小学奥数行程专题50道详解(八)

合集下载

(完整)奥数专题行程问题50道题目详解

(完整)奥数专题行程问题50道题目详解

奥数专题行程问题50道题目详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9—(3+4)=2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67。

5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米.甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

奥数行程问题大全

奥数行程问题大全

奥数行程问题大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】奥数行程问题一、多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程二速度X时间2.相遇问题:路程和=速度和X时间3.追击问题:路程差=速度差X时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程” 例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3 分钟和丙相遇。

问:这个花圃的周长是多少米分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)X3=228 (米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228+(38-36) =114 (分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)X114=8892 (米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!二、奥数行程:追及问题的要点及解题技巧1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

小学奥数行程问题50道详解

小学奥数行程问题50道详解

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。

行程问题—专题08《错车问题》2020年通用版小升初数学冲A提高集训(原卷版)

行程问题—专题08《错车问题》2020年通用版小升初数学冲A提高集训(原卷版)

2020年通用版小升初数学冲A提高集训行程问题—专题08《错车问题》一.选择题1.(2013春•江南区月考)一辆小汽车每秒行20米,刚驶入隧道时,发现一辆客车正在前面180米处行驶.如果两车速度保持不变,1.5分钟后两车同时驶出隧道,那么客车每秒行驶()米.A.10 B.16 C.18 D.20二.填空题2.(2017•江西)慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行使,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要秒.3.(2017•广州)小明从家到学校上课,开始时以每分钟50米的速度走了2分钟,这时他想:若根据以往上学的经验,再按这个速度走下去,肯定要迟到8分钟.于是他立即加快速度,每分钟多走10米,结果小明早到了5分钟.小明家到学校的路程是米.4.(2014•上海校级模拟)快、慢两列火车相向而行,快车长50米,慢车长80米,快车的速度是慢车的2倍.如果坐在慢车上的人见快车驶过窗口的时间是5秒,那么,坐在快车上的人见慢车驶过窗口的时间是秒.5.(2012秋•雁江区期末)有两列火车,一车长130m,速度为23/m s.现m s;另一列火车长250m,速度为15/在两车相向而行,从相遇到离开需要s.6.(2012•广安区校级自主招生)甲、乙两人沿铁路线相向而行,速度相同,一列火车从甲身边开过用了8秒钟,5分钟后火车又从乙身边开过,用了7秒钟,那么再过分钟甲、乙两人相遇.7.(2012•东城区模拟)一个铁路工人在路基下原地不动,一列火车从他身边驶过用了40秒,如果这个工人以每小时6千米的速度迎着火车开来的方向行走,则这列火车从他身边驶过只用37.5秒,则这列火车每小时行千米.三.应用题8.(2019秋•东莞市期末)有甲、乙两列火车,甲车长116米,每秒行驶10米;乙车长124米,每秒行驶14米.两车相遇后,从甲车与乙车车头相遇到车尾分开需要多少秒?9.(2018秋•重庆月考)某列车通过342米的隧道用了23秒,接着通过288米的隧道用了20秒.问:这列火车与另一列长128米、速度为22米/秒的列车错车而过,需要几秒?10.(2018•新都区)某市3路公交车从汽车站每隔一定的时间发一次车,小明在街上匀速前进,他发现背后每隔6分钟开过来一辆3路车,而迎面每隔3分钟有一辆3路车开过来,若每辆车之间的距离相等,那么3路车每隔几分钟发出一辆?11.(2018•陕西模拟)一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上看见慢车驶过的时间是11秒,那么坐在慢车上看见快车驶过的时间是多少秒?12.(2017•长沙)小玲沿着某公路以每小时4千米的速度步行上学,沿途发现每隔9分钟有一辆公共汽车从后面超越她,每隔7分钟遇到一辆迎面而来的公共汽车.若汽车发车的间隔时间相同,而且汽车的速度相同,求公共汽车发车的间隔是多少分钟?13.小P沿某路公共汽车路线以50米/分的速度步行回家,该路公共汽车也以不变速度不停地运行,每隔11分钟就有辆公共汽车从后面超过他,每隔9分钟就遇到迎面开来的一辆公共汽车.请问:相邻两辆公共汽车的距离是多少米?14.一个铁路工人在路基上原地不动,一列火车从他身边驶过用了40秒,如果这个工人以每小时6千米的速度迎着火车开来的方向行走,则这列火车从他身边驶过只用38秒,求这列火车的速度.四.解答题15.(2018•长沙)甲、乙两地相距120千米.一辆大客车从甲地出发前往乙地.开始时每小时行50千米,中途减速为每小时行40千米.大客车出发1小时后,一辆小轿车也从甲地出发前往乙地,每小时行80千米,结果两辆车同时到达乙地,问大客车从甲地出发多少时间后才降低速度?16.(2012•中山市)甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整列火车经过甲身边用了18秒,2分后又用了15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身后,甲、乙两人还需要多少时间才能相遇?17.(2006春•德江县校级期中)两列火车在两组互相平行的轨道上相向行驶.甲车长720米,速度是28米/秒;乙车长900米,速度是26米/秒.从两车车头相遇到车尾离开,共需要多少时间?18.甲,乙两人以相同的速度相向而行,一列火车经过甲身旁,用了6秒;又过了4分钟,火车经过乙身旁,用了5秒;求以火车刚到乙身旁开始记时,经过多长时间甲、乙两人相遇.19.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒二车的速度不变,求甲、乙两车的速度.20.体育小学组织学生排成队步行与郊游,步行的速度是每秒1米,队尾的王老师以每秒2.5米的速度赶到队伍的最前面,然后立即返回队尾,共用10分钟.求队伍的长度.21.小刚在铁路旁边沿铁路方向公路边散步,他散步的速度是每秒2米.这时迎面开来一列火车,从车头到车尾经过他身旁共用了18秒.已知火车的全长是324米,则这列火车的速度是每秒多少米?22.小王以每秒3米的速度沿着铁路跑步,迎面开来一列长147米的火车,它的行驶速度每秒18米.问:火车经过小王身旁的时间是多少?23.有两列火车,一列长130米,每秒行23米,另一列长250米,每秒行15米,现在两车在双轨车道上相向而行,问从相遇到相离需要几秒钟?24.甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙列车,若两列车齐尾并进,则甲车行30秒超过乙列车.求两列车各长多少米?25.在双轨铁路上,有一列每小时运行72千米的客车,客车司机发现对面开来一列每小时运行90千米的货车,这时货车从他身边驶过用了8秒钟,求货车的车长?26.甲火车长180米,每秒行18米,乙火车每秒行15米,两列火车同方向行驶,甲火车从追上乙火车到完全超过共用了100秒.求乙火车长多少米?27.有两列火车,甲车长150米,每秒行25米,乙车的长度比甲车短13,每秒行20米,现在两车相向而行,从相遇到相离需几秒钟?28.一列客车速度是每小时60千米,一列货车速度是每小时45千米,货车比客车长105米,如果两车在平行的轨道上行驶,客车从后面赶过货车,它们交会的时间是1分30秒.(1)求两车的长度.(2)如果两车相向而行,那么交会的时间是多少?。

小学奥数行程专题经典练习50道详解

小学奥数行程专题经典练习50道详解

经典行程专题50道详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P 点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

30道奥数行程问题

30道奥数行程问题

30道奥数行程问题+详解行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2:船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间=(人’与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=小时返回:T’=8/4+12/5=小时T总=++1=10小时7:00+10:00=17:00"整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

小明来回共走了多少千米【解析】当路程一定时,速度和时间成反比速度比=6:9=2:3时间比=3:2—3+2=5小时,正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。

如果按照原定的时间到达B城,汽车在后半段路程速度应该加快多少【解析】核心公式:速度=路程÷时间前半程开了3小时,因故障停留30分钟,因此接下来的路程需要小时来完成V=120÷=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地,A,B 两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。

奥数行程问题

奥数行程问题

奥数行程问题有关奥数行程问题有关奥数行程问题1AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。

现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。

已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?解答:因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。

对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。

现在考虑甲和乙丙步行路程的距离。

甲多步行1千米要用1/5小时,乙多骑车1千米用1/20小时,甲多用1/5-1/20=3/20小时。

甲步行1千米比乙少用1/4-1/5=1/20小时。

,所以甲比乙多步行的路程是乙步行路程的:1/20/(3/20=1/3.这样设乙丙步行路程为3份,甲步行4份。

如下图安排:这样甲骑车行骑车的3/5,步行2/5.所以时间为:30*3/5/20+30*2/5/5=3.3小时。

有关奥数行程问题2奥数一直是小升初阶段的学习的一个重点。

而作为奥数七大模块之一的行程问题一直是奥数学习的一个重点和难点。

其中的流水问题被称为行程问题中的特殊情况,是值得深究的。

流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程专题50道详解八
36、甲、乙二人同时从A地去280千米外的B地,两人同时出发,甲先乘车到达某一地点后改为步行,车沿原路返回接乙,结果两人同时到达B地.已知甲、乙二人步行的速度是5千米/小时,汽车的速度是每小时55千米.问甲下车的地点距B还有多少千米?
【分析】:甲、乙二人走的路程均分为步行、乘车两部分,两人速度相等,这说明,二人乘车的路程和步行的路程分别相等.由于二人步行的速度为每小时5千米,乘车的速度为每小时55千米,所以,在相同的时间里,乘车所走的路程是步行所走路程的11倍.
【解】:注意到乘车速度是人的11倍,那么相同时间下走的距离也是步行的11倍
由于甲乙同时到达因此两人步行的距离相同,把这个距离看做1份
可以设甲在c下车,车回去在d接上了乙
因此AD=BC AC+CD=11AD=11份,所以2AC=12份.故AC是6份全长AB就是7份=280千米
所以一份是40千米
37、如图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发.已知甲每分走90米,乙每分走70米.问:至少经过多长时间甲才能看到乙?
【解答】当甲、乙在同一条边(包括端点)上时甲才能看到乙.甲追上乙一条边,即追上300米需300÷(90-70)=15(分),此时甲、乙的距离是一条边长,而甲走了90×15÷300=4.5(条边),位于某条边的中点,乙位于另一条边的中点,所以甲、乙不在同一条边上,甲看不到乙.甲再走0.5条边就可以看到乙了,即甲总共走了5条边后就可以看到乙了,共需要300×5÷90≈16.7小时.
38、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?
解:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),
某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)
某列车的车长为:20×25-250=500-250=250(米),
两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).
39、甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?
答案:从甲到乙顺水速度:234÷9=26(千米/小时).
从乙到甲逆水速度:234÷13=18(千米/小时).
船速是:(26+18)÷2=22(千米/小时).
水速是:(26-18)÷2=4(千米/小时).
40、两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?
【解】:先求出甲船往返航行的时间分别是:小时,小时.再求出甲船逆水速度每小时千米,顺水速度每小时千米,因此甲船在静水中的速度是每小时千米,水流的速度是每小时千米,乙船在静水中的速度是每小时千米,所以乙船往返一次所需要的时间是小时.。

相关文档
最新文档