°,AE =3, ∴1322DE AE == . ……………………4分 由(1)知,∠CFE =60°,∠C =60°,∴△CFE 是等边三角形.∴EF =CE =AC -AE =1. ……………………5分 同理,△EFG 也是等边三角形, ∴12DG DE EG =-=DG =DE -EG =.……………………6分 24.解:(1)……………………………………………………………………………………2分GA''DA'FECAB图2A'FECA图1(2)D (-3,0); ……………………4分 (3)13927==2228ACD S ⨯⨯△.……………………6分22222221225.[](2)(2)44(1)2[](2)(2)442(2124)4231a a a a a a a a a a a a a a a a a a a a a a a--+=-⋅++---+=-⋅++--+=⋅+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+解:原式分分分分∵a 是满足|3|3a a -=-的最大整数, ∴30a -≥. ∴3a ≤.∴=3a . ……………………5分 ∴1=15原式.……………………6分……………………………………………………………………………………4分(2)270 000330000+300=(1+12.8%)x x.……………………6分 27. 解:(1)①补全图形;……………………1分② 结论:∠BAD +∠BCD =180°. ……………………2分证明:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F , 则∠AED =∠CFD =90°.∵BD 平分∠ABC ,∴DE =DF . ∵直线l 垂直平分AC ,∴DA =DC. ……………………3分在Rt ADE 和Rt CDF 中, DA DC DE DF =⎧⎨=⎩,,∴Rt ADE ≌Rt CDF . ∴∠BAD =∠FCD.∵∠FCD +∠BCD =180°,∴Rt ADN ≌Rt CDM.∴∠BAD =∠BCD. ……………………7分28.解:(1)①是,不是;……………………2分②……………………3分(2)如图,DC =2,或DC =1; ……………………5分B(3)32a a PC <<.……………………7分。

浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷 解析版

浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷  解析版

2019-2020学年八年级(上)期末数学试卷一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或163.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6二.填空题(共6小题)11.下列图形中全等图形是(填标号).12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为;(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为.三.解答题(共7小题)17.解不等式组18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或16【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【解答】解:根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选:D.3.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论【分析】利用反例判断命题为假命题的方法对各选项进行判断.【解答】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称【分析】根据轴对称的性质解决问题即可.【解答】解:点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=2对称,故选:A.6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°【分析】此题是开放型题型,根据题目现有条件,AD=AD,∠ADB=∠ADC=90°,可以用HL判断确定,也可以用SAS,AAS,SSS判断两个三角形全等.【解答】解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四【分析】由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选:D.8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【解答】解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选:C.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选:A.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【解答】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故选:B.二.填空题(共6小题)11.下列图形中全等图形是⑤和⑦(填标号).【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.【解答】解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).【分析】由图知1号同学比2号同学矮,据此可解答.【解答】解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是2.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.【解答】解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为(,);(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为(0,)或(0,)或(0,).【分析】(1)解析式联立,解方程即可求得;(2)求得BM的长,分两种情况讨论即可.【解答】解:(1)解得,∴点M坐标为(,),故答案为(,);(2)∵直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,∴B(0,2),∴BM==,当B为顶点,则E(0,)或(0,);当M为顶点点,则MB=ME,E(0,),综上,E点的坐标为(0,)或(0,)或(0,),故答案为(0,)或(0,)或(0,).三.解答题(共7小题)17.解不等式组【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:,解①得:x<10,解②得:1≤x,故不等式组的解为:1≤x<10.18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.【分析】将△ABC向右平移4个单位后,横坐标变为x+4,而纵坐标不变,所以点A1、B1、C1的坐标可知,确定坐标点连线即可画出图形,将△ABC中的各点A、B、C旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:如图所示:.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【解答】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【分析】(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.【解答】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC =∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.。

温州市八年级(上)期末数学试卷含答案

温州市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A. B. C. D.2.在平面直角坐标系中,点P(-3,2)关于x轴的对称点的坐标为()A. (2,-3)B. (-2,3)C. (-3,2)D. (-3,-2)3.若m>n,则下列不等式正确的是()A. m-2<n-2B.C. 6m<6nD. -8m>-8n4.若线段AP,AQ分别是△ABC边上的高线和中线,则()A. AP>AQB. AP≥AQC. AP<AQD. AP≤AQ5.以下命题的逆命题为真命题的是()A. 对顶角相等B. 同旁内角互补,两直线平行C. 若a=b,则a2=b2D. 若a>0,b>0,则a2+b2>06.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.7.如图,AD是等腰△ABC底边BC边上的中线,BE平分∠ABC,交AD于点E,AC=12,DE=3,则△ABE的面积是()A. 16B. 18C. 32D. 368.△ABC的三边分别为a,b,c,满足下列条件的△ABC不是直角三角形的是()A. c2-a2=b2B. ∠A-∠C=∠BC. a:b:c=20:21:29D. ∠A:∠B:∠C=2:3:49.如图,△ABC的两条内角平分线BD与CD交于点D,设∠A的度数为x,∠BDC的度数为y,则y关于x的函数图象是()A. B.C. D.10.对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5).已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则△ABC的面积是()A. 12B. 14C. 16D. 18二、填空题(本大题共8小题,共24.0分)11.请用不等式表示“x的3倍与1的和大于2”:______.12.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__.13.如图是轰炸机机群的一个飞行队形,若最后两架轰炸机的平面坐标分别为A(-2,3)和B(-2,-1),则第一架轰炸机C的平面坐标是______.14.如果一次函数y=kx-3(k是常数,k≠0))的图象经过点(1,0),那么y的值随x的增大而______(填“增大”或“减小”).15.如图,△ABC中,D是BC上一点,AC=AD=BD,∠BAC=108°,则∠ADC的度数是______.16.把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A,另外三角板的锐角顶点B,C,D在同一直线上,若AB=,则BD=______.17.如图,在直角坐标系中,点A的坐标为(0,),点B为x轴的正半轴上一动点,作直线AB,△ABO与△ABC关于直线AB对称,点D,E分别为AO,AB的中点,连结DE并延长交BC所在直线于点F,连结CE,当∠CEF为直角时,则直线AB 的函数表达式为______.18.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的面积为17.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是______(不包括17).三、解答题(本大题共6小题,共46.0分)19.利用数轴,解一元一次不等式组.20.如图,∠A=∠B=50°,P为AB的中点,点E为射线AC上(不与点A重合)的任意一点,连结EP,并使EP的延长线交射线BD于点F.(1)求证:△APE≌△BPF.(2)当EF=2BF时,求∠BFP的度数.21.△ABC的三个顶点A,B,C的坐标分别为A(0,-3),B(-4,3),C(4,5).(1)在直角坐标系中画出△ABC.(2)以y轴为对称轴,作△ABC的轴对称图形△A′B′C′,并写出△A′B′C′各个顶点的坐标.22.已知,如图,∠ABC=∠ADC=90°,∠BAD=60°,BD=6,E为AC的中点,EF⊥BD.(1)求证:BF=DF.(2)求EF的长.23.某省A,B两市遭受严重洪涝灾害,2万人被迫转移,邻近县市C,D获知A,B两市分别急需救灾物资250吨和350吨的消息后,决定调运物资支援灾区,已知C市有救灾物资280吨,D市有救灾物资320吨,现将这些救灾物资全部调往A,B两市.已知从C市运往A,B两市的费用分别为每吨20元和25元,从D市运往A,B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表.A市(吨)B市(吨)合计(吨)C市______ ______ 280D市______ x320总计(吨)250350600(2)设C,D两市的总运费为y元,求y与x之间的函数表达式,并写出自变量x 的取值范围.(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),其余路线运费不变.若C,D两市的总运费的最小值不小于12360元,求a的取值范围.24.如图,在长方形ABCO中,点O为坐标原点,点B的坐标为(8,6),点A,C在坐标轴上,直线y=2x-6与AB交于点D,与y轴交于点E.(1)分别求点D,E的坐标.(2)求△CDE的面积.(3)动点P在BC边上,点Q是坐标平面内的点.①当点Q在第一象限,且在直线y=2x-6上时,若△APQ是等腰直角三角形,求点Q的坐标.②若△APQ是以点Q为直角顶点的等腰直角三角形,直接写出整个运动过程中点Q的纵坐标t的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.2.【答案】D【解析】解:点P(-3,2)关于x轴的对称点的坐标为:(-3,-2).故选:D.利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.3.【答案】B【解析】解:A、将m>n两边都减2得:m-2>n-2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以-8,得:-8m<-8n,此选项错误;故选:B.将原不等式两边分别都减2、都除以4、都乘以6、都乘以-8,根据不等式得基本性质逐一判断即可得.本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.【答案】D【解析】解:如图,∵PA⊥BC,∴根据垂线段最短可知:PA≤AQ,故选:D.根据垂线段最短即可判断.本题考查三角形的高,中线,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】B【解析】解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故A选项错误;B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故B选项正确;C、若a=b,则a2=b2的逆命题为若a2=b2,则a=b,此逆命题为假命题,故C选项错误;D、若a>0,b>0,则a2+b2>0的逆命题为若a2+b2>0,则a>0,b>0,此逆命题为假命题,故D选项错误.故选:B.根据逆命题与原命题的关系,先写出四个命题的逆命题,然后依次利用对顶角的定义、平行线的性质、有理数的性质进行判断.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.考查逆命题是否为真命题,关键先找出逆命题,再进行判断.6.【答案】D【解析】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.利用线段垂直平分线的性质以及圆的性质分别分得出即可.此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.7.【答案】B【解析】解:作EH⊥AB于H,∵AB=AC=12,AD是BC边上的中线,∴AD⊥BC,∵BE平分∠ABC,ED⊥BC,EH⊥AB,∴EH=ED=3,∴△ABE的面积=×AB×EH=18,故选:B.作EH⊥AB于H,根据等腰三角形的性质得到AD⊥BC,根据角平分线的性质求出EH,根据三角形的面积公式计算,得到答案.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.【答案】D【解析】解:A、∵c2-a2=b2,∴c2=b2+a2,∴△ABC是直角三角形,故本选项不符合题意;B、∵∠A-∠C=∠B,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项不符合题意;C、∵202+212=292,∴△ABC是直角三角形,故本选项不符合题意;D、∵∠A:∠B:∠C=2:3:4,∠A+∠B+∠C=180°,∴∠A=40°,∠B=60°,∠C=80°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.根据勾股定理的逆定理判断A、C即可;根据三角形内角和定理判断B、D即可.本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.9.【答案】B【解析】解:∵△ABC的两条内角平分线BD与CD交于点D∴∠DBC=∠ABC,∠DCB=∠ACB∴∠BDC=180°-∠DBC-∠DCB=180°-=180°-=90°+∵∠A>0°且180°>90°+>0°∴解得0°<∠A<90°即:y=90+,0<x<90故选:B.在△DBC中应用三角形内角和表示∠BDC,再根据角平行线定义,转化为∠ABC、∠ACB 表示∠BDC,再次应用三角形内角和用∠A表示∠BDC.本题考查了三角形内角和和一次函数图象,解答问题时注意讨论自变量取值范围.10.【答案】A【解析】解:连接CQ,如图:由中心对称可知,AQ=BQ,由轴对称可知:BQ=CQ,∴AQ=CQ=BQ,∴∠QAC=∠ACQ,∠QBC=∠QCB,∵∠QAC+∠ACQ+∠QBC+∠QCB=180°,∴∠ACQ+∠QCB=90°,∴∠ACB=90°,∴△ABC是直角三角形,延长BC交x轴于点E,过C点作CF⊥AE于点F,如图,∵A(2,0),C(8,6),∴AF=CF=6,∴△ACF是等腰直角三角形,∵∠ACE=90°,∴∠AEC=45°,∴E点坐标为(14,0),设直线BE的解析式为y=kx+b,∵C,E点在直线上,可得:,解得:,∴y=-x+14,∵点B由点A经n次斜平移得到,∴点B(n+2,2n),由2n=-n-2+14,解得:n=4,∴B(6,8),∴△ABC的面积=S△ABE-S△ACE=×12×8-×12×6=12,故选:A.连接CQ,根据中心和轴对称的性质和直角三角形的判定得到∠ACB=90,延长BC交x 轴于点E,过C点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.此题考查几何变换问题,关键是根据中心和轴对称的性质和直角三角形的判定分析,同时根据待定系数法得出直线的解析式.11.【答案】3x+1>2【解析】解:x的3倍表示为3x,与1的和表示为3x+1,由题意得:3x+1>2,故答案为:3x+1>2.首先表示x的3倍,再表示“与1的和”,然后根据不大于2列出不等式即可.此题主要考查了由实际问题列一元一次不等式,关键是抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.12.【答案】5【解析】【分析】此题主要是考查了三角形的三边关系,同时注意整数这一条件.根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】解:根据三角形的三边关系,得4<第三边<6.又第三条边长为整数,则第三边是5.故答案为5.13.【答案】(2,1)【解析】解:由点A和点B的坐标可建立如图所示坐标系:由坐标系知,点C的坐标为(2,1),故答案为:(2,1).由点A和点B的坐标可建立坐标系,再结合坐标系可得答案.此题考查坐标问题,关键是根据点A和点B的坐标建立平面直角坐标系.14.【答案】增大【解析】解:把点(1,0)代入一次函数y=kx-3得:k-3=0,解得:k=3,即一次函数的解析式为:y=3x-3,∵一次函数x的系数为正数,∴y的值随着x的增大而增大,故答案为:增大.把点(1,0)代入一次函数y=kx-3得到关于k的一元一次方程,解之,通过k的正负情况即可得到答案.本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握代入法和一次函数图象的增减性是解题的关键.15.【答案】48°【解析】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=108°,∴∠DAC=108°-,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+108°-=180°,解得:α=48°.故答案为:48°.设∠ADC=α,然后根据AC=AD=DB,∠BAC=108°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.16.【答案】1+【解析】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴△ABC是等腰直角三角形,∴BC=AB=2,BF=AF=BC=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴BD=BF+DF=1+,故答案为:1+.过点A作AF⊥BC于F,先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.此题主要考查了勾股定理,等腰直角三角形的判定与性质,全等三角形的性质,正确作出辅助线是解本题的关键.17.【答案】y=【解析】解:∵点E是AB的中点,∴CE=BE∴∠ECF=∠EBC当∠CEF为直角时,有∠CEF=∠ACB=90°∴Rt△CEF∽Rt△BCA∴∠CFE=∠BAC而点D,E分别为AO,AB的中点∴DF∥OB∴∠CFE=∠CBO=2∠CBA=2∠ABO∵△ABO与△ABC关于直线AB对称∴△ABO≌△ABC∴∠OAB=∠CAB=2∠ABO∴∠ABO=30°而点A的坐标为(0,),即OA=∴OB=3即点B的坐标为(3,0)于是可设直线AB的函数表达式为y=kx+b,代入A、B两点坐标得解得k=-,b=故答案为y=-x+.因为∠CEF=90°,而△BCA也是直角三角形,容易引起相似的猜测,从而得到∠CFE=∠BAC,通过角的转换,可得∠BAC=∠CBO=2∠CBA,于是可知∠CBA=∠ABO=30°,得出OB=3即可求出直线AB的函数表达式.本题考查的是三角形的全等与相似的应用,并考查了用待定系数法求函数解析式,找到两个已知点的坐标是解决本题的关键.18.【答案】1或45或49【解析】解:当DG=9,CG=2时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH 的面积为49.当DG=,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为45.当DG=6,CG=7时,此时HG=1,四边形EFGH的面积为1.(如图)综上所述,满足条件的正方形EFGH的面积的所有可能值是1或45或49.故答案为1或45或49.利用数形结合的思想解决问题即可.本题考查作图-应用与设计、全等三角形的判定、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.19.【答案】解:,由①去括号、移项、合并得:2x>-4,解得:x>-2;由②去分母、移项、合并得:-3x>-9,解得:x<3,在数轴上表示为:所以不等式组的解集为-2<x<3.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)证明:∵P是AB的中点,∴PA=PB,在△APE和△BPF中,∴△APE≌△BPF(ASA);(2)由(1)得:△APE≌△BPF,∴PE=PF,∴EF=2PF,∵EF=2BF,∴BF=PF,∴∠BPF=∠B=50°,∴∠BFP=180°-50°-50°=80°.【解析】(1)根据AAS证明:△APE≌△BPF;(2)由(1)中的全等得:EF=2PF,所以PF=BF,由等边对等角可得结论.本题考查了三角形全等的判定以及等腰三角形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作,A′(0,-3)\B′(4,3)、C′(-4,5).【解析】(1)利用点A、B、C的坐标描点即可得到△ABC;(2)先利用关于y轴对称的点的坐标特征写出A′、B′、C′的坐标,然后描点即可得到△A′B′C′.本题考查了作图-轴对称变换:作轴对称后的图形的依据是轴对称的性质,基本作法是:先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点.22.【答案】(1)证明:连接BE,DE,如图所示:∵∠ABC=∠ADC=90°,点E是AC的中点,∴BE=AC,DE=AC∴BE=DE∵EF⊥BD,∴BF=DF;(2)解:∵∠ABC=∠ADC=90°,∴∠ABC+∠ADC=180°,∴A、B、C、D四点共圆,圆心为E,∴∠BED=2∠BAD=120°,∵BE=DE,∴∠EBF=∠EDF=30°,∵BF=DF,∴BF=DF=3,在Rt△BEF中,∠EFB=90°,∠EBF=30°,∴BF=EF=3,∴EF=.【解析】(1)根据直角三角形斜边上的中线等于斜边的一半,可求BE=DE,根据等腰三角形的性质,可得结论;(2)根据题意证出A、B、C、D四点共圆,圆心为E,由圆周角定理得出∠BED=2∠BAD=120°,由等腰三角形的性质得出∠EBF=∠EDF=30°,由直角三角形的性质和勾股定理得出BF=EF,即可得出结果.本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,四点共圆,圆周角定理等知识,证明BE=DE是解题的关键.23.【答案】解:(1)x-70,350-x,320-x;(2)由题意可得,y=20(x-70)+25(350-x)+15(320-x)+30x=10x+12150,∵x≤320且320-x≤250,∴70≤x≤320,即y与x之间的函数表达式是y=10x+12150(70≤x≤320);(3)∵从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),∴y=20(x-70)+25(350-x)+15(320-x)+(30-a)x=(10-a)x+12150,当0<a<10时,则当x=70时,总费用最少,(10-a)×70+12150≥12360,解得,0<a≤7;当a≥10时,则x=320时,总费用最少,(10-a)×320+12150≥12360,解得,a≤9(舍去),由上可得,a的取值范围为0<a≤7.【解析】【分析】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.(1)根据题意可以将表格中的数据填写完整;(2)根据表格中的数据可以得到y与x之间的函数表达式,并写出自变量x的取值范围;(3)根据题意和表格中的数据可以得到关于a的不等式,利用分类讨论的方法即可求得a的取值范围.【解答】解:(1)由题意可得,D市运往B市x吨,则D市运往A市(320-x)吨,C市运往A 市:250-(320-x)=(x-70)吨,C市运往B市280-(x-70)=(350-x)吨.故答案为x-70,350-x,320-x;(2)见答案;(3)见答案.24.【答案】解:(1)∵在长方形ABCO中,点B的坐标为(8,6),直线y=2x-6与AB交于点D,与y轴交于点E,把y=6代入y=2x-6中,x=6,所以点D的坐标为(6,6),把x=0代入y=2x-6中,y=-6,所以点E的坐标为(0,-6);(2)如图1,把y=0代入y=2x-6中,可得:x=3,所以点F的坐标为(3,0),∴FC=8-3=5,∴△CDE的面积=,(3)①(a)若点A为直角顶点时,点Q在第一象限,连接AC,如图2,∠APB>∠ACB >45°,∴△APQ不可能为等腰直角三角形,∴点Q不存在;(b)若点P为直角顶点时,点Q在第一象限,如图3,过点Q作QH⊥CB,交CB的延长线于点H,则Rt△ABP≌Rt△PHQ,∴AB=PH=8,HQ=BP,设Q(x,2x-6),则HQ=x-8,∴2x-6=8+6-(x-8),∴x=,∴Q(,),(c)若点Q为直角顶点,点Q在第一象限,如图4,设Q'(x,2x-6),过点Q'作Q'G'⊥OA于点G',交BC于点H',则Rt△AG'Q'≌Rt△Q'H'P,∴AG'=Q'H'=6-(2x-6),∴x+6-(2x-6)=8,∴x=4,∴Q'(4,2),设Q“(x,2x-6),同理可得x+2x-6-6=8,∴x=,∴Q“(,),综上所述,点Q的坐标可以为(,),(4,2),(,);②当点Q为直角顶点时,点Q在第一象限,t的取值范围为7≤t≤10当点Q为直角顶点时,点Q在第一象限,t的取值范围为-1≤t≤2.综上所述,t的取值范围为7≤t≤10或-1≤t≤2.【解析】(1)把y=6代入解析式得出点D的坐标,把x=0代入解析式得出点E的坐标即可;(2)把y=0代入解析式得出直线DE与x轴的交点坐标,利用三角形面积公式解答即可;(3)①分三种情况,利用等腰直角三角形的性质解答即可;②根据等腰直角三角形的性质解答即可.本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.。

浙江省温州市瑞安市六校联盟2019-2020学年八年级上学期期中数学试卷

浙江省温州市瑞安市六校联盟2019-2020学年八年级上学期期中数学试卷

浙江省温州市瑞安市六校联盟2019-2020学年八年级上学期期中数学试卷一、单选题(共10题;共20分)1.下列各校的图标中,是轴对称图形的().A. B.C. D.2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,1B. 1,2,2C. 1,2,3D. 1,2,43.下列语句是命题().A. 将27开立方B. 任意三角形的三条中线相交于一点吗?C. 锐角小于直角D. 做一条直线和已知直线垂直4.在△ABC中,若∠A=15°,∠B= 150°,则△ABC()A. 等腰三角形.B. 等边三角形C. 直角三角形D. 锐角三角形5.下列命题为假命题的是().A. 三条边分别对应相等的两个三角形全等B. 三角形的一个外角大于与它相邻的内角C. 角平分线上的点到角两边的距离相等D. 等边三角形的三条角平分线、三条中线、三条高分别交于一点6.如图,已知∠1=∠2,AC=AE,下列条件无法确定△ABC≌△ADE的().A. ∠C=∠EB. BC=DEC. AB=ADD. ∠B=∠D7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A. ①B. ②C. ③D. ④8.如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3=()A. 180°B. 360°C. 540°D. 无法确定9.“三等分角”大约是在公元前五世纪由古希腊人提出来的。

借助如图所示的“三等分角仪”能三等分任一角。

这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是()A. 60°B. 65°C. 75°D. 80°10.如图,在△ABC中,∠ABC=45°,BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为().A. 8B. 10C. 4D. 8二、填空题(共6题;共7分)11.“两直线平行,内错角相等”的逆命题是________.12.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD要使△ABE≌△ACD,需添加一个条件是________(只要写一个条件).13.已知等腰三角形的两边长分别为1和3,则周长等于________.14.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=________.15.如图,分别以Rt△ABC为边长向外作等边三角形,若AC=2,∠ACB=90°,∠ABC=30°,则三个等边三角形的面积之和是________.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=6,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________.三、解答题(共7题;共60分)17.如图,直线l表示一条公路,点A,B表示两个村庄.现要在公路l上按以下要求建一个加油站,请在图中用点P表示加油站的位置. (不写作法,保留作图痕迹)(1)在图甲中标出加油站的位置,使得加油站到A,B两个村庄的距离相等.(2)在图乙中标出加油站的位置,使得加油站到A,B两个村庄的距离之和最小,18.如图,△ABC中,∠ABC=60°,∠ACB=50°,延长CB至点D,使DB=BA,延长BC至点E,使CE=CA,连接AD,AE. 求∠DAE的度数.19.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:A D=BC.20.如图,CD是线段AB的垂直平分线,则∠CAD= ∠CBD.请说明理由:解:∵CD是线段AB的垂直平分线,∴AC= ▲,▲ =BD..在△ACD和△BCD中,. ▲ =BC,AD= ▲,CD=CD,∴△ACD≌▲ ( ) .∴∠CAD=∠CBD()21.如图,Rt△ABC中,∠C=90°,点D在AB上,且CD=BD.(1)求证:点D是AB的中点.(2)以CD为对称轴将△ACD翻折至△A'CD,连接BA',若∠DBC=a,求∠CB A'的度数.22.已知: AB//CD,BP 和CP分别平分∠ABC和∠DCB,点E,F分别在AB和CD(1)如图1,EF过点P,且与AB垂直,求证: PE=PF.(2)如图2,EF过点P,求证: PE=PF.23.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AD平分∠BAC,BD= ,点P为线段AC上的一个动点(1)求AC的长(2)作△ABC中∠ACB的角平分线CH,求BH的长(3)若点E在直线1上,且在C点的左侧,PE=PC,AP为多少时,△ACE为等腰三角形?答案解析部分一、单选题1.【答案】D【解析】【解答】根据轴对称图形的定义判断:A不是轴对称图形;B不是轴对称图形;C不是轴对称图形;D是轴对称图形,故选D.【分析】根据轴对称图形的定义:沿着一条直线折叠,直线两旁的部分能够完全重合的图形,依次判断即可.2.【答案】B【解析】【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.3.【答案】C【解析】【解答】A. 将27开立方,没有做出判断,不是命题;B. 任意三角形的三条中线相交于一点吗? 没有做出判断,不是命题;C. 锐角小于直角,将锐角和直角比较,作出了大小判断,故是命题;D. 做一条直线和已知直线垂直,没有做出判断,不是命题;故选C.【分析】判断一件事情的语句叫做命题,由此即可判断.4.【答案】A【解析】【解答】根据三角形内角和180°,可得又∵,∴∴△ABC为等腰三角形,故选A.【分析】根据三角形内角和180°,可求出∠C=15°,可判断为等腰三角形.5.【答案】B【解析】【解答】根据“边边边”可判定三角形全等,故A为真命题;三角形的一个外角与它相邻的内角是互补关系,无法判断大小关系,故B为假命题;角平分线上的点到角两边的距离相等,是角平分线的性质,故C为真命题;等边三角形是特殊的等腰三角形,根据三线合一可知三条角平分线、三条中线、三条高分别交于一点,故D为真命题故选B.【分析】A. 可根据全等三角形的判定进行判断;B. 根据三角形外角和相邻内角的关系可作判断;C.根据角平分线的性质判断;D.等边三角形是特殊的等腰三角形,根据等腰三角形三线合一可判断.6.【答案】B【解析】【解答】∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠EAD,A选项∠C=∠E,与题目条件组合为“角边角”,可判定全等,B选项BC=DE,与题目条件组合是“边边角”,不能判定全等,C选项AB=AD,与题目条件组合为“边角边”,可判定全等,D选项∠B=∠D,与题目条件组合为“角角边”,可判定全等.故选B.【分析】分别将4个选项的条件与题目条件结合,看是否根据全等三角形的判定定理进行判定即可.7.【答案】C【解析】【解答】①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故答案为:C.【分析】根据尺规作图作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.8.【答案】B【解析】【解答】解:∵∠1=∠BAC+∠BCA,∠2=∠ABC+∠BAC,∠3=∠ACB+∠ABC (三角形的一个外角等于与它不相邻的两个内角的和),∴∠1+∠2+∠3=2(∠BAC+∠BCA+∠ABC),又∵∠BAC+∠BCA+∠ABC=180°(三角形内角和定理).∴∠1+∠2+∠3=2×180°=360°.故答案为:B.【分析】先根据三角形的外角性质可得∠1=∠BAC+∠BCA,∠2=∠ABC+∠BAC,∠3=∠ACB+∠ABC ,三式相加可得∠1+∠2+∠3=2(∠BAC+∠BCA+∠ABC),利用三角形的内角和代入计算可得结果.9.【答案】D【解析】【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,∴∠DCE=∠DEC=2x,∴∠CDE=180°-∠DCE-∠DEC=180°-4x,∵∠BDE=75°,∴∠ODC+∠CDE+∠BDE=180°,即x+180°-4x+75°=180°,解得:x=25°,∠CDE=180°-4x=80°.故答案为:D.【分析】由等腰三角形性质得∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,由三角形外角性质和三角形内角和定理得∠DCE=∠DEC=2x,∠CDE=180°-4x,根据平角性质列出方程,解之即可的求得x值,再由∠CDE=180°-4x=80°即可求得答案.10.【答案】A【解析】【解答】解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,∴△ABE是等腰直角三角形,∴∠ABE=45°,又∵∠ABC=45°,∴∠EBC=90°,∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,∴∠BDF=∠ECB在△EBC和△BFD中∴△EBC≌△BFD(AAS)∴DF=BC=4∴△DBC的面积=故选A.【分析】将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.二、填空题11.【答案】内错角相等,两直线平行【解析】【解答】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.故答案为:内错角相等,两直线平行.【分析】一个命题一般包括题设和结论两部分,“如果”后面接的是题设,“那么”后面接的结论,将原命题的将题设和结论互换得逆命题.12.【答案】∠ADC=∠AEB【解析】【解答】解:要使△ABE≌△ACD,由于∠A是公共角,AE=AD,题中有一边一角,可以补充一组角相等,则可用ASA判定其全等.补充条件为∠ADC=∠AEB.∵∠A=∠A,AE=AD,∠ADC=∠AEB,∴△ABE≌△ACD.故答案为:∠ADC=∠AEB .【分析】开放性的命题,答案不唯一:要使△ABE≌△ACD,由于∠A是公共角,AE=AD,题中有一边一角,根据三角形全等的判定方法,可以添加∠ADC=∠AEB或AB=AC或∠B=∠C或∠AEB=∠ADC.13.【答案】7【解析】【解答】若腰长为1,则1+1<3,不能组成三角形,∴腰长只能为3,此时周长为3+3+1=7.【分析】根据等腰三角形的性质和三边关系,判断出腰长即可求解.14.【答案】2【解析】【解答】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2,故答案为:2.【分析】根据等边三角形的性质及角平分线可得∠DBC=∠E=30°,BD⊥AC,从而可得BC=2DC,利用三角形外角的性质及等腰三角形的性质可得CD=CE=1,从而求出结论.15.【答案】【解析】【解答】解:∵Rt△ABC中,AC=2,∠ABC=30°∴BC=2AC=4,而在Rt△ABC中,由勾股定理可得∴故答案为.【分析】根据直角三角形中30°所对的直角边是斜边的一般,可知BC=2AC=4,再由等边三角形面积公式,结合勾股定理,即可得出答案.边长为的等边三角形的面积,计算Rt△ABC的三边长即可求出三个等边三角形的面积之和. 16.【答案】【解析】【解答】解:如图所示,连接DF,在Rt△ABC中,,∵AD=AC,AF⊥CD,∴AF垂直平分CD,∴DF=CF在△ADF和△ACF中∴△ADF≌△ACF(SSS)∴∠ADF=∠ACF=90°设CF=x,则DF=x,BF=6-x,在Rt△BDF中,由勾股定理得BD²+DF²=BF²即解得【分析】在Rt△ABC中,用勾股定理可求AB= ,连接DF,易得AF为CD的中垂线,可得DF=CF,再证明△ADF≌△ACF,得∠ADF=90°,设CF=x,在Rt△BDF中用勾股定理建立方程即可求解.三、解答题17.【答案】(1)解:如图甲所示,P点即为所求;(2)解:如图乙所示,P点即为所求.【解析】【分析】(1)根据中垂线上的点到线段两端的距离相等,作AB的中垂线即可,连接AB,分别以AB为圆心,大于为半径画圆弧,在AB线段的两侧各有一个交点,连接交点并延长与直线l交于P点,此时PA=PB;(2)根据两点之间线段最短,在图中找到A点关于直线l的对称点C,连接BC与直线l交于点P,此时PA+PB最短.18.【答案】解:∵DB=BA,∴∠D=∠DAB,∵CE=CA,∴∠E=∠CAE又∵∠ABC=∠D+∠DAB=2∠DAB=60°,∴∠DAB=30°,∵∠ACB=∠E+∠CAE=2∠CAE=50°,∴∠CAE=25°,在△ABC中,∠BAC=180°-60°-50°=70°,∴∠DAE=∠DAB+∠BAC+∠CAE=30°+70°+25°=125°【解析】【分析】先由DB=BA,得出∠D=∠DAB,由CE=CA得∠E=∠CAE,再根据三角形的外角等于不相邻的两个内角之和,可得∠ABC=∠D+∠DAB=2∠DAB,∠ACB=∠E+∠CAE=2∠CAE,最后在△ABC中由内角和180°求出∠BAC,∠DAB+∠BAC+∠CAE即为所求.19.【答案】解:∵AB=AC,∠A=36°∴∠ABC=∠C= (180°-∠A)= ×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC= ∠ABC= ×72°=36°,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠C=∠BDC,∠A=∠ABD ,∴AD=BD=BC.【解析】【解答】由等腰三角形性质及三角形内角和定理,可求出∠ABD=∠C=BDC. 再据等角对等边,及等量代换即可求解.20.【答案】解:∵CD是线段AB的垂直平分线,∴AC=BC,AD=BD在△ACD和△BCD中,∴△ACD≌△BCD(边边边)∴∠CAD=∠CBD(全等三角形对应角相等)【解析】【分析】由垂直平分线的性质可得AC=BC,AD=BD,在△ACD和△BCD中,利用“边边边”判定全等,可得∠CAD=∠CBD.21.【答案】(1)证明:∵CD=BD,∴∠DBC=∠DCB∵∠DBC+∠A=90°,∠DCB+∠ACD=90°,∴∠A=∠ACD∴CD=AD=BD∴点D是AB的中点(2)解:∵CD=BD∴∠DCB=∠DBC=a,∴∠ADC=∠DCB+∠DBC =2a折叠可得AD=A'D,∠ADA'=2a∴∠A'DB=180°-∠ADC-∠ADA'=180°-4a由(1)可知AD=BD,∴A'D=BD∴△A'DB为等腰三角形,∴∠DBA'=∴∠CB A'=∠DBA'-∠DBC=a故∠CB A'的度数为a.【解析】【分析】(1)利用等边对等角易得∠DBC=∠DCB,再由等角的余角相等,可推出∠A=∠DCA,即可得证.(2)利用三角形外角性质可得∠ADC=2a,根据折叠可得AD=A'D,∠ADA'=2a,然后求出∠A'DB,再由等腰三角形底角相等,可求出∠DBA',减去a即为∠CB A'22.【答案】(1)证明:如图所示,过P作PM⊥BC于点M,∵AB∥CD,EF⊥AB,∴∠PFC=90°∵BP平分∠ABC,∴∠PBM=∠PBE,在△PBM和△PBE中∴△PBM≌△PBE(AAS)∴PE=PM同理可证△PCM≌△PCF∴PM=PF∴PE=PF(2)证明:如图所示,在BC上截取BN=BE,连接PN,∵BP平分∠ABC,∴∠PBN=∠PBE,在△PBN和△PBE中∴△PBN≌△PBE(SAS)∴PE=PN,∠PNB=∠PEB∵AB∥CD,∴∠PEB+∠PFC=180°又∵∠PNB+∠PNC=180°,∴∠PNC=∠PFC∵CP平分∠BCD,∴∠PCN=∠PCF,在△PCN和△PCF中∴△PCN≌△PCF(AAS)∴PN=PF,∴PE=PF.【解析】【分析】(1)过P作PM⊥BC于点M,证明△PBM≌△PBE,△PCM≌△PCF,即可得到PE=PM=PF;(2)在BC上截取BN=BE,连接PN,证明△PBN≌△PBE,△PCN≌△PCF,即可得到PE=PN=PF.23.【答案】(1)解:∵∠ABC=90°,∠ACB=30°∴∠BAC=60°,又∵AD平分∠BAC∴∠BAD=30°,在Rt△ABD中,BD=∴AD=2BD=在Rt△ABC中,∠ACB=30°,∴AC=2AB=6(2)解:如图所示,过H点作HG⊥AC于点G,在Rt△ABC中,∵CH平分∠BCA,∴∠HCB=∠HCG在△HCB和△HCG中∴△HCB≌△HCG(AAS)∴BH=HG,CG=BC设BH=x,则HG=x,AH=3-x,AG=在Rt△AHG中,AG²+HG²=AH²,即解得∴BH的长为(3)解:△ACE为等腰三角形,①若AC=EC,如图所示,由PE=PC可知P点在EC的中垂线上,则作EC 的中垂线与AC的交点即为P点,∵PF为EC的中垂线,∴FC= ,在Rt△PCF中,∵∠C=30°,∴PC=2PF设PF=a,则PC=2a,有勾股定理得,解得∴PC= ,∴②若AC=AE,如图所示,此时P点与A重合,∴AP=0③若AE=EC,如图所示,由PE=PC可知P点在CE的中垂线上,所以作EC的中垂线与AC的交点即为P点,设AE=EC=x,则BE=在Rt△ABE中,由勾股定理得,,解得∴EC=又∵PM垂直平分EC,∴MC=在Rt△PMC中,∠C=30°,设PM=y,则PC=2y,由勾股定理得,解得∴PC=2,此时AP=6-2=4综上,当AP为或0或4时,△ACE为等腰三角形【解析】【分析】(1)易得∠BAD=30°,∴AD=2BD,再由勾股定理求出AB,最后再由30°的直角边是斜边的一半可得AC=2AB.(2)过H点作HG⊥AC于点G,设BH=x,在Rt△AHG中用勾股定理建立方程求解;(3)分三种情况讨论:①AC=EC,②AC=AE,③AE=EC,分别根据题意找出P点的位置,采用(2)的方法建立方程求解.。

浙江省温州市2020-2021学年高一上学期期末教学质量统一检测数学试题(B卷) (解析版)

浙江省温州市2020-2021学年高一上学期期末教学质量统一检测数学试题(B卷) (解析版)

2020-2021学年浙江省温州市高一(上)期末数学试卷(B卷)一、选择题(共8小题).1.已知集合A={1,2,3},B={2,4},则A∪B=()A.{2}B.{2,3}C.{1,2,3}D.{1,2,3,4}2.下列函数既不是奇函数也不是偶函数的是()A.y=x3B.y=x2C.y=x D.3.已知函数,则f(x2)的定义域为()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣1,1)D.(0,1)4.在平面直角坐标系中,角α的顶点与原点重合,终边与单位圆的交点为,则sin(π-α)=( ) A.B.C.D.5.已知a=e0.3,b=ln0.3,c=0.3e,则()A.a>b>c B.a>c>b C.c>b>a D.b>c>a6.已知a,b,c是实数,且a≠0,则“∀x∈R,ax2+bx+c<0”是“b2﹣4ac<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知a>0,b>0,a+b=1,则下列等式可能成立的是()A.a2+b2=1B.ab=1C.a2+b2=D.a2﹣b2=8.某工厂有如图1所示的三种钢板,其中长方形钢板共有100张,正方形钢板共有60张,正三角形钢板共有80张.用这些钢板制作如图2所示的甲、乙两种模型的产品,要求正方形钢板全部用完,则制成的甲模型的个数最少有()A.10个B.15个C.20个D.25个二、多项选择题(共4小题).9.已知函数y=x2﹣2x+2的值域是[1,2],则其定义域可能是()A.[0,1]B.[1,2]C.[]D.[﹣1,1]10.已知,且tanθ=m,则下列正确的有()A.B.tan(π﹣θ)=m C.D.11.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象过两点,则ω的可能取值为()A.1B.2C.3D.412.在同一直角坐标系中,函数f(x)=log a(x﹣b),g(x)=b x﹣a的图象可能是()A B C D三、填空题:本题共4小题,每小题5分,共20分。

最新版2019-2020年冀教版八年级数学上学期期末模拟综合测评题及答案解析-精编试题

最新版2019-2020年冀教版八年级数学上学期期末模拟综合测评题及答案解析-精编试题

八年级(上)期末数学模拟试卷一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣22.下列四个图案中,是轴对称图形的是()A. B. C. D.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=24.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.下列属于最简二次根式的是()A.B. C.D.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或178.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣112.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是.14.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是命题.(填“真”或“假”)15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为km.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= .17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= °.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.20.解方程:2﹣=.21.当x=时,求(﹣)÷的值.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= °.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= °,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上参考答案与试题解析一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣2【考点】算术平方根.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵22=4,∴4的算术平方根是2,故选(B)2.下列四个图案中,是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=2【考点】分式有意义的条件.【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形,根据全等图形的性质以及全等三角形的性质进行判断即可.【解答】解:A.形状相同的两个图形不一定是全等图形,是相似形,故A错误;B.根据全等图形的性质,可得全等图形的面积相等,故B正确;C.对应角相等且对应边相等的两个三角形全等,故C错误;D.两个边长相等的等边三角形全等,故D错误,故选:B.5.下列属于最简二次根式的是()A.B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:21.39亿精确到0.01亿位,即精确到百万位.故选D.7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选C.8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【考点】反证法.【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选D.9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=【考点】二次根式的乘除法.【分析】根据=(a≥0,b>0),=|a|,=(a≥0,b≥0),分别进行计算即可.【解答】解:A、2=,故原题计算错误;B、=2,故原题计算错误;C、(﹣)2=2,故原题计算错误;D、=,故原题计算正确;故选:D.10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣1【考点】实数与数轴.【分析】根据点A、B表示的数求出AB,再根据对称可得AC=AB,然后根据数轴上左边的数比右边的小列式计算即可得解.【解答】解:∵点A ,B 所对应的实数分别是1和,∴AB=﹣1,∵点B 与点C 关于点A 对称,∴AC=AB ,∴点C 所对应的实数是1﹣(﹣1)=1﹣+1=2﹣.故选B .12.如图,在6×6的正方形网格中,点A ,B 均在正方形格点上,若在网格中的格点上找一点C ,使△ABC 为等腰三角形,这样的点C 一共有( )A .7个B .8个C .10个D .12个【考点】等腰三角形的判定.【分析】首先由勾股定理可求得AB 的长,然后分别从BA=BC ,AB=AC ,CA=CB 去分析求解即可求得答案.【解答】解:∵AB==2,如图所示:∴①若BA=BC ,则符合要求的有:C 1,C 2共2个点;②若AB=AC ,则符合要求的有:C 3,C 4共2个点;③若CA=CB ,则符合要求的有:C 5,C 6,C 7,C 8,C 9,C 10共6个点. ∴这样的C 点有10个.故选:C.二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是0.2 .【考点】立方根.【分析】根据立方根的概念即可求出答案【解答】解:0.23=0.008∴0.008的立方根是0.2故答案为:0.214.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.(填“真”或“假”)【考点】命题与定理.【分析】根据直角三角形全等的判定方法判断即可.【解答】解:一条边和一个锐角分别相等的两个直角三角形,边与角不一定是对应边和对应角,例如:两个直角三角形中相等的∠α的邻边与对边相等,两个三角形不全等,所以,这两个直角三角形不一定全等,所以,“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.故答案为:假.15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为 1.6 km.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AB=1.6km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=1.6km.故答案为:1.6.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= 2 .【考点】估算无理数的大小.【分析】直接利用的取值范围得出2<﹣1<3,进而得出答案.【解答】解:∵3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案为:2.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为 5 .【考点】翻折变换(折叠问题).【分析】如图,求出AC的长度;证明EF=EB(设为λ),得到CE=8﹣λ;列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,∵四边形ABCD为矩形,∴∠D=90°,DC=AB=6;由勾股定理得:AC2=AD2+DC2,而AD=8,∴AC=10;由题意得:∠AFE=∠B=90°,AF=AB=6;EF=EB(设为λ),∴CF=10﹣6=4,CE=8﹣λ;由勾股定理得:(8﹣λ)2=λ2+42,解得:λ=3,∴CE=5,故答案为5.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= 30 °.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,推出AE′=E′B,∠ACB=60°,推出∠ACE′=∠BCE′=30°,即可解决问题.【解答】解:如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.∵EF+FC=FE′+FC,∴当C、E′、F共线时,EF+CF最小,∵△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,∴AE′=E′B,∠ACB=60°∴∠ACE′=∠BCE′=30°,∴此时∠ECF=30°,故答案为30.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.【考点】二次根式的加减法;分式的乘除法.【分析】根据二次根式的性质以及分式运算的性质即可求出答案.【解答】解:(1)原式=4+6﹣4=6,(2)原式=b(b﹣a)•=﹣ab2,20.解方程:2﹣=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣x=﹣3,解得:x=3,经检验x=3是增根,分式方程无解.21.当x=时,求(﹣)÷的值.【考点】分式的化简求值.【分析】先将(﹣)÷进行化简,然后将x=代入求解即可.【解答】解:(﹣)÷=×=﹣×=﹣.当x=时,原式=﹣=﹣6.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,求出∠DCB=30°,根据直角三角形的性质求出BC的长,得到答案.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∴∠D CB=30°,∴BC=BD=2,∴AC=2BC=4.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= 65 °.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:AD=BE﹣DE,或AD=DE ﹣BE,或AD=DE+BE..【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=90°﹣∠ECB=∠CBE.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.故答案为:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.【考点】分式方程的应用.【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x 天,根据“甲先做15天的工作量+甲、乙合作30天的工作量=1”列分式方程求解可得;(2)把这项工程的总工作量设为1,先求出甲、乙两队合作一天的工作量,再求得甲、乙两队合作完成这项工程需要的时间,根据“合作每天的费用×合作时间”可得所需总费用,从而得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x天,根据题意,得:+30×(+)=1,解得:x=60,经检验x=60是原分式方程的解,当x=60时,x=90,答:甲队单独完成这项工程需90天,乙队单独完成这项工程需60天;(2)把这项工程的总工作量设为1,则甲、乙两队合作一天的工作量为(+)=,甲、乙两队合作完成这项工程需要的时间为1÷=36天,∴合作需要的施工费用为36×(6.5+8.5)=540(万元),∵540>500,540﹣500=40(万元),∴预算的施工费用不够用,需要追加40万元.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= 60 °,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【考点】三角形综合题.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.2017年2月21日。

浙江省温州市-八年级(上)期中数学试卷-(含答案)

浙江省温州市-八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷题号一二三总分得分@一、选择题(本大题共10小题,共30.0分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.:3.将下列长度的三根木棒首尾顺次相接,能组成三角形的是()A. 1cm,2cm,3cmB. 2cm,2cm,4cmC. 3cm,4cm,12cmD. 4cm ,5cm,6cm4.下列实际情景运用了三角形稳定性的是()A. 人能直立在地面上B. 校门口的自动伸缩栅栏门C. 古建筑中的三角形屋架D. 三轮车能在地面上运动而不会倒5.如图,已知∠ABC=∠ABD,则下列条件中,不能判定△ABC≌△ABD的是()A. AC=ADB. BC=BDC. ∠C=∠DD. ∠CAB=∠DAB6.在△ABC中,∠A=30°,∠B=75°,则△ABC是()—A. 直角三角形B. 钝角三角形C. 等边三角形D. 等腰三角形7.等腰三角形的腰长为3,底边长为4,则它的周长为()A. 7B. 10C. 11D. 10或118.定理“等腰三角形的两个底角相等”的逆定理是()A. 有两个角相等的三角形是等腰三角形B. 有两个底角相等的三角形是等腰三角形C. 有两个角不相等的三角形不是等腰三角形D. 不是等腰三角形的两个角不相等9.如图,在3×3网格中,已知点A,B是网格顶点(也称格点),若点C也是图中的格点,且使得△ABC为等腰三角形,则满足条件的点C的个数为()10.11.A. 3B. 4C. 5D. 612.如图,△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点.若AB=4时,则图形ABCDEFG外围的周长是()<A. 12B. 15C. 18D. 2113.如图,在△ABC中,AB=AC,点D是AB的中点,BE⊥AC于点E.若DE=5cm,S△BEA=4S△BEC,则AE的长度是()A. 10B. 8C. 7.5D. 6二、填空题(本大题共8小题,共24.0分)14.“两直线平行,同位角相等”的条件是______ ,结论是______ .15.-16.如图,两根竹竿AB和DB斜靠在墙CE上,量得∠CAB=25°,∠CDB=15°,则∠ABD= ______ 度.17.18.19.20.21.22.23.如图,在△ABC中,AB=AC,点D是BC的中点,∠BAD=20°,则∠BAC= ______ 度.24.25.26.27.28.29.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是______cm.30.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.31.~34.35.36.37.如果等腰三角形的一个内角为50度,那么这个等腰三角形的底角是______ 度.38.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB= ______ cm.39.40.41.42.43.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4.直线l上有一点C在点P右侧,PC=4cm,过点C 作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ= ______ cm.三、解答题(本大题共6小题,共46.0分)44.#45.如图,点E、F在线段BC上且F在E的右侧,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.46.47.48.在学习中,小明发现:当n=1,2,3时,n2-10n的值都是负数.于是小明猜想:当n为任意正整数时,n2-10n的值都是负数.判断小明的猜想是真命题还是假命题,并说明你的理由.51.52.53.54.55.56.如图,已知△ABC,按如下步骤作图:57.①以A为圆心,AB长为半径画弧;58.②以C为圆心,CB长为半径画弧,两弧相交于点D;59.③连接BD,与AC交于点E,连接AD,CD.60.求证:AC所在的直线是BD的垂直平分线.61.62.63.64.65.66.67.68.两图均是4×4的正方形网格,格点A,格点B和直线l的位置如图所示,点P在直线l上.69.(1)请分别在图1和图2中作出点P,使PA+PB最短;70.(2)请分别在图3和图4中作出点P,使PA-PB最长.71.72.已知:如图AB∥CE,BE平分∠ABC,CP平分∠BCE交BE于点P.73.(1)求证:△BCP是直角三角形;74.(2)若BC=5,S△BCP=6,求AB与CE之间的距离.77.如图,在△ABC中,已知AB=AC=10√2cm,∠BAC=90°,点D在AB边上且BD=4cm,过点D作DE⊥AB交BC于点E.78.(1)求DE的长;79.(2)若动点P从点B出发沿BA方向以2cm/s的速度向终点A运动,连结PE,设点P运动的时间为t秒.当S△PDE=6cm2时,求t的值;80.(3)若动点P从点D出发沿着DA方向向终点A运动,连结PE,以PE为腰,在PE右侧按如图方式作等腰直角△PEF,且∠PEF=90°.当点P从点D运动到点A时,求点F运动的路径长(直接写出答案).答案和解析1.【答案】A【解析】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】}解:A、1+2=3,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、3+4<12,不能组成三角形,故此选项错误;D、4+5>6,能组成三角形,故此选项正确;故选:D根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.【答案】C【解析】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选:C.利用三角形的稳定性进行解答.本题考查了三角形的稳定性在实际生活中的应用问题,关键是分析能否在同一平面内组成三角形.4.【答案】A【解析】解:A、添加AC=AD不能判定△ABC≌△ABD,故此选项符合题意;B、添加BC=BD可利用SAS判定△ABC≌△ABD,故此选项不符合题意;C、添加∠C=∠D可利用AAS判定△ABC≌△ABD,故此选项不符合题意;D、添加CAB=∠DAB可利用ASA判定△ABC≌△ABD,故此选项不符合题意;故选:A.根据全等三角形的判定方法SSS、SAS、ASA、AAS进行分析即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.解:∵在△ABC中,∠A=30°,∠B=75°,∴∠C=180°-30°-75°=75°,∴△ABC是等腰三角形.故选D.直接根据三角形内角和定理即可得出结论.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.【答案】B【解析】>解:因为腰长为3,底边长为4,所以其周长=3+3+4=10.故选B由已知条件,根据等腰三角形的性质及周长公式即可求得其周长.本题考查了等腰三角形的性质;本题已知比较明确,思路比较直接,属于基础题.7.【答案】A【解析】解:定理“等腰三角形的两个底角相等”的逆定理是有两个角相等的三角形是等腰三角形,故选A.根据题意可以写出原定理的逆定理,本题得以解决.本题考查命题与定理,解题的关键是明确逆定理的定义.解:,故选C根据等腰三角形的判定可得答案.本题考查等腰三角形的判定,解题的关键是学会分类讨论,注意不能漏解.9.【答案】B【解析】解:∵△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点,AB=AC=BC=4∴DE=CD=AC=×4=2,EF=GF=AG=DE=×2=1∴图形ABCDEFG外围的周长是AB+CD+BC+DE+EF+GF+AG=4+2+4+2+1+1+1=15故选B.利用平移性质可得图形ABCDEFG外围的周长等于等边三角形△ABC的周长加上AE,GF长,利用三角形中位线长定理可得其余未知线段的长.本题考查的是等边三角形的性质及三角形中位线定理.10.【答案】B【解析】—解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB=2DE=10,∴AC=AB=10.∵S△BEA=4S△BEC,∴AE•BE=4×CE•BE,∴AE=4CE,∴AE=AC=8.故选B.先根据直角三角形斜边上的中线求出AB长,即为AC长,再根据S△BEA=4S△BEC,得出AE=4CE,进而求出AE的长度.本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边一半的应用,三角形的面积,求出AB=2DE=10是解题的关键.11.【答案】两直线平行;同位角相等【解析】解:两直线平行;同位角相等.命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.“两直线平行,同位角相等”的条件是两直线平行,结论是同位角相等.要根据命题的定义和命题的组成来回答.12.【答案】10【解析】解:由三角形的外角的性质得,∠ABD=∠CAB-∠CDB=10°,故答案为:10.根据三角形的外角的性质列式计算,得到答案.本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.【答案】40【解析】解:∵AB=CA,∴△ABC是等腰三角形,∵D是BC边上的中点,∴AD平分∠BAC,∵∠BAD=20°.∴∠BAC=2×20°=40°.故答案为:40.由已知条件,利用等边三角形三线合一的性质进行求解.本题考查了等腰三角形的性质;利用三线合一是正确解答本题的关键.14.【答案】18【解析】:解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:18根据有一个角是60°的等腰三角形的等边三角形进行解答即可.此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.15.【答案】2【解析】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.16.【答案】50或65【解析】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是40°或70°.故答案是:50或65.知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.此题考查了等腰三角形的性质.此题比较简单,解题的关键是注意掌握等边对等角定理的应用,注意分类讨论思想的应用.17.【答案】16【解析】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长-△EBC的周长=AB,∴AB=40-24=16(cm).故答案为:16.首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC 的周长-△EBC的周长=AB,据此求出AB的长度是多少即可.(1)此题主要考查了垂直平分线的性质,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.(2)此题还考查了等腰三角形的性质,以及三角形的周长的求法,要熟练掌握.18.【答案】127【解析】-解:要使△AFC与△ABQ全等,则应满足,∵AQ:AB=3:4,AQ=AP,PC=4cm,∴AQ=.故答案为:.根据直角三角形的全等的判定解答即可.此题考查直角三角形的全等问题,关键是根据SAS证明三角形的全等.19.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,{AB=DC ∠B=∠C BF=CE∴△ABF≌△DCE(SSS)∴∠A=∠D.【解析】可通过全等三角形的判定定理证△ABF≌△DCE,再利用全等三角形的性质来得出∠A=∠D的结论.此题考查全等三角性的判定及性质,注意先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件是解答此题的关键.20.【答案】解:假命题.理由如下:如:当n=10时,n2-10n=102-10×10=0,不是负数,所以小明的猜想是假命题.【解析】利用反例可证明小明的猜想为假命题.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.21.【答案】证明:∵AD=AB,∴点A在线段BD的垂直平分线上,∵CD=CB,∴点C在线段BD的垂直平分线上,∴AC所在的直线是BD的垂直平分线.【解析】根据作图可得AD=AB,BC=CD,然后根据到线段两端点的距离相等的点在线段的垂直平分线上可得A、C都在BD的垂直平分线上,根据两点确定一条直线可得AC所在的直线是BD的垂直平分线.此题主要考查了线段的垂直平分线,关键是掌握到线段两端点的距离相等的点在线段的垂直平分线上.22.【答案】解:如图所示.【解析】(1)图1,根据两点之间线段最短,连接AB与直线l的交点即为点P,图2,找出点B关于直线l的对称点,连接AB′与直线l相交于点P,根据轴对称确定最短路线问题,点P即为所求;(2)图3,找出点B关于直线l的对称点B′,连接AB′并延长与直线l相交于点P,根据轴对称的性质,PB=PB′,此时,点P即为所求;图4,连接AB并延长与直线l相交于点P,点P即为所求.本题考查了轴对称确定最短路线问题,两点之间线段最短的性质,熟练掌握最短距离的确定方法是解题的关键.23.【答案】解:(1)∵AB∥CE,∴∠ABC+∠BCE=180°,又∵BE平分∠ABC,CP平分∠BCE,∴∠EBC+∠BCP=1(∠ABC+∠BCE)=90°,2∴△BCP是直角三角形;(2)过点P作PD⊥BC于点D,PF⊥AB于点F,延长FP交CE于点H.又∵AB∥CE,∴PH⊥CE,又∵BE,CP分别平分∠ABC,∠BCE,∴PD=PF=PH,∵BC=5,S△BCP=6,∴PD=2.4,∴FH=4.8,即AB与CE之间的距离是4.8.【解析】(1)先根据平行线的性质,得出∠ABC+∠BCE=180°,再根据BE平分∠ABC,CP平分∠BCE,求得∠EBC+∠BCP=(∠ABC+∠BCE)=90°,即可得出△BCP 是直角三角形;(2)过点P作PD⊥BC于点D,PF⊥AB于点F,延长FP交CE于点H,根据BE,CP分别平分∠ABC,∠BCE,得出PD=PF=PH,再根据S△BCP=6,求得PD=2.4,进而得出AB与CE之间的距离是4.8.本题主要考查了角平分线的性质以及平行线的性质,解决问题的关键是作辅助线,运用角平分线的性质以及三角形的面积进行计算.24.【答案】解:(1)∵AB =AC ,∠BAC =90°, ∴∠B =∠C =45°,∵DE ⊥AB ,∴∠B =∠BED =45°,∴DE =BD =4cm ;(2)当点P 在线段BD 上时,S △PDE =12×DP ×DE =12×4×(4-2t )=6,整理得,4-2t =3,解得,t =0.5,当点P 在线段AD 上时,S △PDE =12×DP ×DE =12×4×(2t -4)=6,整理得,2t -4=3,解得,t =3.5,综上所述,t =0.5或3.5;(3)点F 运动的路径长为10√2-4.理由如下:过点F 作FH ⊥DE 于点H .∵∠PEF =90°,∴∠PED +∠FEH =90°,∴∠PED =∠EFH ,在△PDE 和△EHF 中,{∠PED =∠FEH ∠PDE =∠HEF EP =EH,∴△PDE ≌△EHF ,∴FH =DE =4,∴当P 从点D 运动到点A 时,点F 运动的路径为线段,该线段的长度=AD =10√2-4.【解析】(1)根据等腰直角三角形的性质解答;(2)分点P 在线段BD 上和点P 在线段AD 上两种情况,根据三角形的面积公式计算;(3)证明△PDE ≌△EHF ,根据全等三角形的性质、结合图形解答即可.本题考查的是三角形的知识的综合运用,掌握等腰直角三角形的性质、全等三角形的判定定理和性质定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档