《1.2 函数及其表示(2)》测试题
2016-2017学年高一数学1.2函数及其表示随堂练习试卷

1.2函数及其表示随堂练习试卷及答案一、选择题(共8小题;共40分)1. 给定映射f x,y→x+2y,x−2y,在映射f下4,3的原象为 A. 3,4B. 4,3C. 72,14D. 14,722. 设函数f x=x2+1,x≤1,2x,x>1.则f f3等于 A. 15B. 3 C. 23D. 1393. 函数y=2−2+4x的值域是 A. 2,+∞B. 0,2C. 0,4D. −∞,24. 若函数f x满足关系式f x+2f1x=3x,则f2的值为 A. 1B. −1C. −32D. 325. 已知定点A4,0,曲线C:y=x2,x≤012x,x>0,P是曲线C上的动点,当△POA时等腰三角形时,符合条件的点P个数是 A. 1B. 2C. 3D. 46. 若函数f x=x2,x≥0,x,x<0,φx=x,x≥0,−x2,x<0,则当x<0时,fφx为 A. −xB. −x2C. xD. x27. 设函数f x= ax2+bx+c a<0的定义域为D,若所有点 s,f t s,t∈D构成一个正方形区域,则a的值为 ( )A. −2B. −4C. −8D. 不能确定8. 已知f1,1=1,f m,n∈N∗(m、n∈N∗),且对任意m、n∈N∗都有:①f m,n+1=f m,n+2;②f m+1,1=2f m,1.给出以下三个结论:(1)f1,5=9;(2)f5,1=16;(3)f5,6=26.其中正确的个数为 ( )A. 3B. 2C. 1D. 0二、填空题(共4小题;共20分)9. 函数y=123x−1−18的定义域是.10. 若f x=3x−10,g x=4x+m,且f g x=g f x,则m的值是 .11. 定义两种运算:a⊕b=2−b2,a⊗b=a−b2,则函数f x=2⊕xx⊕2−2的解析式为.12. 已知集合A到集合B=2,3,4,5的映射f:x→y=∣x∣−1,且集合B中至少有一个元素在集合A中没有原象,则集合A中最多有个元素.三、解答题(共5小题;共65分)13. 某企业生产某种产品时的能耗y与产品件数x之间的关系式为:y=ax+bx.且当x=2时,y=100;当x=7时,y=35.且此产品生产件数不超过20件.Ⅰ写出函数y关于x的解析式;Ⅱ用列表法表示此函数,并画出图象.14. 已知A=a,b,c,B=−1,0,1,映射f:A→B满足f a+f b=f c,求映射f:A→B的个数.15. 求下列函数的定义域.Ⅰy=+Ⅱy=x+2+xx2−3x−10.16. 如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f x的解析式.17. 已知f x=x2−1,g x=x−1,x>0 2−x,x<0.Ⅰ求f g2和g f2的值;Ⅱ求f g x和g f x的解析式.答案第一部分1. C2. D3. B4. B5. D6. B7. B8. A第二部分9. x∣x≤4310. −1511. f x=−4−x2x−2≤x<0或0<x≤212. 6第三部分13. (1)将x=2,y=100,x=7,y=35代入y=ax+bx中,得2a+b2=100,7a+b7=35⇒4a+b=200,49a+b=245⇒a=1,b=196.所以所求函数解析式为y=x+196xx∈N,0<x≤20.(2)当x∈1,2,3,4,5,⋯,20时,列表:\(\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hlinex&1&2&3&4&5&6&7&8&9&10\\\hline y&197&100&68.3&53&44.2&38.7&35&32.5&30.8&29.6\\\hline \space&\space&\space&\space&\space&\space&\space&\space&\space&\space&\space\\\hlinex&11&12&13&14&15&16&17&18&19&20\\\hliney&28.8&28.3&28.1&28&28.1&28.25&28.5&28.9&29.3&29.8\\\hline\end{array}\)依据上表,画出函数 \(y\)的图象如图所示,是由 \(20\)个点构成的点列.14. (i)当A中三个元素都对应0时,则f a+f b=0+0=0=f c,有一个映射;(ii)当A中的三个元素对应B中的两个时,满足f a+f b=f c的映射有4个,分别为1+0= 1;0+1=1;−1+0=−1;0+−1=−1;(iii)当A中的三个元素对应B中的三个元素时,有两个映射,分别是−1+1=0;1+−1= 0.因此满足题设条件的映射有7个.15. (1)由x+8≥0,3−x≥0,得−8≤x≤3.所以定义域为−8,3.(2)由x+2≥0,x2−3x−10≠0,解得x≥−2x+2x−5≠0⇒x≥−2,x≠−2,x≠5,即−2<x<5或x>5.所以原函数的定义域为−2,5∪5,+∞.16. 当点P在BC上运动,即0≤x≤4时,y=12×4x=2x;当点P在CD上运动,即4<x≤8时,y=12×4×4=8;当点P在DA上运动,即8<x≤12时,y=12×4×12−x=24−2x.综上可知,f x=2x,0≤x≤4 8,4<x≤8 24-2x,8<x≤1217. (1)由已知,g2=1,f2=3,所以f g2=f1=0,g f2=g3=2.(2)当x>0时,g x=x−1,故f g x=x−12−1=x2−2x;当x<0时,g x=2−x,故f g x=2−x2−1=x2−4x+3;所以f g x=x2−2x,x>0 x2−4x+3,x<0,当x>1或x<−1时,f x>0,故g f x=f x−1=x2−2;当−1<x<1时,f x<0,故g f x=2−f x=3−x2,所以g f x=x2−2,x>1或x<−1 3−x2,−1<x<1.。
【高一数学试题精选】1.2函数及其表示训练试题(含答案和解释)

1.2函数及其表示训练试题(含答案和解释)
5 主动成长
夯基达标
1 下列各组函数是否表示同一个函数?
(1)f(x)=x,g(x)=(x)2;
(2)f1(x)=(x+2)2,f2(x)=|x+2|;
(3)f(x)=x2-2x-1,g(t)=t2-2t-1;
(4)=x,=
思路解析定义域和对应法则是确定函数的两个基本要素,两个函数是否相同取决于定义域和对应法则是否分别相同
答案(1)f(x)=x的定义域为R,g(x)=()2的定义域为{x|x≥0},两函数的定义域不同,所以不是同一个函数(2)f1(x)= =|x+2|,它与f2(x)=|x+2|的对应法则与定义域均相同,所以是同一个函数
(3)两函数的对应法则和定义域相同,而函数与表示函数的字母无关,所以表示同一函数
(4)两个函数,其中一个是分段函数,它的定义域为R,不管s >0,s<0,s=0都有=s,对应法则和=x相同因此这两个函数定义域和对应法则都相同,所以它们是相同的函数
2 已知函数f(x)=x2-2x-3的定义域为F,g(x)= 的定义域为G,那么集合F、G的关系是( )
A F=G
B F G
c G F
D F∪G=G
思路解析函数的定义域是使函数思路分析式有意义的自变量的值。
1.2函数及其表示练习题及答案1

1.2函数及其表示练习题一.选择题1 函数)23(,32)(-≠+=x x cx x f 满足,)]([x x f f =则常数c 等于( ) A 3 B 3- C 33-或 D 35-或2. 已知)0(1)]([,21)(22≠-=-=x xx x g f x x g ,那么)21(f 等于( ) A 15 B 1C 3D 303.函数2y =的值域是( )A [2,2]-B [1,2]C [0,2] D[]4 已知2211()11x x f x x--=++,则()f x 的解析式为( )A21x x + B 212x x+- C 212x x + D 21x x+-5.设()f x 是R 上的任意函数,则下列叙述正确的是 ( )(A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C) ()()f x f x --是偶函数 (D) ()()f x f x +-是偶函数6. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( )7.已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为( )A .正数B .负数C .0D .符号与a 有关 8. 已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 ( ) A .)2,1[-B .]1,1[-C .)2,2(-D .)2,2[-9. 已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 ( )A .x bc ac y --=B .x c b a c y --=C .x a c b c y --=D .x ac cb y --= 10.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( )A .q p +B .q p 23+C .q p 32+D .23q p +11. (2010陕西文数)某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为(A )y =[10x] (B )y =[310x +] (C )y =[410x +](D )y =[510x +]12.(2009海口模拟)已知函数()()2113,f x x x =+≤≤则A .()()12202f x x x -=+≤≤B .()()12124f x x x -=-+≤≤C .()()12202f x x x -=-≤≤D .()()12104f x x x -=-≤≤ 13.(2009江西理)函数ln 1x y +=的定义域为A .()4,1--B .4,1-C .()1,1-D .(1,1]-14.(2008山东)设函数()221, 1,2, 1,x x f x x x x ⎧-≤⎪=⎨+->⎪⎩则()12f f ⎛⎫⎪ ⎪⎝⎭的值为 A .1516B .2716-C .89 D.1815.(2008陕西) 定义在R 上的函数()f x 满足()()()()()2,,12f x y f x f y xy x y R f +=++∈=则()3f -等于( )A. 2B. 3C. 6 D .916.(2009福建)下列函数中与函数y =有相同定义域的是 ( ) A .()ln f x x = B 。
人教A版高中数学必修1《1.2函数及其表示习题1.2》0

A
B,U为全集,则以下会合为空集的是
(
)
A.A∩B
B.A∩(?UB)
C.A∪(?UB)
D.(?UA)∩(?UB)
分析:选B.由Venn图可知.
4.设全集U={a,b,c,d},会合A={a,b},B={b,c,d},则(?UA)∪(?UB)=________.分析:∵(?UA)={c,d},(?UB)={a},∴(?UA)∪(?UB)={a,c,d}.答案:{a,c,d}5.若U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则?U(A∪B)=________.分析:U={1,2,3,4,5,6,7,8},则A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},?U(A∪B)={2,4,8}.答案:{2,4,8}1
a>0
要使B??R
,只要
1
A
a≤
2
∴0<a≤
1
2
1
综上,a≤2.
A.1
B.2
C.3
D.4
分析:选B.因为会合A={1,2},B={2,4},所以A∪B={1,2,4},所以?U(AB)={3,5}.4.已知全集U={0,1,2,3,4},会合A={1,2,3},B={2,4},则(?UA)∪B为________.分析:?UA={0,4},所以(?UA)∪B={0,2,4}.答案:{0,2,4}5.设会合A={x|1<x<4},B={x|-1≤x≤3},则A∩(?RB)=________.分析:?RB={x|x<-1或x>3}∴A∩?RB={x|3<x<4}答案:{x|3<x<4}6.已知全集U={x|x取不大于30的质数},A、B是U的两个子集,且A∩(?UB)={5,13,23},(?UA)∩B={11,19,29},(?UA)∩(?UB)={3,7},求会合A、B.
人教A版数学必修一1.2 函数及其表示 同步测试.docx

1.2 函数及其表示 同步测试一、选择题1、设集合A={x|x ∈Z 且-10≤x≤-1},B={x|x ∈N 且x≤5},则A ∪B 中的元素个数是( )A 、11B 、10C 、16D 、152、函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23、若集合M={y|y=2-x } ,P={y|y=1-x } ,则M∩P 等于( )A 、{y|y >1}B 、{y|y≥1}C 、{y|y >0}D 、{y|y≥0}4、已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或3±D. 35、若()y f x =的定义域是[]0,2,则函数()()121f x f x ++-的定义域是 ( )A.[]1,1- B.1,12⎡⎤⎢⎥⎣⎦ C.13,22⎡⎤⎢⎥⎣⎦ D.10,2⎡⎤⎢⎥⎣⎦6、函数222(03)()6(20)x x x f x x x x ⎧-≤≤⎪=⎨+-≤≤⎪⎩的值域是( ) A .R B .[)9,-+∞ C .[]8,1- D .[]9,1-7、设函数111y x =+的定义域为M ,值域为N ,那么 ( )A 、{0},{0}M x x N y y =≠=≠B 、{0},{}M x x N y y R =≠=∈C 、{01,0}M x x x x =<≠->且或,{0011}N y y y y =<<<>或或D 、{1100}M x x x x =<--<<>或或, {0}N y y =≠二、填空题1、 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为_________。
高考数学 1.2 函数及其表示练习

【师说高中全程复习构想】(新课标)2015届高考数学 1.2 函数及其表示练习一、选择题1.(2014·嘉兴调研)设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是( )A. B. C. D.解析:利用函数的定义,要求定义域内的任一变量都有唯一的函数值与之对应,A 中函数的定义域是[-2,0),C 中任一x ∈[-2,2)对应的值不唯一,D 中的值域不是N ,故选B. 答案:B2.已知f :x→-sinx 是集合A(A ⊆[0,2π])到集合B ={0,12}的一个映射,则集合A 中的元素个数最多有( )A .4个B .5个C .6个D .7个解析:由-sinx =0,得sinx =0.又x ∈[0,2π],故x =0或π或2π;由-sinx =12,得sinx =-12.又x ∈[0,2π],故x =7π6或11π6.选B. 答案:B3.已知f(x +1)=-f(x),且f(x)=⎩⎪⎨⎪⎧ 1-1<x <0,00≤x≤1,则f(3)=( )A .-1B .0C .1D .1或0解析:f(3)=-f(2)=f(1)=0,故选B.答案:B4.若f(x)对于任意实数x 恒有2f(x)-f(-x)=3x +1,则f(x)=( )A .x -1B .x +1C .2x +1D .3x +3解析:在2f(x)-f(-x)=3x +1①将①中x 换为-x ,则有2f(-x)-f(x)=-3x +1②①×2+②得3f(x)=3x +3,∴f(x)=x +1.答案:B5.图中的图象所表示的函数的解析式为( )A .y =32|x -1| (0≤x≤2) B .y =32-32|x -1| (0≤x≤2) C .y =32-|x -1| (0≤x≤2) D .y =1-|x -1| (0≤x≤2)解析:取x =1,则y =32,只有B 、C 满足.取x =0,则y =0,在B 、C 中只有B 满足,所以选B.答案:B6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为( )A .y =[x 10]B .y =[x +310] C .y =[x +410] D .y =[x +510] 解析:当各班人数除以10的余数大于6时再增选一名代表,可以看作先用该班人数除以10再用这个余数与3相加,若和大于等于10就增选一名代表,将二者合并便得到推选代表人数y 与该班人数x 之间的函数关系,用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为y =[x +310]. 答案:B二、填空题7.已知f ⎝ ⎛⎭⎪⎫x -1x =x2+1x2,则函数f(3)=________. 解析:∵f ⎝ ⎛⎭⎪⎫x -1x =x2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2, ∴f(x)=x2+2,∴f(3)=32+2=11.答案:118.(2014·荆州质检)设f(x)=⎩⎪⎨⎪⎧ lgx ,x >0,10x ,x≤0,则f[f(-2)]=__________. 解析:因为f(x)=⎩⎪⎨⎪⎧ lgx ,x >0,10x ,x≤0,又-2<0,∴f(-2)=10-2,10-2>0,f(10-2)=lg10-2=-2.答案:-29.设函数f(x)=⎩⎪⎨⎪⎧ x ,x≥0,⎝ ⎛⎭⎪⎫12x ,x <0,则f[f(-4)]=________.解析:f[f(-4)]=f(24)=24=4.答案:4三、解答题10.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x +5.解析:(1)设二次函数f(x)=ax2+bx +c(a≠0).∵f(0)=1,∴c =1.把f(x)的表达式代入f(x +1)-f(x)=2x ,有a(x +1)2+b (x +1)+1-(ax2+bx +1)=2x.∴2ax +a +b =2x.∴a =1,b =-1.∴f(x )=x2-x +1.(2)由x2-x +1>2x +5,即x2-3x -4>0,解得x >4或x <-1.故原不等式解集为{x|x >4或x <-1}.11.函数f(x)对一切函数x 、y 均有f(x +y)-f(y)=x(x +2y +1)成立,且f(1)=0,(1)求f(0)的值;(2)试确定函数f(x)的解析式.解析:(1)令x =1,y =0,得f(1)-f(0)=2.又∵f(1)=0,∴f(0)=-2.(2)令y =0,则f(x)-f(0)=x(x +1),由(1)知,f(x)=x(x +1)+f(0)=x(x +1)-2=x2+x -2.12.已知函数f(x)=⎩⎪⎨⎪⎧ cx +1, 0<x <c2-x c2+1, c≤x<1)满足f(c2)=98.(1)求常数c 的值;(2)解不等式f(x)>28+1.解析:(1)因为0<c <1,所以c2<c ,由f(c2)=98,即c3+1=98,c =12.(2)由(1)得f(x)=⎩⎪⎨⎪⎧ 12x +1,0<x <122-4x +1,12≤x<1由f(x)>28+1得,当0<x <12时,解得24<x <12,当12≤x<1时,解得12≤x<58,所以f(x)>28+1的解集为{x|24<x <58}.。
2021年高中数学 1.2函数及其表示检测题(含解析)新人教版必修1

2021年高中数学 1.2函数及其表示检测题(含解析)新人教版必修1一、填空题1.设函数f (x )=⎩⎨⎧1-x 2,x ≤1,x 2+x -2,x >1,则=________.解析 本题主要考查分段函数问题.正确利用分段函数来进行分段求值. ∵f (2)=4,∴=f ⎝ ⎛⎭⎪⎫14=1-116=1516.答案15162. 若函数f (x )=⎩⎨⎧2x,x <0,-2-x,x >0,则函数y =f (f (x ))的值域是________.解析 当x <0时,f (x )=2x∈(0,1),故y =f (f (x ))=-2-f (x )∈⎝⎛⎭⎪⎫-1,-12; 当x >0时,f (x )=-2-x ∈(-1,0),故y =f (f (x ))=2f (x )∈⎝ ⎛⎭⎪⎫12,1,从而原函数的值域为⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1. 答案 ∪⎝ ⎛⎭⎪⎫12,1 3.设函数f (x )=⎩⎪⎨⎪⎧1-12xx ≥0,1xx <0,若f (a )=a ,则实数a 的值是________.解析 当a ≥0时,1-12a =a ,所以a =23.当a <0时,1a=a ,所以a =-1.答案23或-1 4.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的序号有________.解析 由映射的定义,要使函数在定义域上都有图象,并且一个x 对应着一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意. 答案 ②5.下列函数中与函数y =x 相同的是_______. ①;② ;③; ④ 解析 因为所以应天②. 答案 ②6.已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x2,则f (3)=________.解析 ∵f ⎝⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x2+2,∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11. 答案 117.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.解析 当1-a <1,即a >0时,a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,解得a =-32(舍去).当1-a >1,即a <0时,a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,解得a =-34.答案 -348.若f (x )=1log122x +1,则f (x )的定义域为________.解析 因为log 12(2x +1)>0,所以0<2x +1<1,解得-12<x <0.答案 ⎝ ⎛⎭⎪⎫-12,09.设函数f (x )=若f (-3)=f (0),f (-1)=-2,则关于x 的方程f (x)=x 的解的个数为______. 解析 由f(-3)=f(0),f(-1)=-2可得b=3,c=0,从而方程f(x)=x 等价于 或 解得到x=0或x=-2,从而得方程f(x)=x 的解的个数为3.答案 310.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是________.解析 当(x 2-2)-(x -1)≤1时,-1≤x ≤2,所以f (x )=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2, f (x )的图象如图所示.y =f (x )-c 的图象与x 轴恰有两个公共点,即方程f (x )=c 恰有两个解,由图象可知当c ∈(-2, -1]∪(1,2]时满足条件. 答案 (-2,-1]∪(1,2]11.对于使-x 2+2x ≤M 成立的所有常数M 中,我们把M 的最小值1叫做-x 2+2x 的上确界,若a ,b ∈R +,且a +b =1,则-12a -2b的上确界为________. 解析 因为a ,b ∈R +,a +b =1,所以12a +2b =(a +b )·⎝ ⎛⎭⎪⎫12a +2b =52+2a b +b 2a ≥52+22a b ·b2a=52+2=92,所以-12a -2b ≤-92,所以-12a -2b 的上确界为-92. 答案 -9212.设函数f (x )对于任意实数x 满足条件f (x +2)=1f x,若f (1)=-5,则f (f (5))的值为________. 解析 令x =1,f (3)=1f 1=-15.由f (x +2)=1f x得f (x +4)=1fx +2=f (x ), 所以f (5)=f (1)=-5,则f (f (5))=f (-5)=f (-1) =1f-1+2=1f 1=-15.答案 -1513.设f (x )=lg2+x 2-x ,则f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 的定义域为________. 解析 f (x )=lg 2+x 2-x 有意义,则2+x2-x>0,即(x +2)(x -2)<0,∴-2<x <2.对f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 有意义,则⎩⎪⎨⎪⎧-2<x2<2,-2<2x <2⇒⎩⎪⎨⎪⎧-4<x <4,x <-1或x >1.∴-4<x <-1,或1<x <4. 答案 (-4,-1)∪(1,4) 二、解答题14.已知函数f (x )=log 2⎝⎛⎭⎪⎫x +3x-a 的定义域为A ,值域为B .(1)当a =4时,求集合A ;(2)当B =R 时,求实数a 的取值范围.解析 (1)当a =4时,由x +3x -4=x 2-4x +3x =x -1x -3x>0,解得0<x <1或x >3,故A ={x |0<x <1或x >3}.(2)若B =R ,只有u =x +3x-a 可取到一切正实数,则x >0及u min ≤0,∴u min =23-a ≤0.解得a ≥2 3.实数a 的取值范围为[23,+∞). 15.已知函数f (x )=2a +1a -1a 2x,常数a >0.(1)设m ·n >0,证明:函数f (x )在[m ,n ]上单调递增;(2)设0<m <n 且f (x )的定义域和值域都是[m ,n ],求常数a 的取值范围. 解析 (1)证明 任取x 1,x 2∈[m ,n ],且x 1<x 2,则 f (x 1)-f (x 2)=1a 2·x 1-x 2x 1x 2.因为x 1<x 2,x 1,x 2∈[m ,n ],所以x 1x 2>0,即f (x 1)<f (x 2),故f (x )在[m ,n ]上单调递增. (2) 因为f (x )在[m ,n ]上单调递增,f (x )的定义域、值域都是[m ,n ]⇔f (m )=m ,f (n )=n ,即m ,n 是方程2a +1a-1a 2x=x 的两个不等的正根⇔a 2x 2-(2a 2+a )x +1=0有两个不等的正根. 所以Δ=(2a 2+a )2-4a 2>0,2a 2+aa2>0⇒a >12.即常数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 16.已知函数f (x )=⎩⎪⎨⎪⎧1+1x x >1,x 2+1-1≤x ≤1,2x +3x <-1.(1)求f ⎝ ⎛⎭⎪⎫1-12-1,f (f (f (-2)))的值; (2)求f (3x -1);(3)若f (a )=32,求a 的值.解析 (1)∵1-12-1=1-(2+1)=-2<-1,∴f ⎝⎛⎭⎪⎫1-12-1=f (-2)=-22+3,又∵f (-2)=-1,f (f (-2))=f (-1)=2,∴f (f (f (-2)))=f (2)=1+12=32.(2)若3x -1>1,即x >23,则f (3x -1)=1+13x -1=3x3x -1;若-1≤3x -1≤1,即0≤x ≤23,则f (3x -1)=(3x -1)2+1=9x 2-6x +2; 若3x -1<-1,即x <0,则f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎪⎨⎪⎧3x 3x -1⎝ ⎛⎭⎪⎫x >23,9x 2-6x +2⎝⎛⎭⎪⎫0≤x ≤23,6x +1x <0.(3)∵f (a )=32,∴a >1或-1≤a ≤1.当a >1时,有1+1a =32,∴a =2;当-1≤a ≤1时,有a 2+1=32,∴a =±22.∴a =2或±22. 17.已知函数f (x )=a x-24-a x-1(a >0且a ≠1). (1)求函数f (x )的定义域、值域;(2)求实数a 的取值范围,使得函数f (x )满足:当定义域为[1,+∞)时,f (x )≥0恒成立. 解析 (1)由4-a x≥0,即a x≤4,当0<a<1时,x≥log a4,当a>1时,x≤log a4,故f(x)的定义域为:当a>1时,为(-∞,log a4],当0<a<1时,为[log a4,+∞).令t=4-a x,则t∈[0,2),所以y=4-t2-2t-1=4-(t+1)2.当t∈[0,2)时,y=4-(t+1)2是减函数,所以函数的值域为(-5,3].(2)由(1)知,若a>1,f(x)是增函数,当x∈[1,+∞)时,f(x)≥f(1)=a-24-a-1,由于f(x)≥0恒成立,∴a-24-a-1≥0,解得3≤a≤4.若0<a<1,f(x)在[1,+∞)上是减函数,f(x)max=a-1-24-a<0,即f(x)≥0不成立.综上知,当3≤a≤4时,在[1,+∞)上f(x)≥0恒成立.18.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(k m/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(k m).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 k m,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.解析(1)由图象可知;当t=4时,v=3×4=12,所以s=12×4×12=24.(2)当0≤t≤10时,s=12·t·3t=32t2当10<t≤20时,s=12×10×30+30(t-10)=30t-150;当20<t≤35时,s=12×10×30+10×30+(t-20)×30-12×(t-20)×2(t-20)=-t2+70t-550.综上可知s =⎩⎪⎨⎪⎧32t 2, t ∈[0,10],30t -150, t ∈10,20],-t 2+70t -550, t ∈20,35].(3)当t ∈[0,10]时,s max =32×102=150<650.当t ∈(10,20]时,s max =30×20-150=450<650. 当t ∈(20,35]时,令-t 2+70t -550=650.解得t 1=30,t 2=40,0<t ≤35故t =30,所以沙尘暴发生30 h 后将侵袭到N 城.$ 4C| -,31415 7AB7窷g 32924 809C 肜30691 77E3 矣31500 7B0C 笌。
1.2函数及其表示测试

1.2函数及其表示测试题一. 选择题1. 设集合A={ x ∣0≤x ≤2},B={ y ∣1≤y ≤2},下图中能表示从集合A 到集合B 的映射的是( )A. B. C. D.2. 若f(x)=,则方程f(4x)=x 的根为( ) xx 1-A. B. - C.2 D. -2 21213. 定义运算x ※y=,若(2-m )※(2m-1)=2-m ,则m 的取值范围为{)()(y x x y x y ≤>( ) A.(-∞,1) B.(-∞,1]C.(1,∞)D. [1,∞)4. 向高为H 的水瓶中注水,注满为止。
如果注水量V 与水深h 的函数关系的图象如右图所示,那么水瓶的形状是( )A. B. C. D.5. 已知f(x)=,则f(3)=( ){)6(4)6)(2(≥-<+x x x x f A.1 B.2 C.3 D.4二. 填空题 1. 函数f(x)= 的定义域为 。
xx 3+2. 已知a 、b 为常数,若f(x)=+4x+3,f(ax+b)=+10x+24,则x 2x 25a-b= 。
3. 已知函数f(x),g(x)分别由下表给出 x 1 2 3 g(x) 32 1 则f[g(1)]的值为 ;满足f[g(x)]>g[f(x)]的x 的值为 。
4. 已知函数f(x)对任意实数x 都满足条件f(x+1)=,若f(1)=-5,则)(1x f f(11)= 。
5. 设函数f(x)=,若f(a)>a ,则实数a 的取值范围是 。
{)1(!21)1(3≤+>+-x x x x 三. 解答题1. 据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一,图(1)表示我国土地沙化总面积在上个世纪五六十年代、七八十年代、九十年代的变化情况。
由图中的相关信息,可将上述有关年代中,我国年平均土地沙化面积在图(2)中图示为:2. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800x 1 23 f(x) 13 1元的部分不必纳税,超过800元的部分为全月应纳税所得额。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《1.2 函数及其表示(2)》测试题
一、选择题
1.设函数,则( ).
A. B.3 C. D.
考查目的:主要考查分段函数函数值求法.
答案:D.
解析:∵,∴,∴,故答案选D.
2.下列各组函数中,表示同一函数的是( ).
A.,
B.,
C.,
D.,
考查目的:主要考查对函数概念的理解.两个函数相同,则这两个函数的定义域和对应关系均要相同.
答案:C
解析:A、B选项错,是因为两个函数的定义域不相同;D选项错,是因为两个函数的对应关系不相同.
3.函数的图象如图所示,对于下列关于函数说法:
①函数的定义域是;
②函数的值域是;
③对于某一函数值,可能有两个自变量的值与之对应.
其中说法正确的有( ).
A.0个
B.1个
C.2个
D.3个
考查目的:本题主要考查对函数概念的理解以及对区间符号的认识.
答案:C
解析:从图可知,函数的定义域是[,所以①不正确,②、③说法正确,故选C.
二、填空题
4.如图,函数的图像是曲线OAB,其中点O、A、B的坐标分别为(O,O),(1,2),(3,1),则的值等于.
考查目的:主要考查用图象表示函数关系以及求函数值.
答案:2
解析:由图可知,,,∴.
5.已知函数,,则实数的值等于.
考查目的:主要考查分段函数的函数值的求法.
答案:.
解析:∵,∴,∴,∴,∴只能有,.
6.在同一平面直角坐标系中,函数和的图象关于直线对称.
的图象是由两条线段组成的折线(如图),则函数的表达式为.
考查目的:主要考查函数的表示法:解析法与图像法,分段函数的表示.
答案:.
解析:点()关于直线对称的点为(),∴的图象上的三点(-2,0),(0,1),(1,3)关于直线对称的点分别为(0,-2),(1,0),(3,1),∴函数
.
三、解答题
7.已知的定义域是,求的表达式.
考查目的:主要考查函数的解析式的求法.一定要注意函数的定义域.
答案:.
解析:,令,则,且,∴,即,则.
8.某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.
⑴若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
⑵在⑴的条件下,每节车厢能载乘客110人,问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
考查目的:主要考查实际问题中求函数解析式、二次函数求最值.
解析:⑴设每日来回次,每次挂节车厢,,由题意知,当时,当时,∴,解得,∴;
⑵设每日来回次,每次挂节车厢,由题意知,每日挂车厢最多时,营运人数最多,设每日营运节车厢,则,∴当时,,此时,则每日最多运营人数为110×72=7920(人),即这列火车每天来回12次,才能使运营人数最多,每天最多运营人数为7920.。