数控车削中心加实例分析
数控车削零件工艺分析举例

※T0404——螺纹刀:刀尖角60°,主轴转速400r/min,进给 速度2mm/r(螺距)。
数控车削加工工艺
※T0505——钻头:钻头直径16mm,主轴转速450r/min。
※T0606——内圆粗车刀:内轮廓粗加工,刀尖圆弧半径 0.8mm,切深1mm,主轴转速500r/min,进给速度100mm/min。 ※T0707——内圆精车刀:内轮廓精加工,刀尖圆弧半径 0.8mm,切深0.4mm,主轴转速800r/min,进给速度60mm/min。
*装夹Φ50外圆表面,探出65mm,粗加工零件左侧外轮廓:
2×45°倒角,Φ48外圆,R20,R16,R10圆弧。
*精加工上述轮廓。
数控车削加工工艺
*手工钻孔,孔深至尺寸要求。 *粗加工孔内轮廓。 *精加工孔内轮廓。 *调头装夹Φ48外圆,粗加工零件右侧外轮廓:2×45°倒
角,螺纹外圆,Φ36端面,锥面,Φ48外圆到圆弧面。
数控机床编程与操作
数控车削加工工艺
完成如图所示零件的加工。毛坯尺寸ф50×114,材料 45钢,零件的径向尺寸公差±0.01mm。
数控车削加工工艺
1.图纸分析 (1)加工内容: 此零件加工包括车端面,外圆,倒角,圆弧,螺纹,槽等。 (2)工件坐标系: 该零件加工需调头,从图纸上尺寸标注分析应设置2个坐标 系,2个工件零点均定于装夹后的右端面(精加工面)。
*精加工上述轮廓。 *切槽。 *螺纹加工。
数控车削加工Байду номын сангаас艺
(5)刀具的选择和切削用量的确定
※T0101——外圆粗车刀:外轮廓粗加工,刀尖圆弧半径 0.8mm, 切 深 2 mm, 主 轴 转 速 8 0 0 r/min , 进 给 速 度 150mm/min。 ※T0202——外圆精车刀:外轮廓精加工,刀尖圆弧半径 0.8mm, 切深0.5mm,主轴转速1500r/min,进给速度 80mm/min。
数控车床零件的工艺分析及编程典型实例

数控车床零件的工艺分析及编程典型实例更新日期:来源:数控工作室根据下图所示的待车削零件,材料为45号钢,其中Ф85圆柱面不加工。
在数控车床上需要进行的工序为:切削Ф80mm 和Ф62mm 外圆;R70mm 弧面、锥面、退刀槽、螺纹及倒角。
要求分析工艺过程与工艺路线,编写加工程序。
图1 车削零件图1.零件加工工艺分析(1)设定工件坐标系按基准重合原则,将工件坐标系的原点设定在零件右端面与回转轴线的交点上,如图中Op点,并通过G50指令设定换刀点相对工件坐标系原点Op的坐标位置(200,100)(2)选择刀具根据零件图的加工要求,需要加工零件的端面、圆柱面、圆锥面、圆弧面、倒角以及切割螺纹退刀槽和螺纹,共需用三把刀具。
1号刀,外圆左偏刀,刀具型号为:CL-MTGNR-2020/R/1608 ISO30。
安装在1号刀位上。
3号刀,螺纹车刀,刀具型号为:TL-LHTR-2020/R/60/1.5 ISO30。
安装在3号刀位上。
5号刀,割槽刀,刀具型号为:ER-SGTFR-2012/R/3.0-0 IS030。
安装在5号刀位上。
(3)加工方案使用1号外圆左偏刀,先粗加工后精加工零件的端面和零件各段的外表面,粗加工时留0.5mm的精车余量;使用5号割槽刀切割螺纹退刀槽;然后使用3号螺纹车刀加工螺纹。
(4)确定切削用量切削深度:粗加工设定切削深度为3mm,精加工为0.5mm。
主轴转速:根据45号钢的切削性能,加工端面和各段外表面时设定切削速度为90m/min;车螺纹时设定主轴转速为250r/min。
进给速度:粗加工时设定进给速度为200mm/min,精加工时设定进给速度为50mm/min。
车削螺纹时设定进给速度为1.5mm/r。
2.编程与操作(1)编制程序(2)程序输入数控系统将程序在数控车床MDI方式下直接输入数控系统,或通过计算机通信接口将程序输入数控机床的数控系统。
然后在CRT 屏幕上模拟切削加工,检验程序的正确性。
数控车削加工工艺例题分析

5—1数控车削加工工艺——典型盘类零件例题分析:(锐角倒钝)导入内容:该零件加工材料:灰铸铁(HT400)—在结晶过程中充分石墨化的铸铁。
结晶:金属从高温液体状态冷却凝固为固体状态的过程。
灰铸铁特性:1.石墨具有脆性2.抗拉强度、塑性、韧性比刚差3.抗压强度、硬度与刚相同。
4.石墨具有良好的润滑性,能获得良好的切削性能。
耐磨性好消音减震能力好。
5.HT400使用场合多而广,适宜承受较高负荷的重要零件。
6.HT400:含义是HT灰铁,400最小抗拉强度为400Mpa7.切削的切削呈崩碎状,能减小切削与前刀面的摩擦,切削热减少,刀具使用寿命长。
新课授入:一.零件图工艺分析该盘类零件由外圆柱、沟槽、内孔等表面组成,其中多个直径尺寸有较高的精度和表面粗糙度要求。
零件图尺寸标注完整,轮廓描述清楚材料为灰铸铁,无热处理及硬度要求。
通过分析,采用以下几点工艺措施。
a)图样上面给定的尺寸精度要求较高,公差值较小,编程时取零件基本尺寸。
b)毛坯选择规则的表面粗糙度及缺陷层材料,规格为90mm*70mm 的管料。
c)为了便于加工采用调头装夹来完成零件,并预先钻好孔,选择2 #莫氏锥柄(直径14.25-23mm)号。
(钻头直径小于20mm)d)确定采用法那科(FANUC)系统加工零件。
二.确定装夹方案确定坯件采用三爪自定心卡盘定心装夹(不需要采用活动顶尖支撑:伸出长度小于2倍的最大夹持直径)三.确定加工顺序及进给路线加工顺序从粗到精,从右到左(从近到远),内外交叉原则。
a)先从右到左进行粗车(留0.2mm单边精车余量)至直径为85mm 轮廓处,然后精车轮廓(同前),再切6*2.5mm槽,最后粗——精镗直径为32mm*50mm内孔。
b)调头装夹:保证总长69mm。
从右到左粗车轮廓(留0.2mm单边精车余量)至直径为65mm轮廓处,然后精车轮廓(同前),再粗——精镗直径为20mm*15mm内孔。
四.刀具选择a)粗、精车外轮廓选择W型(80度)硬质合金外圆车刀。
数控车加工案例分析

进行分析该零件先用 :1$ 进行粗加工选用 '% 度外圆车 刀切除多余余料和端面再用 :1( 进行精加工根据零件的 形状选定尖刀加工圆弧先加工大端 然后夹持住大端再 加工小端 大端长度刚开始给了 $%DD为了装夹强度考虑 可以加长大端长度增至 $9DD
5$)% Yg$$%% 5$)$ :1% ;)% `$)% 5$)9 :%% W99&%% 5$(% W$9%&% Y)%%&%% 5$($ b%(%( <3%%% :%% W9%&% Yg$%'% :%$ W% e%&$9% :%% W0%&%% W$9%&% Y$9%&%% 5$(9 @%9% 5$3% @(%% #加工 (&$ 试切 在试切外轮廓加工应注意.)/ 处的夹刀现象"同时要注 意如图所示的 $$( 两个位置# $ 为圆弧"半径较小"在切削时 会出现产生的切屑流出后翻转到半径为 ^$9&9 的圆弧面"划 伤其表面# )$( 的右侧均为锥面"一方面要注意刀具的副后 刀面与工件已车削轮廓表面是否干涉"另外也要注意"在切 削时会出现产生的切屑流出后翻转到锥面上造成划伤# 为 避免干涉也可采用直头刀杆车削"如图 ( 所示# (&) 加工中的问题及解决方法 为了避免上面提到的问题"可采取如下方法予以解决# ($)如在试切时.)/处出项夹刀现象"应改变.)/ 处的外 圆尺寸"进行外圆粗加工"再用 :1( 进行局部精加工# ()) 对整个工件预留不超过 %&$DD的余量"在加工完工 件后"再将预留的 加 工 余 量 切 去" 可 对 划 伤 的 表 面 进 行 修 复 或者 采 取 在 编 程 时" 分 别 对 $$)$( 三 个 位 置 预 留 不 超 过 %E$DD的余量"通过切除余量"修复划伤的表面# 后一种办 法会更为简便一些# 加工效果如图 3 所示#
数控机床加工工艺实例分析

刀具 专用车刀T01 内螺纹车刀T02
车刀T03
审定
文件编号
第页
工序名称 精车大端 面各部
设备型号 CNC6132
走刀次数
7 1 批准
材料
HPb59-1
夹具
专用夹 具
量具及 检具 游标卡
尺 螺纹塞
规 塞规
3.数控加工走刀路线图
表9—9 数控加工走刀路线图
数控加 工走刀 路线图
零件图 号
CFAD316Z0
图9—7 盖板钻孔走刀路线
9.2.3 加工工序卡片和刀具使用卡片
盖板零件数控铣加工工序卡片和刀具使用卡片见表9—10和表6—11。
表9—10 盖板零件数控铣加工工序卡片
(单位名称)
0 工艺序号 2
数控加工工序卡 02
夹具名称
工 步 号
加工内 容
粗 铣
1
平 面
精
铣粗
2
外 轮精
廓
3
挖槽
程序号
刀具名称
刀具规 格 /mm
2.选择装夹和定位
该零件在生产时,可采用“一面、两销”的定位方式,以工件底面为第 一定位基准,定位元件采用支撑面,限制工件在X、y方向的旋转运动和Z 方向的直线运动,两个φ22mm的孔作为第二定位基准,定位元件采用带螺 纹的两个圆柱定位销,进行定位和压紧。限制工件在X、y方向的直线运动 和Z方向的旋转运动。挖φ2.5mm深的中心槽时,先用压板压紧工件,再松 开定位销螺母。在批量生产加工过程中,应保证定位销与工作台相对位置 的稳定。
此外,零件上不得有毛刺伤痕及油污,未注公差±0.1。φ6.8孔P处 不得有毛刺,但倒角不得大于0.3。零件上φ11外圆、φG1/2螺纹、Rc1/2 内螺纹6.8孔与G1/2螺纹、Rc1/2内螺纹有同轴度要求,φ6.8与G1/2一次 装夹加工,以保证同心。
数控车床编程实例详解(30个例子)完整

车床编程实例一半径编程图3.1.1 半径编程%3110 (主程序程序名)N1 G92 X16 Z1 (设立坐标系,定义对刀点的位置)N2 G37 G00 Z0 M03 (移到子程序起点处、主轴正转)N3 M98 P0003 L6 (调用子程序,并循环6次)N4 G00 X16 Z1 (返回对刀点)N5 G36 (取消半径编程)N6 M05 (主轴停)N7 M30 (主程序结束并复位)%0003 (子程序名)N1 G01 U-12 F100 (进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8 园弧段) N3U3.215 W-39.877 R60 (加工R60 园弧段) N4G02 U1.4 W-28.636 R40(加工切R40 园弧段) N5G00 U4 (离开已加工表面)N6 W73.436 (回到循环起点Z轴处)N7 G01 U-4.8 F100 (调整每次循环的切削量)N8 M99 (子程序结束,并回到主程序)1直线插补指令编程%3305车床编程实例二图3.3.5 G01 编程实例N1 G92 X100 Z10 (设立坐标系,定义对刀点的位置)N2 G00 X16 Z2 M03 (移到倒角延长线,Z 轴2mm 处)N3 G01 U10 W-5 F300 (倒3×45°角)N4 Z-48 (加工Φ26 外圆)N5 U34 W-10 (切第一段锥)N6 U20 Z-73 (切第二段锥)N7 X90 (退刀)N8 G00 X100 Z10 (回对刀点)N9 M05 (主轴停)N10 M30 (主程序结束并复位)圆弧插补指令编程车床编程实例三%3308N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转)N3 G00 X0 (到达工件中心)N4 G01 Z0 F60 (工进接触工件毛坯)N5 G03 U24 W-24 R15 (加工R15 圆弧段)N6 G02 X26 Z-31 R5 (加工R5 圆弧段)N7 G01 Z-40 (加工Φ26 外圆)N8 X40 Z5 (回对刀点)N9 M30 (主轴停、主程序结束并复位图3.3.8 G02/G03 编程实例2倒角指令编程%3310车床编程实例四图3.3.10.1 倒角编程实例N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 U-70 W-10 (从编程规划起点,移到工件前端面中心处)N30 G01 U26 C3 F100 (倒3×45°直角)N40 W-22 R3 (倒R3 圆角)N50 U39 W-14 C3 (倒边长为3等腰直角)N60 W-34 (加工Φ65 外圆)N70 G00 U5 W80 (回到编程规划起点)N80 M30 (主轴停、主程序结束并复位)倒角指令编程%3310车床编程实例五N10 G92 X70 Z10 (设立坐标系,定义对刀点的位置)N20 G00 X0 Z4 (到工件中心)N30 G01 W-4 F100 (工进接触工件)N40 X26 C3 (倒3×45°的直角)N50 Z-21 (加工Φ26 外圆)N60 G02 U30 W-15 R15 RL=3(加工R15 圆弧,并倒边长为4的直角)N70 G01 Z-70 (加工Φ56 外圆)N80 G00 U10 (退刀,离开工件)N90 X70 Z10 (返回程序起点位置)M30 (主轴停、主程序结束并复位)图3.3.10.2 倒角编程实例3车床编程实例六圆柱螺纹编程螺纹导程为1.5mm,δ=1.5mm,δ '=1mm ,每次吃刀量(直径值)分别为0.8mm、0.6 mm 、0.4mm、0.16mm图3.3.12 螺纹编程实例%3312N1 G92 X50 Z120 (设立坐标系,定义对刀点的位置)N2 M03 S300 (主轴以300r/min 旋转)N3 G00 X29.2 Z101.5 (到螺纹起点,升速段1.5mm,吃刀深0.8mm)N4 G32 Z19 F1.5 (切削螺纹到螺纹切削终点,降速段1mm)N5 G00 X40 (X 轴方向快退)N6 Z101.5 (Z 轴方向快退到螺纹起点处)N7 X28.6 (X 轴方向快进到螺纹起点处,吃刀深0.6mm)N8 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N9 G00 X40 (X 轴方向快退)N10 Z101.5 (Z 轴方向快退到螺纹起点处)N11 X28.2 (X 轴方向快进到螺纹起点处,吃刀深0.4mm)N12 G32 Z19 F1.5 (切削螺纹到螺纹切削终点)N13 G00 X40 (X 轴方向快退)N14 Z101.5 (Z 轴方向快退到螺纹起点处)N15 U-11.96 (X 轴方向快进到螺纹起点处,吃刀深0.16mm)N16 G32 W-82.5 F1.5 (切削螺纹到螺纹切削终点)N17 G00 X40 (X 轴方向快退)N18 X50 Z120 (回对刀点)N19 M05 (主轴停)N20 M30 (主程序结束并复位)4恒线速度功能编程%3314车床编程实例七图3.3.14 恒线速度编程实例N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转)N3 G96 S80 (恒线速度有效,线速度为80m/min)N4 G00 X0 (刀到中心,转速升高,直到主轴到最大限速)N5 G01 Z0 F60 (工进接触工件)N6 G03 U24 W-24 R15 (加工R15 圆弧段)N7 G02 X26 Z-31 R5 (加工R5 圆弧段)N8 G01 Z-40 (加工Φ26 外圆)N9 X40 Z5 (回对刀点)N10 G97 S300 (取消恒线速度功能,设定主轴按300r/min 旋转)N11 M30 (主轴停、主程序结束并复位)车床编程实例八%3317M03 S400 (主轴以400r/min 旋转)G91 G80 X-10 Z-33 I-5.5 F100(加工第一次循环,吃刀深3mm)X-13 Z-33 I-5.5(加工第二次循环,吃刀深3mm)X-16 Z-33 I-5.5(加工第三次循环,吃刀深3mm)M30 (主轴停、主程序结束并复位)图3.3.17 G80 切削循环编程实例5车床编程实例九G81 指令编程(点画线代表毛坯)图3.3.20 G81 切削循环编程实例%3320N1 G54 G90 G00 X60 Z45 M03 (选定坐标系,主轴正转,到循环起点)N2 G81 X25 Z31.5 K-3.5 F100 (加工第一次循环,吃刀深2mm)N3 X25 Z29.5 K-3.5 (每次吃刀均为2mm,)N4 X25 Z27.5 K-3.5 (每次切削起点位,距工件外圆面5mm,故K值为-3.5)N5 X25 Z25.5 K-3.5 (加工第四次循环,吃刀深2mm)N6 M05 (主轴停)N7 M30 (主程序结束并复位车床编程实例十G82 指令编程(毛坯外形已加工完成)%3323N1 G55 G00 X35 Z104(选定坐标系G55,到循环起点)N2 M03 S300 (主轴以300r/min 正转)N3 G82 X29.2 Z18.5 C2 P180 F3(第一次循环切螺纹,切深0.8mm)N4 X28.6 Z18.5 C2 P180 F3(第二次循环切螺纹,切深0.4mm)N5 X28.2 Z18.5 C2 P180 F3(第三次循环切螺纹,切深0.4mm)N6 X28.04 Z18.5 C2 P180 F3(第四次循环切螺纹,切深0.16mm)N7 M30 (主轴停、主程序结束并复位)图3.3.23 G82 切削循环编程实例6车床编程实例十一外径粗加工复合循环编制图3.3.27 所示零件的加工程序:要求循环起始点在A(46,3),切削深度为 1.5mm(半径量)。
数控车床编程实例详解(30个例子)

数控车床编程实例详解(30个例子)1. 基础G00轨迹移动G00指令可以用于快速移动机床上的工具,不做切削。
例如,要将铣刀从(0,0,0)点移动到(100,100,0)可以使用下面的编程:G00 X100 Y100 Z02. 简单的G01直线插补3. 向X正方向设定工件原点在某些情况下,需要在工件上设计的特定原点作为整个程序的起点。
在下面的例子中,我们将工件原点移到X轴上的10毫米位置:G92 X104. G02 G03 模拟圆弧G02和G03指令可以用于沿着一条圆弧轨迹移动工具。
例如,以下代码将插入一个逆时针圆弧:G03 X50 Y50 I25 J05. 床上对刀长度测量刀具长度对刀是数控车床操作的重要步骤。
在这个例子中,我们使用手动设定对刀。
首先,我们将铣刀移动到Z轴处的一个位置,然后将刀具轻轻放置在工件上以测量其长度。
最后,我们将刀具测量值输入机床,以便于适当地调整刀具长度。
6. 坐标旋转在某些情况下,需要在XY平面上绕特定角度旋转工件,以便于确保最佳切削角度。
在这个例子中,我们将工件绕着Z轴旋转45度:G68 X0 Y0 R457. 使用M code 启动或停止旋转工件M03用于启动旋转工作台的主轴,M05用于关闭它。
例如,以下代码段启动了工作台的主轴,并等待它旋转到合适速度,以便于切削。
8. 镜像轨迹在制造工具或零件时,可能需要将一个轮廓沿着特定轴镜像。
例如,以下代码镜像X 轴上的轮廓:G01 X50 Y0G01 X0 Y50G01 X-50 Y0G01 X0 Y-50MHE29. 使用G04指令延迟程序G04指令用于程序内部的延迟。
例如,以下代码让机床停顿1秒钟:G04 P100010. 利用G10指令改变工作坐标系G10指令可以用于更改工作坐标系。
例如,下面的代码段将当前坐标系设定为{X50 Y50 Z0}:11. 使用G17, G18和G19指令绘制园形、X-Y平面和Z-X平面G17G02 X50 Y50 I25 J0G02 X0 Y0 I-25 J0G02 X-50 Y50 I0 J25G02 X0 Y100 I25 J0G02 X50 Y50 I0 J-25G02 X0 Y0 I-25 J0MHE2M30指令可以用于彻底结束程序。
典型零件数控加工工艺分析实例

说明:表格中刀尖半径和备注栏可以不要;25×25 指车刀刀柄的截面尺寸。
(5)切削用量选择
一般情况下,粗车:恒转速 n=800r/min 恒线速 v=100m/min
进给量 f=0.2mm/r 以下
vf=120m/min
背吃刀量 ap=2mm 以下
精车:恒转速 n=1100r/min 恒线速 v=150m/min
以零件右端面和中心轴作为 坐标原点建立工件坐标系。
根据零件尺寸精度及技术要 求,零件从右向左加工,将粗、 精加工分开来考虑。
加工工艺顺序为:车削右端面→复合型车削固定循环粗、精加工右端需要加工的所有轮 廓(粗车Φ44、Φ40.5、Φ34.5、Φ28.5、Φ22.5、Φ16.5 外圆柱面→粗车圆弧面 R14.25→ 精车外圆柱面Φ40.5→粗车外圆锥面→粗车外圆弧面 R4.75→精车圆弧面 R14→精车外圆锥 面→精车外圆柱面Φ40→精车外圆弧面 R5)。 (4)选择刀具
所选定刀具参数如表 1-2 所示。 说明:铣削内、外轮廓时,铣刀直径受槽宽限制,可选择φ6 的立铣刀;精铰的量通常 小于 0.2mm;刀刃和长度通常要比切削的深度大。 5.切削用量选择 一般情况下,粗铣:恒转速 n=600r/min
进给量 f=180mm/min 以下 背吃刀量 ap=5mm 以下 精车:恒转速 n=800r/min 进给量 f=120mm/min 以下
零件的底面和外部轮廓已经加工,本工序是在铣床上加工槽与孔。 1.零件图分析
凸轮内外轮廓由直线和圆弧组成。凸轮槽侧面和
20
0.021 0
、
12
0.018 0
两个内孔尺寸精
度要求较高,表面粗糙度要求也较高,Ra1.6;内孔
20
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控车削中心加工实例分析
朱解生1
摘要:本文以生产实例来浅析说明CAD/CAM软件编程只能提供快速的编程手段,由CAD/CAM软件生成的NC加工程序并不能满足零件加工工艺的所有要求,因此编程工艺人员想要获得合格的零件加工工艺通常还需对软件编程所生成的NC加工程序经工艺验证后进行一些必要修改和完整。
关键词:CAD/CAM;NC加工程序;零件加工工艺
数控加工程序编制,从手工编程到完全采用计算机实现CAD/CAM及NC加工程序的生成在企业的实际生产中已大量应用。
目前高档机床CNC系统都提供了一定的NC模拟功能。
利用NC模拟功能可以检查刀具切削轨迹的正确性,检查过切和刀具与工件、夹具、工作台之间的碰撞或干涉现象,并可以取消部分试切环节,甚至可以检查工件装夹的不合理及加工参数的不合理等问题。
但是在切削加工中仍有一些具体的工艺问题需要编程工艺人员对CAD/CAM软件生成的NC加工程序经工艺分析和验证后对其进行一些必要的修改,才能保证零件的加工精度。
现以一简单的生产实例来分析说明:
1作者简介:朱解生(1949-)男,江苏镇江,高级实验师,研究方向:CAD/CAM
根据图示零件的图样要求,由CAD/CAM 软件设计、生成NC加工程序,并对其加工过程在机床CNC系统中进行NC加工过程的仿真分析。
该零件NC加工程序的加工工序为::
1、车端面,0.5mm倒角,车外圆.
2、动力刀具6mm铣刀铣平面,
3、用3x90º倒角钻完成钻孔中心定位和0.2mm倒角.
4、完成2.5mm的钻孔.
5、完成3.0mm的攻螺纹.
对生成的NC加工程序实现的加工过程进行仿真分析是符合要求的,但是对实际加工后零件的位置精度测量却是不合格的,原因是由于孔的中心相对平面的对称度超差,且孔轴线与平面垂直度超差,并且 3.0mm的丝锥在攻螺纹时常易折断。
经过仔细分析其超差的原因,排除了刀架的精度问题, 而直接原因是由于CAM软件自动生成的NC加工程序中每调用一次刀具都要完成一次程序的执行和取消,特别是C轴的锁定和定位,其中6mm铣刀、3x90º倒角钻,、2.5mm 钻头, 3.0mm丝锥将有四次主轴的锁定和取消执行。
而每一次定位都有不同程度定位误差的存在可能,从而造成钻头和丝锥在加工时与所铣平面不垂直,以至造成孔的中心相对平面的对称度超差和丝锥容易折断。
以下是6mm铣刀、3x90º倒角钻,、2.5mm钻头,3.0mm丝锥四次加工执行过程的NC加工程序:
N6"EM=
G24
G59ZL38
G94G90
M5T0606
M303S3=1500
M17 (第一次主轴锁定和定位)G59C0
G0C0
G0X12.45M8
G11
G17
G42
0A0C0.1F (虚拟Y轴)
G1X-2.99F90
G0Y3.775A180
G40
G10
G18
M204
M18
G24
!
N4(CROSS-DRILLING-MAIN)
G24
G59X0ZL38
T0404
G94
G90
S3=3500M23
G0X6.3M8
M17 (第二次主轴锁定和定位)
G1X-1.6F80M8
G0C270
G1X1.8F80.
M18
G24
M25
N5(CROSSDRILL-MAIN)
G24
G59X0ZL38
T0505
G94
G90
M303S3=3500
G0X6.3M8
M17 (第三次主轴锁定和定位)
G1X-5.1F80M8
M18
G24
M25
N33-2.5M (第四次主轴锁定和定位)
M48
.
8.3F
M49
M305
G95
G24
M18
根据对加工后实测零件孔的位置精度超差原因的工艺分析及对上述NC加工程序的分析,解决这一工艺问题的方法就找到了,即把NC加工程序中的第二次到第四次的M17删除,让铣平面和钻孔、攻螺纹在一次主轴的锁定与定位下完成,以此来消除原先C轴分四次锁定与定位所造成的定位误差问题,从而使该零件的加工精度得到了保证。
CAD/CAM软件编程只能提供快速的编程手段而并不能满足零件加工工艺的一切要求,因此编程工艺人员想要获得合格的零件加工工艺通常还需对软件编程所生成的NC加工程序经工艺验证后进行一些必要修改和完整。
参考文献:
「1」EdgeCAM智能数控编程系统.
CNC Turning Center processing Case Analysis
Zhu Jie-sheng
Abstract:The NC machining process which is from CAD / CAM software generated can not meet all the parts processing requirements. Therefore programming personnel want to obtain qualified parts process technical usually needed to make some necessary modification and completed of the NC process program which is generated by the software programming after argumentation.
Key words: CAD / CAM;NC process program;parts process technical。