基本半桥逆变电路分析

合集下载

单相半桥电压型逆变电路参数计算

单相半桥电压型逆变电路参数计算

单相半桥电压型逆变电路参数计算引言:单相半桥电压型逆变电路是一种常见的电力电子变换电路,广泛应用于交流电源与直流负载之间的能量转换。

本文将详细介绍单相半桥电压型逆变电路的参数计算方法,帮助读者更好地理解和设计这一电路。

一、电路结构和工作原理单相半桥电压型逆变电路由两个开关管和一个中心点连接的电容组成。

当S1和S2两个开关管交替导通时,电容上会产生一个交流电压。

通过控制开关管的导通和关断,可以实现对输出电压的控制。

二、参数计算1. 电压和频率:根据应用需求确定逆变电路的输出电压和频率,常见的输出电压有220V或110V,输出频率一般为50Hz或60Hz。

2. 电容容值:电容的容值决定了逆变电路的输出电压波形的平滑程度。

容值过小会导致输出电压波形产生较大的纹波,容值过大则会增加成本和体积。

容值的计算方法如下:C = (2*I_max)/(f*ΔV)其中,C为电容的容值,I_max为输出电流的最大值,f为输出频率,ΔV为输出电压的纹波值。

3. 电阻选取:为了保证开关管工作的可靠性和效率,需要在电路中加入适当的电阻。

电阻的选取主要考虑开关管的导通和关断速度,防止产生过大的电流和电压冲击。

一般情况下,电阻的阻值可根据开关管的额定电流和额定电压来确定。

4. 开关管选取:开关管的选取需要考虑工作电流、额定电压、导通和关断速度等因素。

常用的开关管有晶闸管、MOS管等,根据具体需求进行选择。

5. 电感选取:电感的作用是平滑输出电流,减小电压纹波。

电感的选取需要考虑输出电流的大小、频率以及纹波要求。

一般情况下,电感的选取范围为输出电流的10%至20%。

6. 纹波滤波电感选取:为了进一步减小输出电压的纹波,可以在逆变电路的输出端串联一个纹波滤波电感。

电感的选取需要根据输出电流的大小和纹波要求来确定。

7. 电压限制器选取:为了保护逆变电路和负载,常常在电路中添加电压限制器。

电压限制器的选取需要考虑逆变电路的额定电压和负载的额定电压,以及工作电流和保护电流等参数。

半桥逆变电路的特点

半桥逆变电路的特点

半桥逆变电路的特点
1. 半桥逆变电路,它的高效性可真是牛啊!就好比汽车里的高效发动机,能让能量转换快速进行。

比如说在一些不间断电源中,半桥逆变电路就能高效地把直流电变成交流电,厉害吧!
2. 嘿,半桥逆变电路的稳定性也超强的呀!这不就像一个可靠的伙伴,始终坚守岗位。

像一些工业设备里,它稳定的表现确保了整个系统的正常运转,牛不牛!
3. 哇塞,半桥逆变电路的适应性那叫一个广!就跟那全能选手似的。

在不同的环境和负载条件下,它都能应对自如,你说神不神?比如在各种电子设备中都能大显身手。

4. 半桥逆变电路的结构相对简单呀,这可太好啦!就如同一个简洁而实用的工具。

像一些小型电器中,这种简单的结构使其容易实现和维护,是不是很棒?
5. 哎哟喂,半桥逆变电路的成本还相对较低呢!就像一个实惠的选择。

对于一些预算有限的项目,它可是能发挥大作用,能不吸引人吗?
6. 半桥逆变电路的控制也不难呀,是不是很让人惊喜?好比驾驭一辆容易操控的车。

在各种应用场景中,人们可以比较轻松地对它进行控制和调节。

7. 你们知道吗,半桥逆变电路还有着良好的输出特性呢!宛如能奏出美妙音乐的乐器。

它能提供较为纯净和稳定的交流电输出,这太厉害了吧!
8. 半桥逆变电路在散热方面也表现不错哦!就像人能很好地调节体温一样。

在长时间工作时,它也能保持较好的工作状态,真不错呀!
9. 总之,半桥逆变电路有着这么多独特的特点,高效、稳定、适应性广等等,真是电子电路中的宝藏啊!它在各种领域都发挥着重要作用,为我们的生活带来了便利和进步。

基本半桥逆变电路分析

基本半桥逆变电路分析

基本半桥逆变电路分析电路仿真练习一、各元件的作用FUSE保险电阻:过电流和短路电流保护元件,抑制浪涌电流;L1,C1,C2:组成π型EMI滤波器,减轻高频逆变电路产生的电磁干扰;D1,D2,D3,D4:组成桥式整流电路,将输入的交流变为直流;C4滤波电容:将整流出的电压进行平滑滤波,使其接近直流电压;R1,C5:RC积分电路,滤波后的电压经过R1对C5进行充电,提供DB3导通电压; DB3双向触发二极管:当 C5上的电压高于DB3的导通电压时,DB3导通,向Q2的基极注入电流,使T2导通,电路起振后,DB3不再导通;D5:隔离启动电路和振荡电路,使振荡电流不会经过C5到地;R2,C4:C4为续流电容,R2为C4提供放电网络。

当Q1和Q2在交替开关的同时截止阶段,使灯丝有电流流过,C4通常为1000~3300pF;R2,C4组成的放电网络同时避免两个三极管电流重叠,提供一个死区时间。

D6,D7续流二极管:与三极管并联在磁环线圈的两端,保护三极管,防止三极管反向击穿,反向电动势会通过二极管释放;Q1,Q2开关三极管:构成推挽电路,两管交替导通,在Q1的发射极和Q2的集电极中间产生近似方波脉冲;R4,R6:稳定电路工作点,负反馈作用,抬高晶体管发射极电位,控制发射机和基极之间的电压; R3,R5:控制晶体管的基极电流,同时隔离晶体管的基极电压与磁环绕组的感应电动势; N1,N2,N3磁环绕组(脉冲变压器):利用互感耦合,以及磁芯的饱和特性,控制Q1与Q2的交替开关;L2,C6:LC串联谐振电路,在C6两端为灯提供启动电压,同时对方波脉冲进行滤波,使灯丝电流近似正弦波;L2的Q值和C6的决定提供启动电压的大小; C7,C8:隔直电容,为灯丝电流提供交流通路。

二、各元件参数估算要求FUSE保险电阻:一般选择4.7~47欧;L1,C1,C2:高阻低通滤波器设计;使用安规电容;D1,D2,D3,D4:整流二极管,二极管反向耐压和热稳定性,反向耐压一般为输入电压的1.25倍; C4滤波电容:充放电的时间常数以及耐压值,充放电时间常数数交流周期的3~5倍,耐压值高于峰1电路仿真练习值电压的1.25倍;R1,R2:一般,R1=R2,两者相近,一般控制R1流过的电流在0.5~1mA; C5:C5的耐压要高于DB3的导通电压1.25倍以上,R1、C5的时间常数一般应为开关管导通时间的5%左右,要求有足够大的电流经过DB3注入Q2基极,使Q2导通; D5:普通整流二极管;C4续流电容:Q1和Q2截止时,C4会产生脉冲电流,Q1、Q4交替导通截止,使C4上产生正负交替的高频脉冲,因此C4要选择高频损耗小的电容,避免发热损坏; D6,D7续流二极管:续流二极管D选择要考虑导通、截止和转换三部分损耗,所以用正向压降小,反向电流小和存储时间短的开关二极管,一般选用肖特基二极管; Q1,Q2开关三极管:晶体管的耐压大于滤波后的线路电压;集电极电流依据灯丝峰值电流确定,通过集电极的峰值电流是通过L2的峰值电流,因此集电极电流参数应远大于此值;晶体管的开关速度主要受存储时间影响,存储时间应低于开关周期的20%,开关周期可用镇流器的开关频率计算;直流电流增益要大,一般要求大于5,这样较小的基极电流就可以获得较高的集电极电流,减小晶体管的导通损耗;R4,R6:反馈电阻,通过发射极电流变化影响晶体管发射极电压,进而控制发射极和基极之间的电压的变化,依据晶体管工作点的稳定要求取值; R3,R5:依据开关三极管的集电极电流和直流增益,确定基极电流,结合N1,N2的感应电动势确定;R3,R5与N1,N2的匝数相关(由晶体管基极电流的峰值决定); N1,N2,N3磁环绕组:绕组的匝数由磁环的饱和磁场强度,有效磁路长度,以及流过绕组的峰值电流大小决定,绕组匝数=(有效磁路长度*饱和磁场强度)/峰值电流;绕组电压= -(磁导率*匝数平方*截面积/有效磁路长度)*电流变化率 L2,C6:C6的耐压是灯的启动电压的1.25倍,LC振荡电路的谐振频率与晶体管开关频率相近(开关频率不能小于谐振频率,谐振电路构成的负载应该呈感性或阻性,但不能呈容性):f?1/ 2π(L2*C6)1/2,C6上的谐振电压为灯的启动电压;C7,C8:高频损耗小,耐压大于线路峰值电压1.25倍。

单相半桥逆变电路工作过程

单相半桥逆变电路工作过程

单相半桥逆变电路工作过程单相半桥逆变电路是一种常用的逆变电路结构,可以将直流电能转换为交流电能。

它由两个开关管和两个二极管组成,通过控制开关管的导通和关断来控制电路的工作状态。

下面将详细介绍单相半桥逆变电路的工作过程。

在单相半桥逆变电路中,一个开关管和一个二极管串联连接,称为高侧开关管,另一个开关管和一个二极管并联连接,称为低侧开关管。

高侧开关管和低侧开关管之间通过负载相连。

在工作过程中,高侧开关管和低侧开关管交替导通和关断,从而实现对负载电压的控制。

当高侧开关管导通时,负载电压为正极性。

此时,负载电流通过高侧开关管和负载正极之间的通路流入负载,同时,负载的电容开始充电。

在这个过程中,低侧开关管处于关断状态,负载电流通过二极管流回负载的负极,此时二极管处于正向偏置状态,承担起了回路的导通功能。

接着,当高侧开关管关断时,负载电压为零。

此时,负载电流仍然通过高侧开关管和负载正极之间的通路流入负载,负载的电容继续充电。

与此同时,低侧开关管导通,负载电流通过低侧开关管和负载负极之间的通路流回电源,此时二极管处于反向偏置状态,不起导通作用。

当低侧开关管导通时,负载电压为负极性。

此时,负载电流通过低侧开关管和负载负极之间的通路流入负载,负载的电容继续充电。

与此同时,高侧开关管处于关断状态,负载电流通过二极管流回负载的正极,此时二极管处于正向偏置状态,承担起了回路的导通功能。

通过以上工作过程的循环,单相半桥逆变电路可以实现对负载电压的控制。

通过控制高侧开关管和低侧开关管的导通和关断时间,可以改变负载电压的大小和频率。

当高侧开关管和低侧开关管交替导通和关断时,负载电压呈现正弦波形。

需要注意的是,在实际应用中,为了保证负载电压和电流的稳定性,需要对开关管进行精确的控制。

通过合理的开关管触发角和工作频率的选择,可以实现电路的高效运行和稳定输出。

单相半桥逆变电路通过控制开关管的导通和关断来实现对负载电压的控制。

通过高侧开关管和低侧开关管的交替工作,负载电压呈现正弦波形,实现了直流电能向交流电能的转换。

半桥电路工作原理

半桥电路工作原理

半桥电路工作原理
半桥电路是一种用于控制电机驱动或电源系统的电子电路。

它由两个独立的开关组成,分别连接到直流电源的正负极上。

一般情况下,这两个开关是晶体管或MOSFET,可以通过控制它们的开关状态来控制电流的流向。

当半桥电路工作时,其中一个开关(通常称为上桥臂)处于导通状态,而另一个开关(通常称为下桥臂)处于断开状态。

这导致直流电源的正电压通过上桥臂,而负电压则通过下桥臂。

这样,半桥电路可以改变输出电压的极性。

在控制电机驱动中,半桥电路被用来改变电机绕组的极性,从而改变电机的转向。

例如,如果上桥臂导通而下桥臂断开,正电压通过电机的一个绕组,负电压则通过电机的另一个绕组,从而使电机旋转。

如果上桥臂断开而下桥臂导通,则电机会以相反的方向旋转。

在电源系统中,半桥电路可以被用作直流-交流逆变器。

通过控制半桥电路的开关状态,可以将直流电源的电能转换为交流电能。

具体来说,当上桥臂导通而下桥臂断开时,直流电源的正电压通过负载,而负电压则通过电容器将直流电能转换为交流电能。

当开关状态反转时,交流电能由负载通过电容器反向转换为直流电能。

总的来说,半桥电路通过控制两个独立的开关的开关状态,可以实现电流的流向控制,改变电压的极性,并将直流电能转换
为交流电能。

这使得半桥电路在电机驱动和电源系统中具有广泛的应用。

基本半桥逆变电路分析

基本半桥逆变电路分析

基本半桥逆变电路分析一、各元件的作用FUSE保险电阻:过电流和短路电流保护元件,抑制浪涌电流;L1,C1,C2:组成π型EMI滤波器,减轻高频逆变电路产生的电磁干扰;D1,D2,D3,D4:组成桥式整流电路,将输入的交流变为直流;C4滤波电容:将整流出的电压进行平滑滤波,使其接近直流电压;R1,C5:RC积分电路,滤波后的电压经过R1对C5进行充电,提供DB3导通电压;DB3双向触发二极管:当C5上的电压高于DB3的导通电压时,DB3导通,向Q2的基极注入电流,使T2导通,电路起振后,DB3不再导通;D5:隔离启动电路和振荡电路,使振荡电流不会经过C5到地;R2,C4:C4为续流电容,R2为C4提供放电网络。

当Q1和Q2在交替开关的同时截止阶段,使灯丝有电流流过,C4通常为1000~3300pF;R2,C4组成的放电网络同时避免两个三极管电流重叠,提供一个死区时间。

D6,D7续流二极管:与三极管并联在磁环线圈的两端,保护三极管,防止三极管反向击穿,反向电动势会通过二极管释放;Q1,Q2开关三极管:构成推挽电路,两管交替导通,在Q1的发射极和Q2的集电极中间产生近似方波脉冲;R4,R6:稳定电路工作点,负反馈作用,抬高晶体管发射极电位,控制发射机和基极之间的电压;R3,R5:控制晶体管的基极电流,同时隔离晶体管的基极电压与磁环绕组的感应电动势;N1,N2,N3磁环绕组(脉冲变压器):利用互感耦合,以及磁芯的饱和特性,控制Q1与Q2的交替开关;L2,C6:LC串联谐振电路,在C6两端为灯提供启动电压,同时对方波脉冲进行滤波,使灯丝电流近似正弦波;L2的Q值和C6的决定提供启动电压的大小;C7,C8:隔直电容,为灯丝电流提供交流通路。

二、各元件参数估算要求FUSE保险电阻:一般选择4.7~47欧;L1,C1,C2:高阻低通滤波器设计;使用安规电容;D1,D2,D3,D4:整流二极管,二极管反向耐压和热稳定性,反向耐压一般为输入电压的1.25倍;C4滤波电容:充放电的时间常数以及耐压值,充放电时间常数数交流周期的3~5倍,耐压值高于峰值电压的1.25倍;R1,R2:一般,R1=R2,两者相近,一般控制R1流过的电流在0.5~1mA;C5:C5的耐压要高于DB3的导通电压1.25倍以上,R1、C5的时间常数一般应为开关管导通时间的5%左右,要求有足够大的电流经过DB3注入Q2基极,使Q2导通;D5:普通整流二极管;C4续流电容:Q1和Q2截止时,C4会产生脉冲电流,Q1、Q4交替导通截止,使C4上产生正负交替的高频脉冲,因此C4要选择高频损耗小的电容,避免发热损坏;D6,D7续流二极管:续流二极管D选择要考虑导通、截止和转换三部分损耗,所以用正向压降小,反向电流小和存储时间短的开关二极管,一般选用肖特基二极管;Q1,Q2开关三极管:晶体管的耐压大于滤波后的线路电压;集电极电流依据灯丝峰值电流确定,通过集电极的峰值电流是通过L2的峰值电流,因此集电极电流参数应远大于此值;晶体管的开关速度主要受存储时间影响,存储时间应低于开关周期的20%,开关周期可用镇流器的开关频率计算;直流电流增益要大,一般要求大于5,这样较小的基极电流就可以获得较高的集电极电流,减小晶体管的导通损耗;R4,R6:反馈电阻,通过发射极电流变化影响晶体管发射极电压,进而控制发射极和基极之间的电压的变化,依据晶体管工作点的稳定要求取值;R3,R5:依据开关三极管的集电极电流和直流增益,确定基极电流,结合N1,N2的感应电动势确定;R3,R5与N1,N2的匝数相关(由晶体管基极电流的峰值决定);N1,N2,N3磁环绕组:绕组的匝数由磁环的饱和磁场强度,有效磁路长度,以及流过绕组的峰值电流大小决定,绕组匝数=(有效磁路长度*饱和磁场强度)/峰值电流;绕组电压= -(磁导率*匝数平方*截面积/有效磁路长度)*电流变化率L2,C6:C6的耐压是灯的启动电压的1.25倍,LC振荡电路的谐振频率与晶体管开关频率相近(开关频率不能小于谐振频率,谐振电路构成的负载应该呈感性或阻性,但不能呈容性):f≈1/ 2π(L2*C6)1/2,C6上的谐振电压为灯的启动电压;C7,C8:高频损耗小,耐压大于线路峰值电压1.25倍。

半桥电流源高频链逆变电路分析

半桥电流源高频链逆变电路分析

半桥电流源高频链逆变电路分析1引言半桥电流源高频链逆变电路拓扑如图所示[1]。

图1为采用半桥电流源高频链逆变电路拓扑,其中Q1、Q2组成高频逆变器,Q3、Q4组成一个周波变换器,Tr为高频变压器。

图2为半桥电流源高频链逆变电路输出接感性负载的主要波形示意图。

半桥电流源高频链逆变电路是以反激式直直功率变换器为基础的,电路工作在电感电流断续模式,通过控制开关管Q1、Q2、Q3、Q4可以得到四种工作模式A、B、C和D,每一种工作模式电路的拓扑结构都相当于一个反激式直直功率变换器,对于不同的负载,逆变器的工作模式顺序不同[1,2,3]。

半桥电流源高频链逆变电路具有以下特点:拓扑简洁、控制方案简单、使用器件少、效率高、可靠性高以及良好的动态响应。

因而具有较好的应用前景。

但在工程实践中,吸收电路的设计及变压器匝比的设计不适会加大变换器中的损耗,降低效率。

本文将在对半桥电流源高频链逆变器的电压应力分析的基础上,利用仿真的方法分析吸收电路结构及变压器匝比与损耗的关系。

2吸收电路半桥电流源高频链逆变电路是以Flyback电路为基础的,为了减小功率场效应管关断时,存储在漏感中的能量引起功率场效应管漏源电压尖峰,在Flyback中通常要在MOS漏源或变压器绕组两端加漏感能量吸收电路。

但在半桥电流源高频链逆变电路中,组成高频逆变器的Q1、Q2具有漏感能量回馈通路,无须吸收电路;组成周波变换器的Q3、Q4在能量回馈时高频开关,在其关断时无漏感能量泻放回路,必须加吸收电路。

1)高频逆变器电压应力分析在能量从电源传递到负载过程中,高频逆变器Q1、Q2高频开关,当Q1或Q2关断时,存储在变压器原边漏感中的能量必须有泻放的通路,否则将在Q1或Q2的漏源产生极高的电压尖峰,导致MOS管损坏。

下面以输出正弦波正半周为例,分析高频逆变器工作时漏感能量回馈通路,对应图2中的状态A。

此时Q1高频斩波,Q2关断,Q3常通,Q4一直关断。

在Q1导通时,能量存储在原边电感,在Q1关断时,原边电感电流最大,存储在电感中的能量最大。

单相半桥无源逆变电路的设计

单相半桥无源逆变电路的设计

单相半桥无源逆变电路的设计单相半桥无源逆变电路的基本原理是通过两个开关管交替导通和关断,实现直流电压到交流电压的转换。

在导通状态下,直流电源的正极连接到负载,并通过开关管将电流传递给负载。

在关断状态下,通过电感和电容等元件,将磁能和电能转换为交流电压输出。

通过两个开关管交替导通和关断,实现正负半周的交流电压输出。

单相半桥无源逆变电路主要由两个开关管、两个磁元件(电感、变压器等)和两个电容组成。

开关管的导通和关断通过控制电路实现,可以使用晶闸管、MOSFET或IGBT等开关元件。

磁元件用于储存磁能,将直流电能转换为交流电能。

电容则用于储存电能,平滑输出的交流电压波形。

接下来,我们将详细介绍单相半桥无源逆变电路的设计步骤。

1.确定电源和负载要求:根据具体应用需求,确定输入直流电压和输出交流电压的额定值。

2.选择开关管和控制电路:根据负载要求和工作条件,选择合适的开关管和控制电路。

考虑开关管的导通电流和耐受电压,以及控制电路的驱动能力和稳定性。

3.选择磁元件:根据负载要求和电源容量,选择合适的磁元件。

磁元件的参数包括电感值、饱和电流和损耗等。

4.选择电容:根据负载要求和输出电压纹波范围,选择合适的电容。

电容的参数包括容值、工作电压和损耗等。

5.设计控制电路:根据开关管的驱动方式,设计合适的控制电路。

常见的控制方式包括触发电路、斩波电路和保护电路等。

6.进行电路仿真:使用电路仿真软件,验证和优化设计的单相半桥无源逆变电路。

通过仿真结果,可以评估电路的性能和稳定性。

7.制作原型电路:根据设计结果,制作原型电路进行实际测试。

根据测试结果,对电路进行调整和优化。

8.优化电路参数:根据原型电路的测试结果,对电路参数进行调整和优化。

可以通过更换元件、调整电路连接方式等方法,改善电路性能。

9.进行电路性能测试:对优化后的单相半桥无源逆变电路进行性能测试。

测试项目包括输出波形、效率、稳定性和保护性能等。

10.进行传感器的选型与设计:根据实际要求,选择合适的传感器,并设计传感器的接口和驱动电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

节能灯产品节能灯产品基本半桥逆变电路分析基本半桥逆变电路分析一、各元件的作用FUSE 保险电阻:过电流和短路电流保护元件,抑制浪涌电流;L1,C1,C2:组成π型EMI 滤波器,减轻高频逆变电路产生的电磁干扰; D1,D2,D3,D4:组成桥式整流电路,将输入的交流变为直流;C3 滤波电容:将整流出的电压进行平滑滤波,使其接近直流电压;R1,C5:RC 积分电路,滤波后的电压经过R1对C5进行充电,提供DB3导通电压;DB3双向触发二极管:当 C5上的电压高于DB3的导通电压时,DB3导通,向Q2的基极注入电流,使T2导通,电路起振后,DB3不再导通;D5:隔离启动电路和振荡电路,使振荡电流不会经过C5到地;R2,C4:C4为续流电容,R2为C4提供放电网络。

当Q1和Q2在交替开关的同时截止阶段,使灯丝有电流流过,C4通常为1000~3300pF ;R2,C4组成的放电网络同时避免两个三极管电流重叠,提供一个死区时间。

、积分电容在启动时为触发管提供导通电压,电源电压经过R1对其进行充电,充电达到DB3的28V导通电压,下管导通.移相电容,在上下管轮流导通工作过程当中,存在一个管子截止而另一个管子尚未导通的现象,而流过灯管的电流需要是连续的,利用电容电流可以突变的特性,把这一缺陷弥补上!移相电容比较好!电容减小时电流滞后电压,三极管关断功耗加大,三极管打开时功耗减小,所谓电路呈感性;电容增加时电流超前电压,三极管关断功耗减小,三极管打开时功耗增加,所谓电路呈容性.T5灯管管压略高,启辉电容略小电路本身就接近中性,如果还是将移相电容容量增加大会超成三极管滞后打开,三极管在因导通时有较高电压而产生功耗!如T8T9灯管管压略低启辉电容略高,电路容易呈感性,如果还是将移相电容容量减小会超成三极管超前打开,三极管在因关闭时有较高电压而产生功耗!可能有朋友要说了,那我后面灯管的管压和启辉电容选一定参数达到一定呈中性时就不是可以不用这个电容了吗?那不行!我们这里讲的感容性是基波电流相对于矩形波电压而言,矩形波内的高次谐波无法通过选频网络,经电感反势迭加到三极管上,这样三极管有可能瞬态导通和关断时被硬性击穿!有时象T5灯管不加移相电容时也没事,是因为管压过高时,高次谐波电流经过高的管压强度大大减弱,三极管反而安全了!所以加一定容量的电容也吸收了这些谐波,所以一定要加! 补充一点具体操作方法:用示波器观看三极管的电流波形,调节该电容和磁环的参数就能使三极管工作在最佳工作状态,这一点我认为是调试电子镇流器最精,也是最基础的技术,现在有很多的技术人员都是靠测量三极管的温升来调试的,不会调电流波形根本做不出好的镇流器,会这一点后镇流器真的简单了在下管续流二极管中靠近地线端串一个小电阻1R,用示波器看电阻上电压波形,越小约好,但不能没有!原因我不讲了,自己分析为什么!一个输出波形有三部分组成:流过三极管电流,经这个电容的电流,还有经过续流二极管的电流,组成完整的输出波.注意整个电压范围啊,一般在高压为大一点,低压为小一点)D6,D7续流二极管:与三极管并联在磁环线圈的两端,保护三极管,防止三极管反向击穿,反向电动势会通过二极管释放;Q1,Q2开关三极管:构成推挽电路,两管交替导通,在Q1的发射极和Q2的集电极中间产生近似方波脉冲;R4,R6:稳定电路工作点,负反馈作用,抬高晶体管发射极电位,控制发射机和基极之间的电压;R3,R5:控制晶体管的基极电流,同时隔离晶体管的基极电压与磁环绕组的感应电动势;N1,N2,N3磁环绕组(脉冲变压器):利用互感耦合,以及磁芯的饱和特性,控制Q1与Q2的交替开关;L2,C6:LC串联谐振电路,在C6两端为灯提供启动电压,同时对方波脉冲进行滤波,使灯丝电流近似正弦波;L2的Q值和C6的决定提供启动电压的大小;C7,C8:隔直电容,为灯丝电流提供交流通路。

二、 各元件参数估算要求FUSE保险电阻:一般选择4.7~47欧;L1,C1,C2:高阻低通滤波器设计;使用安规电容;D1,D2,D3,D4:整流二极管,二极管反向耐压和热稳定性,反向耐压一般为输入电压的1.25倍;C4滤波电容:充放电的时间常数以及耐压值,充放电时间常数数交流周期的3~5倍,耐压值高于峰值电压的1.25倍;R1,R2:一般,R1=R2,两者相近,一般控制R1流过的电流在0.5~1mA;C5:C5的耐压要高于DB3的导通电压1.25倍以上,R1、C5的时间常数一般应为开关管导通时间的5%左右,要求有足够大的电流经过DB3注入Q2基极,使Q2导通;D5:普通整流二极管;C4续流电容:Q1和Q2截止时,C4会产生脉冲电流,Q1、Q4交替导通截止,使C4上产生正负交替的高频脉冲,因此C4要选择高频损耗小的电容,避免发热损坏;D6,D7续流二极管:续流二极管D选择要考虑导通、截止和转换三部分损耗,所以用正向压降小,反向电流小和存储时间短的开关二极管,一般选用肖特基二极管;Q1,Q2开关三极管:晶体管的耐压大于滤波后的线路电压;集电极电流依据灯丝峰值电流确定,通过集电极的峰值电流是通过L2的峰值电流,因此集电极电流参数应远大于此值;晶体管的开关速度主要受存储时间影响,存储时间应低于开关周期的20%,开关周期可用镇流器的开关频率计算;直流电流增益要大,一般要求大于5,这样较小的基极电流就可以获得较高的集电极电流,减小晶体管的导通损耗;R4,R6:反馈电阻,通过发射极电流变化影响晶体管发射极电压,进而控制发射极和基极之间的电压的变化,依据晶体管工作点的稳定要求取值;R3,R5:依据开关三极管的集电极电流和直流增益,确定基极电流,结合N1,N2的感应电动势确定;R3,R5与N1,N2的匝数相关(由晶体管基极电流的峰值决定);N1,N2,N3磁环绕组:绕组的匝数由磁环的饱和磁场强度,有效磁路长度,以及流过绕组的峰值电流大小决定,绕组匝数=(有效磁路长度*饱和磁场强度)/峰值电流;绕组电压= -(磁导率*匝数平方*截面积/有效磁路长度)*电流变化率L2,C6:C6的耐压是灯的启动电压的1.25倍,LC振荡电路的谐振频率与晶体管开关频率相近(开关频率不能小于谐振频率,谐振电路构成的负载应该呈感性或阻性,但不能呈容性):f≈1/ 2π(L2*C6)1/2,C6上的谐振电压为灯的启动电压;C7,C8:高频损耗小,耐压大于线路峰值电压1.25倍。

三、电路的工作原理1、电路启动SI和SD之间通电,220V,50Hz交流电,经过整流滤波后,在C3的两端产生约311V的直流电压VC。

此时该电压通过R1、C5组成的积分电路对C5进行充电,当C5上的电压达到DB3的导通电压时,DB3导通,DB3导通后因为Q1,Q2的开关频率高,C5充电不充分,在上面的电压是一些幅度很小的锯齿波,达不到DB3的导通电压,因此电路一旦启动,DB3就不再导通。

2、电路起振DB3导通电流直接进入Q2的基极,驱动Q2导通,Q2导通后,电流的流经路径为:V C正极→C7→→灯丝→C6→灯丝→L2→N3→Q2的集电极→R6→VC负极(地)。

如下图所示:(1)Q2导通,Q1截止,流过N3的电流使N3产生一个阻止此电流增加的感应电动势,极性为同名端为正,N3耦合到N1,N2,N1,N2的同名端感应电动势为正。

N1上的感应电动势减小Q1的基极电压,使Q1保持截止。

N2上的感应电动势使Q2的基极电压增大,Q2的基极电流增大,则Q2的集电极电流增大,N3上的感应电动势加强,N1,N2上的感应电动势加强,形成正反馈使Q2逐渐饱和。

Q2的集电极电流不断的增大,使磁芯磁导率达到最大,磁导率开始下降,Q2的集电极电流继续增大使磁导率急剧下降,N1,N2,N3上的感应电动势急剧下降, N2感应电动势的下降使Q2的基极电压下降,集电极电流开始下降,N3产生感应电动势阻止此电流减小,极性为同名端为负,N3的感应电动势耦合到N1,N2,同名端为负,Q2的基极电压下降,Q1的电压上升。

Q2急剧趋于截止,Q1趋于导通。

(2)当Q1将要导通,Q2已经截止时,(流过N3的电流)灯丝电流不能通过Q2,此时续流电容C4发挥作用,该电流对C4反向充电,保持灯丝电流的连续流通。

(3)Q1导通,Q2截止,此时电流路径为:VC正极→Q1→R4→N3→L2→灯丝→C6→灯丝→C8→VC负极(地)。

如图所示:由于正反馈作用使Q1饱和,Q1的发射极电流增大,流过N3的电流增大,使磁芯磁导率达到最大,而Q1发射极电流继续增大,使磁导率急剧下降,N1,N2,N3上的感应电动势下降,Q1的基极电压下降,Q1发射极电流下降,N3产生感应电动势阻止此电流下降,感应电动势方向又变为同名端为正。

通过镇反馈N1上的感应电动势增加使Q1的基极电压急剧下降,N2上的感应电动势增加使Q2的基极电压急剧增加。

Q1趋于截止,Q2趋于导通。

(4)当Q1截止,Q2将要导通时,灯丝电流不能流过Q1,此时灯丝电流仍由C4续流,保持灯丝电流连续。

(5)Q1截止,Q2导通,电路又重复经过(1)(2)(3)(4)状态,如此循环,电路进入振荡状态。

3、正常工作电路进入振荡状态以后,在Q1的发射极和Q2的集电极之间产生方波,Q1饱和时,Q2截止时,形成方波上沿,幅度为:[VC-(Q1的饱和管压降+R4上的压降)];Q1截止,Q2饱和时,形成方波下沿,幅度为:[Q2的饱和管压降+R6上的压降]。

又C7、C8组成无源半桥中点的电压为VC/2。

所以可以将该方波看作是交变方波,方波上沿为:[VC/2-(Q1的饱和管压降+R4上压降)],方波下沿为:[(Q2的饱和管压降+R6上压降)-VC/2],此方波电压经过L2,C6的串联作用滤波,其波形接近正弦波,因为频率接近串联谐振频率,在C6上产生很高的启动电压,使灯点亮。

点亮后灯管可以视作等效电阻。

灯管等效电阻是由灯管电压和灯管电流决定的。

假设由Q2的集电极输出电压为幅度150V,35KHz的交变方波,灯正常工作时的灯丝电阻为380欧,取C6=6.8n,C7=C8=100n,仿真电路及仿真波形如下:四:影响镇流器工作频率的因素(1) 次级磁环匝数N1、N2以及R3、R5控制三极管的饱和程度,饱和程度越深,退出饱和越慢,工作频率越低,反之亦然;(2) 磁环的磁导率越大,工作频率越低;(3) 发射极反馈电阻R4、R6越大,负反馈作用越强,三极管越不容易饱和,工作频率越高;(4) 灯管等效电阻越大,时间常数τ=L/R越小,工作频率越高;(5) 工作环境温度上升,基极发射极电压U BE减小,存储电荷与存储时间变大,工作频率变低。

相关文档
最新文档