几何体外接球内切球专题

合集下载

几何体内切球与外接球

几何体内切球与外接球
专题:与球有关的 内切与外接问题
1
切接问题
• 该类问题命题背景宽,常以棱柱、棱锥、 圆柱、圆锥与球的内切、外接形式考查,多 以选择、填空题的形式出现,试题较容易.
涉及球与棱柱、棱锥的切、接问题时,一般过球 心及多面体中的特殊点或线作截面,把空间问题化归为平面问 题,再利用平面几何知识寻找几何体中元素间的关系.
.
【解析】翻折后的四面体 A B C D , 底面是边长为 3的正 三角形. 将四面体补形成正三棱柱 D B C -A E F , 则四面体
A B C D 的外接球的球心为正三棱柱上、下底面中心连线段
的中点. 球半径 R = (2 )2 + (3 × 2 )2 =
3 2 3 13 2
, ∴外接球的体积
二是如果三棱锥的三条侧棱互相垂直且不相等,则 可以补形为一个长方体,它的外接球的球心就是三棱 锥的外接球的球心, ( 为长方体的体对角线长)。
边长为2的正方形ABCD中,E、F分别 是AB、BC的中点,AED, EBF, FCD 分别沿DE、EF、FD折起,使A, B, C 重合于A, 若四面体AEFD的四个顶点 在同一球面上,则该球 的半径是 6 2
O2 连线的中点 O,如图所示:
在 Rt△AO1O 中,AO1=×=,OO1=,
OA =R =() +() =,
2
2
2
2
S 球= 4πR = 4π× 12 = 3 .
【答案】B
2
7������ 2
7���� 2
8.一个直六棱柱的底面是边长为 4 的正六边形,侧棱长为 6, 则它的外接球的体积为( ). A . B .500πC . D .4000π
40
[例1]

专题15 空间几何体外接球和内切球(解析版)

专题15  空间几何体外接球和内切球(解析版)

【例 2】直三棱柱 ABC A1 B1C 1 的所有棱长均为 ,则此三棱柱的外接球的表面积为( )
A. π
B. π
C. π
D. π
安老师高三玩转数学研讨群(721144129)旨在打造课外辅导专用讲义,更多资料关注公众号玩转高中数学研讨 7
【解析】由直三棱柱的底面边长为
,得底面外接圆的半径:
r
1 2
类型三:侧面垂直于底面---切瓜模型
2)棱锥高度 h PA ;
类型四:棱长即为直径(两个直角三角形的斜边为同一边,则该边为球的直径)
题设:
APB
AQB
2
,且
面ABP
面ABQ
则外接球半径: R AB 2
类型五:折叠模型
1.例题
【例 1】已知正四棱锥 P ABCD 的各顶点都在同一球面上,底面正方形的边长为 2 ,若该正四棱锥的
ABC
A1B1C1 的底面边长为
3,故底面的外接圆的半径为: r, 2r
3 sin 600
r
3. 外接
球表面积为16 4 R2 R 2
外接球的球心在上下两个底面的外心 MN 的连线的中点上,记为 O 点,如图所示
在三角形 OMB1 中, MB1 r 3,OB1 R 2 MB1 2 OM 2 OB1 2
2)
求出
AH
2 3
r
,求出棱锥高度
h
PH
PA 2 AH 2 ;
3) 由勾股定理得外接球半径: R OH 2 AH 2 h R2 ( 2 r)2 .
3
图1
图2
类型二:侧棱垂直底面型 (如上图 2)
1)求底面外接圆半径: r HD 1 a ( a 为角 A 的对边); 2 sin A

外接球与内切球专题

外接球与内切球专题

【典例 1】 已知各顶点都在同一个球面上的正四棱柱的高为 4,体
积为 16,则这个球的表面积是( )
A.16π
B.20π
C.24π
D.32π
【解析】 已知各顶点都在同一个球面上的正四棱柱的高为 4,体积 为 16,可求得底面边长为 2,故球的直径为 22+22+42=2 6,半径为 6, 球的表面积为 24π,故选 C。
【答案】 C
【小结】 本题是运用“正四棱柱的体对角线的长等于其外接球的三视图如图所示,则它的外接球的表 面积为( )
A.16π C.8π
B.4π D.2π
【解析】 由三视图可知该三棱锥的高为 1,底面为一个直角三角形, 由于底面斜边上的中线长为 1,则底面外接圆的半径为 1,顶点在底面上 的投影落在底面外接圆的圆心上。由于顶点到底面的距离与底面外接圆 的半径相等,则三棱锥的外接球的半径 R 为 1,则三棱锥的外接球的表 面积 S=4πR2=4π,故选 B。
【答案】 B
二、构造长方体或正方体确定球心 1.正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角 形的三棱锥,可将三棱锥补形成长方体或正方体; 2.同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱 锥,可将三棱锥补形成长方体或正方体; 3.若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方 体; 4.若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正 方体。
5 2 4π× 2 2=50π。故选 D。
【答案】 D
三、由性质确定球心 利用球心 O 与截面圆圆心 O′的连线垂直于截面圆及球心 O 与弦中 点的连线垂直于弦的性质,确定球心。
【典例 3】 正三棱锥 A-BCD 内接于球 O,且底面边长为 3,侧 棱长为 2,则球 O 的表面积为________。

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。

1. 求立方体的外接球和内切球的半径。

外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。

2. 求正方体的外接球和内切球的半径。

外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。

3. 求圆柱体的外接球和内切球的半径。

外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。

4. 求圆锥的外接球和内切球的半径。

外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。

5. 求球的外接球和内切球的半径。

外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。

6. 求棱锥的外接球和内切球的半径。

外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。

7. 求棱柱的外接球和内切球的半径。

外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。

8. 求四面体的外接球和内切球的半径。

外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。

9. 求正六面体的外接球和内切球的半径。

外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。

10. 求正八面体的外接球和内切球的半径。

外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。

以上是关于立体几何中外接球和内切球的十个常见题型及其解答。

希望能对你有所帮助。

专题06 经典三类球:外接球、内切球、棱切球(解析版)

专题06 经典三类球:外接球、内切球、棱切球(解析版)

专题06 经典三类球:外接球、内切球、棱切球【考点预测】考点一:正方体、长方体外接球1.正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半. 2.长方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半. 3.补成长方体(1)若三棱锥的三条侧棱两两互相垂直,则可将其放入某个长方体内,如图1所示. (2)若三棱锥的四个面均是直角三角形,则此时可构造长方体,如图2所示. (3)正四面体P ABC -可以补形为正方体且正方体的棱长2a =,如图3所示.(4)若三棱锥的对棱两两相等,则可将其放入某个长方体内,如图4所示图1 图2 图3 图4考点二:正四面体外接球如图,设正四面体ABCD 的的棱长为a ,将其放入正方体中,2,显然正四面体和正方体有相同的外接球.正方体外接球半径为236R ==,即正四面体外接球半径为6R =.考点三:对棱相等的三棱锥外接球四面体ABCD 中,AB CD m ==,AC BD n ==,AD BC t ==,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为,,a b c ,则222222222b c m a c n a b t ⎧+=⎪+=⎨⎪+=⎩,三式相加可得222a b c ++=222,2m n t ++而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224a b c R +=+,所以2228m n t R ++=.考点四:直棱柱外接球如图1,图2,图3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)图1 图2 图3第一步:确定球心O 的位置,1O 是ABC ∆的外心,则1OO ⊥平面ABC ; 第二步:算出小圆1O 的半径1AO r =,111122OO AA h ==(1AA h =也是圆柱的高); 第三步:勾股定理:22211OA O A O O =+⇒222()2hR r =+⇒22()2h R r =+R考点五:直棱锥外接球如图,PA ⊥平面ABC ,求外接球半径.图3-1C 1B 1AEFA 1O 1OO 2BC图3-2C 1B 1AA 1O 1OO 2BC图3-3C 1B 1AEFA 1O 1O O 2BC解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以1OO ⊥平面ABC ,算出小圆1O 的半径1O D r =(三角形的外接圆直径算法:利用正弦定理,得2sin sin sin a b c r A B C ===),112OO PA =; 第三步:利用勾股定理求三棱锥的外接球半径:①222(2)(2)R PA r =+⇔222(2)R PA r +②2221R r OO =+⇔221R r OO =+ 考点六:正棱锥外接球正棱锥外接球半径:222r h R h+= .考点七:垂面模型如图1所示为四面体-P ABC ,已知平面⊥PAB 平面ABC ,其外接球问题的步骤如下: (1)找出PAB △和ABC △的外接圆圆心,分别记为1O 和2O .(2)分别过1O 和2O 作平面PAB 和平面ABC 的垂线,其交点为球心,记为O . (3)过1O 作AB 的垂线,垂足记为D ,连接2O D ,则⊥2O D AB .(4)在四棱锥-12A DO OO 中,AD 垂直于平面12DO OO ,如图2所示,底面四边形12DO OO 的四个顶点共圆且OD 为该圆的直径.ADPO 1OCBhl rDB图1 图2考点八:锥体内切球方法:等体积法,即3VRS=体积表面积考点九:棱切球方法:找切点,找球心,构造直角三角形【典型例题】例1.(2022·河北邢台·高一阶段练习)已知菱形ABCD的边长为360BAD∠=︒,将△ABD沿BD折起,使A,C两点的距离为3A-BCD的外接球的表面积为()A.12πB.18πC.24πD.30π【答案】B【解析】【分析】确定折起后三棱锥A-BCD为正四面体,将此正四面体放置在正方体中,使得正方体的面对角线是正四面体的棱,正方体的对角线就是外接球的直径,此球也是三棱锥A-BCD的外接球.由此计算可得球表面积.【详解】由已知得BAD为等边三角形,∴对角线23BD AB BC CD DA=====将ABD△沿BD折起,使A,C两点的距离为3∴折起后三棱锥A-BCD为正四面体,各棱长都是23将此正四面体放置在正方体中,使得正方体的面对角线是正四面体的棱,设正方体的棱长为a23a=32a R =,其中R 为正方体的外接球半径,322R =, 由于正方体的外接球就是正四面体ABCD 的外接球, ∴正四面体ABCD 的外接球表面积为2418R ππ= 故选:B.例2.(2022·安徽·合肥市第六中学高一期中)设直三棱柱111ABC A B C -的所有顶点都在一个球面上,1AB AC AA ==,120BAC ∠=︒,且底面ABC 的面积为23接球的表面积是( ) A .16π B 4010πC .40πD .64π【答案】C 【解析】 【分析】由三角形面积公式求得AB ,由正弦定理求得底面三角形外接圆半径,设,M N 分别是ABC 和111A B C △的外接圆圆心,则MN 的中点O 是三棱柱111ABC A B C -的外接球球心,求球半径后可得表面积. 【详解】设1AB AC AA m ===,因为120BAC ∠=︒, 所以1sin120232m m ⨯⨯⨯︒=22m = 而30ACB ∠=︒,所以22sin 30r =︒(r 于是是ABC 外接圆的半径),22r =即22AM = 如图,设,M N 分别是ABC 和111A B C △的外接圆圆心,由直棱柱的性质知MN 的中点O 是三棱柱111ABC A B C -的外接球球心, 111222OM MN AA === 所以外接球为22R OA AM OM =+=()()2222210+=.于是球的表面积为24S R =π=(241040ππ=.故选:C.例3.(2022·湖南·长郡中学高一期中)如图,在正四棱台1111ABCD A B C D -中,4AB =,112A B =,若半径为r 的球O 与该正四棱台的各个面均相切,该球的表面积S =( )A .4πB .6πC .8πD .10π【答案】C 【解析】 【分析】作正棱台的轴截面.设内切球的半径为r ,利用勾股定理得到222MG FG MF +=,解得2r =.【详解】如图,作该正棱台的轴截面.其中E ,F ,M ,N 分别是AB ,CD ,11C D ,11A B 的中点,H ,K 是MN ,EF 的中点,G 是内切球的球心,H ,K 是内切球和上、下底面的切点,Q 是内切球和侧面11CDD C 的切点,内切球的半径为r ,由正棱台的结构可以得到,1HM =,2KF =,HG KG QG r ===,易得1MQ HM ==,2FQ FK ==,3MF =,2221MG r =+,2222FG r =+,且90MGF ∠=︒,所以222MG FG MF +=,即22149r r +++=,解得2r =248S r ππ==.故选:C.例4.(2022·河北省唐县第一中学高一期中)已知三棱锥P ABC -的各顶点都在同一球面上,且P A ⊥ 平面ABC ,AB AC ⊥,且1AB AC ==,若此球的表面程等于4π,则三棱锥P ABC -的体积为( )A 2B .1C 2D .13【答案】A 【解析】 【分析】将三棱锥P ABC -补成长方体,则三棱锥P ABC -的外接球即为该长方体的外接球,求出球的半径,即可得出长方体的对角线的长度,从而可得出答案. 【详解】由题意,将三棱锥P ABC -补成长方体,则三棱锥P ABC -的外接球即为该长方体的外接球.则该长方体的外接球的直径为该长方体的对角线. 如图,4S π=球,则球半径1R =, 所以()222222PA AB AC R PA ++=⇒=, 所以123P ABC ABC V S PA -∆=⋅=故选:A.例5.(2022·河南·高一期中)已知三棱锥P ABC -的四个顶点在球O 的球面上,3,4,5,5,34,PA PB PC AB AC ===== 41BC =O 的表面积为( )A .16πB .25πC .32πD .50π【答案】D 【解析】 【分析】利用勾股定理可证明三条侧棱,,PA PB PC 两两垂直,符合墙角模型,补成长方体,那么球的直径就是长方体的体对角线. 【详解】根据题中数据,22222+3534PA PC AC =+==,故PA PC ⊥,类似的,同理容易验证222+PA PB AB =,222+PC PB BC =,于是PA PB ⊥,PB PC ⊥, 即三条侧棱,,PA PB PC 两两垂直,下以P 为顶点,,,PA PB PC 分别为一个长方体的长宽高,将三棱锥P ABC -补成长方体, 易知长方体的外接球就是三棱锥P ABC -的外接球, 长方体的体对角线长为: 22234552++=于是球O 的表面积为(2250ππ⋅=.故选:D.例6.(2022·全国·3顶点的多面体为正八面体,那么该正八面体的内切球表面积为( )A .6πB .πC .43π D .4π【答案】B 【解析】 【分析】6正八面体的内切球半径,即可求出球的表面积. 【详解】2233622⎛⎫⎛⎫+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭如图,在正八面体中连接AF ,DB ,CE ,可得AF ,DB ,CE 互相垂直平分,在Rt AOD △中,22226262223AO AD OD ⨯=-=⨯⎪⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭ 则该正八面体的体积1363236V =⨯= 该八面体的表面积236833S ==⎝⎭设正八面体的内切球半径为r ,13S r V =,即13333r ⨯=12r =, 24球S πr π∴==故选:B例7.(2022·山西·大同市第二中学校高一期中)球O 为三棱锥P ABC -的外接球,ABC 和PBC 都是边长为3PBC ⊥平面ABC ,则球的表面积为( ) A .28π B .20πC .18πD .16π【答案】B 【解析】 【分析】取BC 中点为T ,以及ABC 的外心为1O ,PBC 的外心为2O ,依据平面PBC ⊥平面ABC 可知12OO TO 为正方形,然后计算外接球半径,最后根据球表面积公式计算. 【详解】设BC 中点为T ,ABC 的外心为1O ,PBC 的外心为2O , 如图由ABC 和PBC 均为边长为3 则ABC 和PBC 23260=,又因为平面PBC ⊥平面ABC , 所以2O T ⊥平面ABC ,可知21O T O T ⊥ 且21O T O T =,过21,O O 分别作平面PBC 、平面ABC 的垂线相交于O 点O 即为三棱锥P ABC -的外接球的球心, 且四边形12OO TO ()22231-=的正方形,所以外接球半径2222145R OO O P =++则球的表面积为20π, 故选:B .例8.(2022·全国·高一单元测试)四个半径为2的球刚好装进一个正四面体容器内,此时正四面体各面与球相切,则这个正四面体外接球的表面积为( ) A .(168486)π+ B .(168426)π+ C .(188486)π+ D .(168326)π+【答案】A 【解析】 【分析】画出直观图,梳理条件,再画出截面图,从中找到等量关系,求出外接球半径,从而求出外接球的表面积. 【详解】如图1所示,正四面体ABCD 中,AH ⊥底面BCD ,E 、F 、G 、K 为四个球的球心,M 为CD 中点,连接BM ,AM ,易知B 、H 、M 三点共线,直线AH 交平面EFG 于点1H ,连接1EH ,交GF 于点N ,则N 为GF 的中点,因为内切球半径为2,故EF =4,画出截面ABM 如图2所示,正四棱锥EFGK 外接球球心设为O ,则正四面体ABCD 的外接球球心与正四面体EFGK 外接球球心重合,设正四面体ABCD 的外接球半径为R ,正四面体EFGK 外接球半径为r ,在图2中,EK =4,23EN =12433EH EN ==,146KH ==146OH r = 由22211OE OH EH =+,即2224643r r ⎫=+⎪⎪⎝⎭⎝⎭,解得:6r =所以1466OH r =-=过点E 作EP ⊥BM 于点P ,则EP =2 则△BEP ∽△1OEH∴1OH OE BE EP=6632= 解得:6BE =∴66R OB BE OE ==+=+∴正四面体ABCD 的外接球表面积(24168483S R ππ==+故选:A 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.(多选题)例9.(2022·湖北·沙市中学高一期中)如图,已知棱长为1的正方体1111ABCD A B C D -中,下列命题正确的是( )A 3B .点P 在线段AB 上运动,则四面体111P A BC -的体积不变 C .与所有122πD .M 是正方体的内切球的球面上任意一点,则AM 32-【答案】BC 【解析】 【分析】对于A ,利用正方体的性质即得,对于B ,判断出四面体111P A B C -的高为1,底面积不变即得,对于C .先求出球的半径2R =,即可求体积,对于D .判断出线段AM 长度的最小值是A 到球心的距离减去内切球的半径,直接求解即可. 【详解】对于A ,由正方体的性质可知正方体外接球的直径为其体对角线,故正方体外接球的半径3A 错误; 对于B ,点P 在线段AB 上运动,则四面体111P A BC -的高为1,底面积不变,则体积不变,故B 正确;对于C ,与所有12条棱都相切的球的直径2R 等于面的对角线12BC 22R =2R =, 则球的体积334422(33V R ππ==⨯⨯=,故C 正确;对于D ,正方体的内切球为正方体的中心,内切球的半径为r , 可知线段AM 长度的最小值是A 到球心的距离减去内切球的半径, 正方体1111ABCD A B C D -的棱长为1,∴12r =,A 3AM 31-D 错误. 故选:BC .例10.(2022·广东·广州市协和中学高一期中)在三棱锥P ABC -中,33,5AB AC BC PA PB PC ======,D 、E 、F 分别为AB 、AC 、BC 的中点,则以下结论正确的是( )A .平面PDE ⊥平面ABCB .平面PAF ⊥平面ABCC .//AB 平面PEFD .三棱锥P ABC -的外接球表面积为625π16【答案】BCD 【解析】 【分析】对于A ,利用逆推方式要证明面面垂直,就去证明线面垂直,再去证线线垂直,根据题意不存在AM PM ⊥即可判断;对于B ,根据面面垂直的判定定理及等腰三角形的三线合一即可判断; 对于C ,根据线面平行的判定定理结合三角形的中位线定理即可判断;对于D ,要求三棱锥P ABC -外接球的表面积,首先找出外接球的球心,在利用球的半径、截面圆半径、球心到截面圆圆心的距离三者关系求出球的半径,再利用球的表面积公式即可判断; 【详解】对于A ,设AF 与DE 的交点为M ,则AF DE ⊥,若平面PDE ⊥平面ABC ,那么根据面面垂直的性质定理,必有AF ⊥平面PDE ,此时须有AM PM ⊥成立,又因为M 是AF 的中点,此时须有PA PF =成立,上式显然不成立,故A 不正确;对于B ,由于,AB AC PB PC ==,F 为BC 的中点,所以AF BC ⊥,PF BC ⊥,AFPF F =,故BC ⊥平面PAF ,而BC ⊂平面ABC ,所以平面PAF ⊥平面ABC ,故B正确;对于C ,由E , F 分别为AC ,BC 的中点,得//EF AB ,EF ⊂平面PEF ,AB ⊄平面PEF ,所以因此//AB 平面PEF ,故C 正确; 对于D ,作PN平面ABC 垂足为N ,则N 为正三角形ABC 的重心,所以22333,534,AN PN ===-设三棱锥P ABC -的外接球球心为O ,则O 在PN 上,连接AO ,设三棱锥P ABC -的外接球半径为R ,则在AON 中,()22243R R =-+,解得258R =,因此其外接球表面积为2625π4π16R =,故D 正确.故选:BCD.【点睛】解决此类型题的关系记住线面,面面平行与垂直的判定定理及性质定理,求外接球的问题关键核心就是找出球心,找球心的方法就是找截面圆的圆心,再做过截面圆的圆心的垂线,球心就在过截面圆的圆心的垂线上,然后球的半径、截面圆半径、球心到截面圆圆心的距离三者关系求出球的半径进而可以求解关于球的任何问题.【过关测试】 一、单选题1.(2022·广东·海珠外国语实验中学高一期中)已知一个圆锥的母线长为2,侧面积为2π.若圆锥内部有一个球,当球的半径最大时,球的体积为( ) A .3π B 23C 3D 43【答案】D 【解析】 【分析】由题可知球内切于圆锥,利用图形关系求得球的半径,即可得解. 【详解】由题可知,母线2PA PB ==,若内部有一个球,半径最大时, 球内切于圆锥,如图所示,O 为球心,M 为球O 与母线PB 的切点,E 为底面圆心, 设球O 的半径为R ,底面圆E 的半径为r 因为圆锥侧面积为2π,所以()1222π⋅=πr PB ,解得1==r EB . 由勾股定理222413=-=-=PE PB EB ,所以3PE = 又因为POM 与PBE △相似,31-=⇒=PO OM R R PB EB ,解得3R =, 所以球的体积344334333=π==V R . 故选:D2.(2022·天津市求真高级中学高一阶段练习)正方体的外接球与内切球的表面积之比是( ) A .13B .3C .33D 3【答案】B 【解析】 【分析】设正方体的棱长为a ,求出其外接球的半径和内切球的半径,再根据表面积公式可得结果. 【详解】设正方体的棱长为a 3,内切球的半径为12a ,所以正方体的外接球与内切球的表面积之比是2234142a ππ⎫⋅⎪⎝⎭⎛⎫⋅ ⎪⎝⎭3=. 故选:B3.(2022·云南师大附中高一期中)如图,蹴鞠,又名“蹋鞠”、“蹴球”、“蹴圆”、“筑球”、“踢圆”等,“跳”有用脚蹴、蹋、踢的含义,“鞠”最早系皮革外包、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家级非物质文化遗产名录.若将“鞠”的表面视为光滑的球面,已知某“鞠”表面上的四个点A ,B ,C ,D 满足13AB CD ==,5BD AC ==cm ,5AD BC ==cm ,则该“鞠”的表面积为( )A .20πcm 2B .24πcm 2C .27πcm 2D .29πcm 2【答案】D 【解析】 【分析】由于,,AB CD BD AC AD BC ===,所以可以把,,,A B C D 四点放到长方体的四个顶点上,则该长方体的体对角线就是“鞠”的直径,求出体对角线长,从而可求出该“鞠”的表面积 【详解】因为“鞠”表面上的四个点A ,B ,C ,D 满足13AB CD ==,25BD AC ==,5AD BC ==cm ,所以可以把,,,A B C D 四点放到长方体的四个顶点上,则该长方体的体对角线就是“鞠”的直径,设该长方体的长、宽、高分别为,,x y z ,“鞠”的半径为R ,则 2222(2)R x y z =++,由题意得22222220,13,25x y x z y z +=+=+=, 所以2222(2)29R x y z =++=,即2429R =, 所以该“鞠”的表面积为22429cm R ππ=, 故选:D4.(2022·浙江·嘉兴一中高一期中)在三棱锥P ABC -中,P A 、AB 、AC 两两垂直,3AP =,6BC =,则三棱锥外接球的表面积为( )A .57πB .63πC .45πD .84π【答案】C 【解析】 【分析】由P A ,AB ,AC 两两垂直,可判定该三棱锥为长方体的一部分,则三棱锥的外接球即为长方体的外接球,可知外接球半径为长方体体对角线的一半,进而求解. 【详解】由于P A ,AB ,AC 两两垂直,故可得该三棱锥为长方体的一部分, 因为外接球半径为长方体体对角线的一半, 所以2222235PA AB AC PA BC R +++==, 故2445S R ππ==, 故选:C5.(2022·安徽·合肥市第八中学高一期中)如图,在正四棱柱1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,P 为11A D 上一点,且满足2APD π∠=,PA PD =,则以四棱锥P ABCD -外接球的球心O 为球心且与平面PBC 相切的球的体积为( )A 5πB 5πC 45πD 45π【答案】B 【解析】 【分析】在直角PAD △中,求得2PA PD ==O 即为四棱锥P ABCD -的外接球的球心,分别连接,,PN NQ PQ ,过点O 作OM PQ ⊥,证得OM ⊥平面PNQ ,求得25OM =25r =.【详解】在直角PAD △中,1AD =,PA PD =,可得222PA PD AD +=, 即2PA PB ==过正方形ABCD 的中心O 作1OO ⊥平面ABCD , 取AD 的中点N ,连接ON ,则ON ⊥平面PAD , 则直线1OO ON O =,则O 即为四棱锥P ABCD -的外接球的球心,分别连接,,PN NQ PQ ,在PNQ 中,过点O 作OM PQ ⊥, 又由BC ⊥平面PNQ ,可得OM BC ⊥, 因为BCPQ Q =,所以OM ⊥平面PBC ,又由PNQ 和QOM 相似,可得OM OQPN PQ =,所以1122525OQ PN OM PQ ⨯⋅==,所以O 为球心且与平面PBC 相切的球的半径为25r OM ==所以该球的体积为33445(3325V r πππ==⨯= 故选:B.6.(2022·安徽·淮南第一中学高一阶段练习)在三棱锥P ABC -中,,2,4,5PB AC PA PB AB AC BC ⊥=====,则三棱锥P ABC -外接球的表面积是( )A .52πB .643πC .1123πD .2563π【答案】B 【解析】 【分析】利用勾股定理证得AB AC ⊥,再根据线面垂直的判定定理可得AC ⊥平面PAB ,故三棱锥C PAB -的外接球在过底面PAB △外接圆圆心且垂直于底面PAB △的直线上,利用正弦定理求得PAB △外接圆的半径为r ,再根据三棱锥C PAB -外接球的半径为R 求出外接球半径,即可得出答案. 【详解】解:由2,4,5AB AC BC ===, 可得222BC AB AC =+,所以AB AC ⊥, 又,PB AC AB PB B ⊥⋂=,且PB ,AB 平面PAB ,所以AC ⊥平面PAB ,故三棱锥B PAB -的外接球在过底面PAB △外接圆圆心且垂直于底面PAB △的直线上, 由正弦定理,可得PAB △外接圆的半径为122sin603PA r =⨯=所以三棱锥C PAB -外接球的半径为22222162233AC R r ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭ 所以三棱锥C PAB -外接球的表面积为2216644433S R πππ==⨯=, 即三棱锥P ABC -外接球的表面积为2216644433S R πππ==⨯=. 故选:B.7.(2022·福建龙岩·高一期中)已知三棱锥A -BCD 中,22CD =2BC AC BD AD ====,则此几何体外接球的表面积为( ) A .23πB .2πC 82πD .8π【答案】D 【解析】 【分析】根据三棱锥的几何特点计算出三棱锥外接球的半径,即可计算出表面积. 【详解】如图,O 为CD 的中点,根据题意,BCD △和ACD △都是直角三角形,且 2OA OB OC OD ===O ∴是三棱锥外接球的球心,且外接球的半径2R OA =所以外接球的表面积为:24?8S R ππ==. 故选:D.8.(2022·湖南·雅礼中学高一期中)在正三棱锥P ABC -中,23AB =正三棱锥P ABC -的体积是43P ABC -外接球的表面积是( ) A .5π B .15πC .25πD .35π【答案】C【分析】根据体积求得锥体高度,利用正弦定理求出底面所在的圆的半径,结合勾股定理求得外接球的半径,即可求出其表面积. 【详解】如图所示,设点G 为ABC 的外心,则PG ⊥平面ABC ,由13P ABC ABCV SPG -=⋅=1132334332PG ⨯⨯= ∴4PG =,则三棱锥P ABC -的外接球的球心O 在直线PG 上.设其外接球的半径为R , 由正弦定理得22sin3AB AG π==,在Rt OAG 中,|||4|OG PG R R =-=-,由勾股定理得222OA OG AG =+,即2222|4|R R =+-,解得52R =. 正三棱锥P ABC -外接球的表面积是22544252S R πππ⎛⎫==⨯= ⎪⎝⎭,故选:C .二、多选题9.(2022·浙江宁波·高一期中)已知点,,,A B C D 是半径为2的球面上不共面的四个点,且23AB CD ==,则四面体ABCD 体积的值可能为( )A .3B .4C .43D .6【答案】AB 【解析】 【分析】设球心为O ,,E F 分别为,AB CD 中点,根据球心的特征可知求得1OE OF ==,知,E F 是以O 为球心,1为半径的球面上的点,从而得到02EF OE OF <+=≤,利用三棱锥体积公式可确定223A BCD A CDE CDEV V S d --==⋅,结合3d AE =≤CDE △边CD 上的高2h EF ≤≤可求得体积最大值,由此确定选项.设O 为,,,A B C D 所在球面的球心,,E F 分别为,AB CD 中点,2OA OC .3AB CD ==OE AB ∴⊥,OE CD ⊥且3AE CF ==1OE OF ∴==,则,E F 均是以O 为球心,1为半径的球面上的点,则02EF OE OF <+=≤,E 是AB 中点,223A BCD A CDE CDEV V S d --∴==⋅(d 为点A 到平面CDE 距离,3d AE ≤, 又12CDESCD h =⋅(h 为点E 到CD 距离,2h EF ≤≤), 2232343A BCD V -⨯∴=≤,当且仅当,,E O F 三点共线且AB CD ⊥时等号成立.故选:AB . 【点睛】关键点点睛:本题考查立体几何中的外接球相关问题的求解,解题关键是能够确定,AB CD 中点,E F 是以O 为球心,1为半径的球面上的点,从而能够确定点A 到平面CDE 距离和点E 到CD 距离的范围,利用棱锥体积公式可求得体积的最大值.10.(2022·福建师大附中高一期中)在直三棱柱111ABC A B C -中,3ABC π∠=,1AC AA =,若该三校柱的外接球的表面积为28π,则该三棱柱的体积不可能是( ) A .15 B .18 C .21 D .24【答案】CD 【解析】 【分析】设1AC AA m ==,求得ABC 的外接圆的半径3r =结合球的表面积公式和球的截面性质,列出方程求得23m =ABC 面积的最大值,根据柱体的体积公式求得棱柱的最大体积,结合选项,即可求解. 【详解】如图所示,设1AC AA m ==, 在ABC 中,3ABC π∠=,AC m =,所以外接圆的半径23sin3m r π==3r = 取上底面111A B C △和下底面ABC 的外心,分别为21,O O ,连接12O O ,取得12O O 的中点O ,可得O 为直三棱柱111ABC A B C -的外接球的球心, 设直三棱柱111ABC A B C -的外接球的半径为R ,可得2428R ππ=,解得27R =,在1BOO 中,可得22211OB O B OO =+,即222(()723m R =+=,解得212m =,所以23m =111ABC A B C -的高为3在ABC 中,由余弦定理得2222122cos23b c bc b c bc bc bc bc π=+-=+-≥-=,当且仅当b c =时,等号成立,所以12bc ≤, 所以ABC 的最大面积为max 1sin 3323S bc π==所以三棱柱111ABC A B C -的体积的最大值为332318V Sh ==. 所以三棱柱111ABC A B C -不可能为21和24. 故选:CD.11.(2022·浙江省定海第一中学高一期中)数学中有许多形状优美、寓意独特的几何体,“等腰四面体”就是其中之一,所谓等腰四面体,就是指三组对棱分别相等的四面体.关于“等腰四面体”,以下结论正确的是( ) A .长方体中含有两个相同的等腰四面体B .“等腰四面体”各面的面积相等,且为全等的锐角三角形C .“等腰四面体”可由锐角三角形沿着它的三条中位线折叠得到D .三组对棱长度分别为a ,b ,c 的“等腰四面体”222a b c ++【答案】ABC 【解析】【分析】作出长方体,根据等腰四面体的定义得出图形,根据长方体的性质判断各选项. 【详解】如图,长方体1111ABCD A B C D -有两个相同的等腰四面体:11ACB D 和11AC BD ,A 正确;如等腰四面体11AC BD 中,每个面可能看作是从长方体截一个角得出的, 如图,设11111,,A D A B AA 的长分别为,,x y z ,不妨设x y z ≥≥, 则2211B D x y +221AD x z +221AB y z +1BD 最大, 其所对角的余弦值为22222221122222222cos 02B AD y z x zy z x z∠==>+⋅++⋅+,最大角11B AD ∠为锐角,三角形为锐角三角形,同理其它三个面都是锐角三角形,各个面的三条边分别相等,为全等三角形,面积相等,B 正确;把一个等腰四面体沿一个顶点出发的三条棱剪开摊平,则得一个锐角三角形,还有三条棱是这个三角形的三条中位线,如等腰四面体11ACB D ,沿11,,AB AD AC 剪开摊平,11,ND PD 共线,同理可得,CM DP 共线,11,B M B N 共线,MNP △为锐角三角形(与等腰四面体11ACB D 的面相似),且1111,,B C B D CD 是这个三角形的中位线,因此C 正确;如上等腰四面体11AC BD 中三条棱长分别是长方体的三条面对角线长,由长方体性质知长2222a b c ++D 错。

空间几何体的外接球与内切球。专题汇编

空间几何体的外接球与内切球。专题汇编

空间几何体的外接球与内切球。

专题汇编本文介绍了空间几何体的外接球与内切球的定义、性质、结论和求解方法。

首先,球的定义是空间中到定点的距离等于定长的点的集合,简称球。

在此基础上,定义了外接球和内切球。

外接球是指一个多面体的各个顶点都在一个球的球面上,这个球是这个多面体的外接球;内切球是指一个多面体的各面都与一个球的球面相切,这个球是这个多面体的内切球。

其次,文章介绍了外接球的性质和结论。

其中,外接球的性质包括过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;过球心与小圆圆心的直线垂直于小圆所在的平面;球心在大圆面和小圆面上的射影是相应圆的圆心;在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心。

文章还列举了各种空间几何体的外接球的结论,如长方体的外接球的球心在体对角线的交点处,圆柱体的外接球球心在上下两底面圆的圆心连一段中点处等。

最后,文章介绍了内切球的一个重要结论,即若球与平面相切,则切点与球心连线与切面垂直。

同时,文章还提到了勾股定理、正定理及余弦定理等求解三角形线段长度的方法。

经过剔除格式错误和删除有问题的段落,本文更加清晰明了地介绍了空间几何体的外接球与内切球的相关知识和方法。

2.内切球与多面体各面的距离相等,外接球与多面体各顶点的距离相等,类比于多边形的内切圆。

3.正多面体的内切球和外接球的球心重合。

4.正棱锥的内切球和外接球的球心都在高线上,但不一定重合。

5.求解内切球半径的基本方法有两种:一是构造三角形利用相似比和勾股定理,二是体积分割法,即等体积法。

6.与台体相关的内容在此略过。

7.八大模型之一是墙角模型,其中三条棱两两垂直,可以直接使用公式(2R)2=a2+b2+c2求出内切球半径R。

8.举例说明:(1)已知同一球面上正四棱柱的高为4,体积为16,则其内切球表面积为24π;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球表面积为9π;(3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM垂直MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

球与各种几何体切、接问题专题(一))

球与各种几何体切、接问题专题(一))

球与各种几何体切、接问题专题(一))近年来,高考命题中球与各种几何体的切、接问题主要以选择题、填空题为主,大题较少出现。

在此之前,需要明确两个定义:一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球;一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

一、球与柱体的切接。

规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题。

1、球与正方体。

正方体有三种形态:内切球、棱切球和外接球。

内切球的位置关系为正方体的六个面都与一个球相切,正方体中心与球心重合,数据关系为2r=a。

棱切球的位置关系为正方体的十二条棱与球面相切,正方体中心与球心重合,数据关系为2r=2a。

外接球的位置关系为正方体的八个顶点在同一个球面上,正方体中心与球心重合,数据关系为2r=3a。

例如,对于一个棱长为1的正方体ABCD-A1B1C1D1,如果其8个顶点都在球O的表面上,那么直线EF被球O截得的线段长为2.2、球与长方体。

长方体的外接球直径是长方体的对角线。

例如,已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为32π。

3、球与正棱柱。

正棱柱的外接球的球心是上下底面中心的连线的中点。

结论2:直三棱柱的外接球的球心位于上下底面三角形外心的连线的中点。

二、球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题。

1、正四面体与球的切接问题1)正四面体的内切球,如图4.位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有4R= h=6a/√3;例4:正四面体的棱长为a,则其内切球的半径为R= a/√6.解析】如图正四面体ABCD的中心为O,即内切球球心,内切球半径R即为O到正四面体各面的距离。

(完整版)高考外接球内切球专题练习

(完整版)高考外接球内切球专题练习

高考外接球与内接球专题练习(1)正方体,长方体外接球1. 如图所示,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 的中点的轨迹的面积为( )A. 4πB. 2πC. πD. 2π 2. 正方体的内切球与其外接球的体积之比为( ) A. 1:3 B. 1:3 C. 1:33 D. 1:93. 长方体ABCD ﹣A 1B 1C 1D 1的8个顶点在同一个球面上,且AB=2,AD=3,AA 1=1, 则该球的表面积为( )A. 4πB. 8πC. 16πD. 32π4. 底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一球面上,则该球的体积为A. 323π B. 4π C. 2π D. 43π 5. 已知正三棱锥P ﹣ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A ,PB ,PC 两两垂直,则球心到截面ABC 的距离为 _________ .6. 在三棱椎A ﹣BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的 面积分别为22,32,62,则该三棱椎外接球的表面积为( ) A. 2π B. 6π C. 46π D. 24π7. 设A 、B 、C 、D 是半径为2的球面上的四点,且满足AB ⊥AC 、AD ⊥AC 、AB ⊥AD , 则S △ABC +S △ABD +S △ACD 的最大值为( )A. 4B. 8C. 12D. 168. 四面体ABCD 中,已知AB=CD=29,AC=BD=34,AD=BC=37,则四面体的 外接球的表面积为( )A. 25πB. 45πC. 50πD. 100π9. 如图,在三棱锥S ﹣ABC 中,M 、N 分别是棱SC 、BC 的中点,且MN ⊥AM ,若AB=22,则此正三棱锥外接球的体积是A. 12πB. 43πC. 433π D. 123π 10. 已知三棱锥P ABC -的顶点都在同一个球面上(球O ),且2,6PA PB PC ===, 当三棱锥P ABC -的三个侧面的面积之和最大时,该三棱锥的体积与球O 的体积的比值为( )A. 316πB. 38πC. 116πD. 18π (2)直棱柱外接球11. 已知三棱柱ABC ﹣A 1B 1C 1的6个顶点都在球O 的球面上,若AB=3,AC=4,AB ⊥AC , AA 1=12,则球O 的半径为A. 3172B. 210C. 132D. 310 12. 设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面 积为( )A. 2a πB. 273a πC. 2113a π D. 25a π 13. 直三棱柱ABC ﹣A 1B 1C 1的各顶点都在同一球面上,若AB=AC=AA 1=2,∠BAC=120°, 则此球的表面积等于_________ .14. 三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥BC ,又SA=AB=BC=1,则球O 的表面积为( )A. 32πB. 32π C. 3π D. 12π 15. 已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3, 则球O 的体积等于 _________ .(3)正棱锥外接球16. 棱长均相等的四面体ABCD 的外接球半径为1,则该四面体的棱长为___________17. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. 4327πB. 62π C. 68π D. 624π 18. 已知三棱锥P ABC -的所有顶点都在表面积为28916π的球面上,底面ABC 是边长为 3的等边三角形,则三棱锥P ABC -体积的最大值为__________19. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积 为( )A. 814π B. 16π C. 9π D. 274π 20. 已知正三棱锥P ﹣ABC 的顶点均在球O 上,且P A=PB=PC=25,AB=BC=CA=23, 则球O 的表面积为( )A. 25πB. 1256πC. 52π D. 20π21. 在球O 的表面上有A 、B 、C 三个点,且3AOB BOC COA π∠=∠=∠=,△ABC 的外接圆半径为2,那么这个球的表面积为( ) A. 48π B. 36π C. 24π D. 12π 22. 半径为2的半球内有一内接正六棱锥P ﹣ABCDEF ,则此正六棱锥的侧面积是 ____.23. 表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A. 23πB. 3π C. 23π D. 223π 24. 正四棱锥P ﹣ABCD 底面的四个顶点A 、B 、C 、D 在球O 的同一个大圆上,点P 在球面 上,如果163P ABCD V -=,则求O 的表面积为( ) A. 4π B. 8π C. 12π D. 16π(4)棱锥外接球25. 已知A ,B ,C ,D 在同一个球面上,AB ⊥平面BCD ,BC ⊥CD ,若AB=6,213AC =, AD=8,则此球的体积是 _________ .26. 在矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B ﹣AC ﹣D , 则四面体ABCD 的外接球的体积为( )A. 12512πB. 1259πC. 1256πD. 1253π 27. 点A ,B ,C ,D 在同一个球的球面上,AB=BC=2,AC=22,若四面体ABCD 体积 的最大值为43,则该球的表面积为( ) A. 163π B. 8π C. 9π D. 12π 28. 四棱锥S ﹣ABCD 的底面ABCD 是正方形,侧面SAB 是以AB 为斜边的等腰直角三角 形,且侧面SAB ⊥底面ABCD ,若AB=23,则此四棱锥的外接球的表面积为( )A. 14πB. 18πC. 20πD. 24π29. 三棱锥S ﹣ABC 的四个顶点都在球面上,SA 是球的直径,AC ⊥AB ,BC=SB=SC=2, 则该球的表面积为( )A. 4πB. 6πC. 9πD. 12π30. 已知四棱锥V ﹣ABCD 的顶点都在同一球面上,底面ABCD 为矩形,AC∩BD=G ,VG ⊥平面ABCD ,AB=3,AD=3,VG=3,则该球的体积为( )A. 36πB. 9πC. 123πD. 43π(5)内接球31. 一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A. 1B. 2C. 3D. 432. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6,8AB BC ==,13AA =,则V 的最大值为A. 4πB. 92πC. 6πD. 323π 33. 已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( ) A. 823π B. 833π C. 863π D. 1623π 34. 把一个皮球放入一个由8根长均为20的铁丝接成的四棱锥形骨架内,使皮球的表面 与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A. 103B. 10C. 102D. 3035. 棱长为23的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小 球,则这些球的最大半径为( )A. 2B. 22C. 24D. 2636. 如图,在四面体ABCD 中,截面AEF 经过四面体的内切球球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A ﹣BEFD 与三棱锥A ﹣EFC的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定(6)球的截面问题37. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体 积为( )A. 6πB. 43πC. 46πD. 63π38. 已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形, SC 为球O 的直径,且SC=2,则此棱锥的体积为( )A. 26B. 36C. 23D. 2239. 高为2的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半 径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. 102B. 232+C. 32D. 240. 已知三棱锥S ﹣ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =,则球的体积与三棱锥体积之比是( )A. πB. 2πC. 3πD. 4π41. 在半径为13的球面上有A ,B ,C 三点,AB=6,BC=8,CA=10,则(1)球心到平面ABC 的距离为 _________ ;(2)过A ,B 两点的大圆面与平面ABC 所成二面角为(锐角)的正切值为 ____.42. 设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到 该平面的距离是球半径的一半,则球的体积是( )A. B. C. D.43. 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2, 则球面面积是( ) A. 169π B. 83π C. 4π D. 649π 44. 已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M . 若圆M 的面积为3π,则球O 的表面积等于 _________ .45. 三棱锥P ﹣ABC 的各顶点都在一半径为R 的球面上,球心O 在AB 上,且有P A=PB=PC , 底面△ABC 中∠ABC=60°,则球与三棱锥的体积之比是 _________ .46. 已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截 球O 所得截面的面积为π,则球O 的表面积为__________(7)旋转体的外接内切47. 半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面 积之差是 _________ .48. 将4个半径都是R 的球体完全装入底面半径是2R 的圆柱形桶中,则桶的最小高度 是 _________ .1. D ;2. C ;3. B ;4. D ;5. 3; 6. B ; 7. B ; 8. C ; 9. B ;10. A ; 11. C ; 12. B ; 13. 20π; 14. C ; 15. 92π; 16. ;17. C ; 19. A ; 20. A ; 21. A ; 22. ; 23. A ; 24. D ; 25. 2563π; 26. C ; 27. C ; 28. D ; 29. B ; 30. D ; 31. B ; 32. B ; 33. A ; 34. B ; 35. C ; 36. C ; 37. B ; 38. A ; 39. A ; 40. D ;41. 12;3;42. A;43. D;44. 16π;45.3;46.92π47. 30π;48.(2R+;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的表面上,则球 的表面积为__________. 14【. 2018 届河南省周口市中英文学校上学期开学摸底考】已知四棱锥 P﹣ABCD 的底面 ABCD 是正方形,侧棱 PA 与底面垂直,且 PA=AB,若该四棱锥的侧面 积为16 16 2 ,则该四棱锥外接球的表面积为__. 15.【2018 届江西省红色七校第一次联考】已知正六棱柱的顶点都在同一个球面 上,且该六棱柱的体积为 2 ,当球的体积最小时,正六棱柱底面边长为_________.
ABCD 是正方形且和球心 O 在同一平面内,若此四棱锥的最大体积为18 ,则球 O 的表面
积等于( )
A.18
B. 36
C. 54
D. 72
3.【2 016 银川一中高三】某四面体的三视图如图所示,正视图、侧视图、俯视图都是边 资 *源%库 ziyuank
长为 1 的正方形,则此四面体的外接球的体积为( )
2.【2016 长春模拟】在正三棱锥 S­ABC 中,M,N 分别是 SC,BC 的中点,且 MN⊥AM,
若侧棱 SA=2 3,则正三棱锥 S­ABC 外接球的表面积是( )
A.12π
B.32π
$来& 源:ziyuank
C.36π
D.48π
3.【2016 兰州模拟】一个正四棱柱的各个顶点在一个直径为 2 cm 的球面上.如
果正四棱柱的底面边长为 1 cm,那么该棱柱的表面积为________cm2.
类型二 多面体的内切球或外接球的最值问题
【典例 1】【2015 高考新课标 2 理 9】已知 A,B 是球 O 的球面上两点,∠AOB=90°,C 为该球面
上的动点,若三棱锥 O-ABC 体积的最大值为 36,则球 O 的表面积为( )
4.【2017 届湖南湘潭二模】半径为 2 的球 O 中有一内接正四棱柱(底面是正方
形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱
的侧面积之差是( )
A.16(
) B.16(
) C.8(2
) D.8(2

5.【2018 届湖北省襄阳四中 8 月考】已知一个四棱锥三视图如图所示,若此四棱
() A. 5
3
B. 5 4
C. 5 6
D. 5 8
12.【2017 届江苏】如图,在圆柱 O1O2 内有一个球 O,该球与圆柱的上、下底面 及母线均相切,记圆柱 O1O2 的体积为 V1,球 O 的体积为 V2,则 的值是 .
13.【2018 届湖北省武汉市新高三起点调研考】已知三棱锥 thh 的三条棱 t th hh 所在的直线两两垂直且长度分别为 3,2,1,顶点 t h h 都在球
A. 27π B. 쳌π
C. 9π D. 쳌π
【变式 2:改编结论】在正三棱锥 锥外接球的直径为( )
th 中, h 쳌, t h R,则该三棱
A. 7 B. 8 C. 9 D. 10 【变式 3:改编问法】已知四棱锥 E-ABCD 的都在球心为 ,半径为 的球面上,
四边形 ABCD 为矩形, t h R th h 大值为( )
7.【2017 年福建省总复习立体几何形成性】若一个正四面体的表面积为 S1 ,其内
切球的表面积为
S2
,则
S1 S2
=(

A.
6
B.
2
C.
1 6
D.
63
8.【2018 届河南省洛阳市上学期尖子生第一次联考】已知球 O 与棱长为 4 的正四
面体的各棱相切,则球 O 的体积为( )
A. 8 2 3
在同一个球面上,底面 th 满足 t h th h R t h h ,若该三棱锥体积最
大值为 3,则其外接球的表面积为( )
A.
B.
C. R
D. R
11.【2018 届河南省八市重点高中高三第一次测评】三棱锥 A BCD 的一条长为
a ,其余棱长均为1,当三棱锥 A BCD 的体积最大时,它的外接球的表面积为
A.36π
B.64π
C.144π
D.256π
【变式训练】
1.【2014 湖南高考理 7】一块石材表示的几何体的三视图如图 2 所示,将该石材切削、打磨、
加工成球,则能得到 的最大球的半径等于( ) 资 *源%库 ziyuank
A.1
B.2
C.3
D.4
2.【2016 重庆巴蜀中学高三】已知四棱锥 S ABCD 的所有顶点都在同一球面上,底面
2 6 ,则该正方体内切球的表面积为 (
)[KS5UKS5U]
3
A. 2 B. 8 C. 12 D. 16 【变式 3:改编问法】已知一个直三棱柱,其底面是正三角形,一个体积为 4 的
3 球体与棱柱的所有面均相切,那么这个三棱柱的表面积是
A. 24 3 B. 18 3 C. 12 3 D. 6 3
,且,则四棱锥 E-ABCD 的体积的最
A. 24 3
B. 72 3 , C. 8 3 D. 48 3
4.多面体内切球问题
4.1 考题展示与解读
例 4【2016 高考新课标 3 理数】在封闭的直三棱柱 ABC A1B1C1 内有一个体积为
V 的球,若 AB BC ,
AB 6 , BC 8 , AA1 3 ,则V 的最大值是(
A. 16 3
B. 19 3
C. 19 12
D. 4 3
【变式 2:改编结论】底面边长为1,侧棱长为 2 6 的正三棱柱的各顶点均在同 3
一个球面上,则该球的体积为( )
A. 32π 3
B. 4π
C. 2π
D. 4π 3
【变式 3:改编问法】已知某几何体的外接球的半径为 ,其三视图如图所示,
三、课本试题探源
必修 2 P28 页练习 第 2 题:一个正方体的顶点都在球面上,它的棱长是 a cm , 求球的体积.
四.典例高考试题演练
1.【2018 届”超级全能生”高考全国卷 26 省 9 月联考】若正四棱锥 P ABCD 内接 于球 O ,且底面 ABCD 过球心 O ,设正四棱锥 P ABCD 的高为1,则球 O 的体 积为( )
锥的五个顶点在某个球面上,则该球的表面积为( )
A. 48
B. 52
C. 172 3
D. 196 3
6.【2018 届河北省邢台市第一次月考】将半径为 4 的半圆围成一个圆锥,则该圆
锥的内切球的表面积为( )
A. 8 3
B. 16 3
C. 4 3
D.
4 3
3
[KS5UKS5U]
资 *源%库
1.棱柱的外接球问题
1.1 考题展示与解读 例 1 【2017 课标 II,文 15】长方体的长、宽、高分别为 3, 2,1,其顶点都在球 O 的球面上,则球 O 的表面积为 ________. 1.2【典型考题变式】 【变式 1:改编条件】若一个正三棱柱的正视图如图所示,其顶点都在一个球面 上,则该球的表面积为( )
几何体外接球内切球专题
类型一 求多面体与内切球或外接球的表面积和体积
【典例 1】【2014 大纲全国卷理 6】正四棱锥的顶点都在同一球面上.若该棱锥 的高为 4,底面边长为 2,则该球的表面积为( )
81π A.
4
B.16π
C.9π
27π D.
4
【典例 2】【2014 高考陕西理 5】已知底面边长为 1,侧棱长为 2 的正四棱柱 的各顶点均在同一个球面上,则该球的体积为( )
C. π 2
D. π 4
【变式 1:改编条件】已知圆柱的高为 2,它的两个底面的圆周在直径为 4 的同
一个球的球面上,则该圆柱的体积是( )
A.
B. 3 4
C.
2
D. 6
【变式 2:改编结论】已知圆锥的底面半径为 4 ,高为 8 ,则该圆锥的外接球的
表面积为( )
A. 10
B. 64
A. 32
B.4
3
C.2
D. 4
3
【变式训练】
1.【2012 高考课标理数 11】已知三棱锥 S ABC 的所有顶点都在球 O 的球面上,ABC 是 边长为1的正三角形, SC 为球 O 的直径,且 SC 2 ;则此棱锥的体积为( )
( A) 2 6
(B) 3 6
(C) 2 3
(D) 2 2
C. 100
D. 500 3
【变式 3:改编问法】某几何体的三视图如图所示,其正视图和侧视图都是边长
为 2 3 的正三角形,该几何体的外接球的表面积为( )
A. 9 B. 16 C. 24
3.棱锥的外接球问题
3.1 考题展示与解读
D. 36
例 3【2017 课标 1,文 16】已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上, SC 是球 O 的直径.若平面 SCA⊥平面 SCB,SA=AC,SB=BC,三棱锥 S-ABC 的 体积为 9,则球 O 的表面积为________. 【变式 1:改编条件】某多面体的三视图如图所示,每一小格单位长度为 l,则 该多面体的外接球的表面积是
A. 4 3
B. 2 3
C. 4
D. 2 2
2.【2017 届新疆二模】如图为某几何体的三视图,则该几何体的外接球的表面积
为( )
A.
B.27π C.27 π D.
3.【2017 届玉林一模】网络用语“车珠子”,通常是指将一块原料木头通过加工打 磨,变成球状珠子的过程,某同学有一圆锥状的木块,想把它“车成珠子”,经测 量,该圆锥状木块的底面直径为 12cm,体积为 96πcm3,假设条件理想,他能成 功,则该珠子的体积最大值是( ) A.36πcm3 B.12πcm3 C.9πcm3 D.72πcm3
相关文档
最新文档