中考数学平行四边形单元测试含答案
2020年人教版初中数学八年级下册第18章《平行四边形》单元综合测试题含答案

平行四边形一.选择题(共10小题)1.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC2.平行四边形两邻角的平分线相交所成的角的大小是()A.90°B.60°C.45°D.30°3.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形4.下列说法正确的有()①对角线互相平分的四边形是平行四边形;②平行四边形的对角互补;③平行线间的线段相等;④两个全等的三角形可以拼成一个平行四边形;⑤平行四边形的四内角之比可以是2:3:2:3.A.1个B.2个C.3个D.4个5.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.56.如图,在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),则点B坐标为()A.(0,2)B.(0,)C.(0,1)D.(0,2)7.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形8.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于E,MF⊥AC于F,N为EF的中点,则MN的最小值为()A.4.8 B.2.4 C.2.5 D.2.69.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断10.把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形B.菱形C.矩形D.正方形二.填空题(共8小题)11.如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E、F两点,AB=6,BC=10,则EF的长度是.12.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC =∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)13.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为.14.如图,矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度运动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s),当t=时,四边形APQD 也为矩形.15.如图,在平行四边形ABCD中,AB=8,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=3,则AE的边长为.16.在▱ABCD中,AE平分∠BAD交边BC于E,DF⊥AE,交边BC于F,若AD=10,EF=4,则AB=.17.矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.18.如图,正方形OABC在直角坐标系中,点B(﹣2,2),点D为BC的中点,点E在线段OC上运动,射线ED交AB延长线于点F,设E(0,t),当△AEF是以AE为腰的等腰三角形时,点E的坐标是.三.解答题(共7小题)19.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE 的长.20.在▱ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:四边形DFBE是平行四边形;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以GH为边或对角线的所有平行四边形.21.已知:如图,在矩形ABCD中,点M、N在边AD上,且AM=DN,求证:BN=CM.22.如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.23.已知,如图,∠ABC=∠ADC=90°,点E、F分别是AC、BD的中点,AC=10,BD=6.(1)求证:EF⊥BD;(2)求EF的长.24.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB 的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.25.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.第《18章平行四边形》单元测试题参考答案与试题解析一.选择题(共10小题)1.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.2.【分析】根据平行四边形的性质得到∠DAB+∠ABC=180°,由角平分线可得∠BAO+∠ABO=90°,根据三角形的内角和定理得∠AOB=90°,即可得到所选选项.【解答】解:▱ABCD的∠DAB的平分线和∠ABC的平分线交于O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°﹣90°=90°.故选:A.【点评】本题主要考查了平行四边形的性质,角平分线的定义,三角形的内角和定理等知识点,能综合利用性质进行证明是解此题的关键.3.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:根据平行四边形的判定定理,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.【点评】此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.4.【分析】根据平行四边形的判定定理以及性质定理即可判断.【解答】解:①正确;②平行四边形的对角相等,命题错误;③平行线间的平行线段相等,命题错误;④正确;⑤正确.故选:C.【点评】本题考查了平行四边形的判定定理以及性质定理,正确理解定理的内容是关键.5.【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.【分析】根据菱形的性质可得∠OAB=∠BAD=60°,∠AOB=90°,解直角△AOB,求出OB,即可得到点B坐标.【解答】解:∵在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),∴∠OAB=∠BAD=60°,∠AOB=90°,在直角△AOB中,∵OA=2,∴OB=OA•tan∠OAB=2×=2,∴点B坐标为(0,2).故选:D.【点评】本题考查了菱形的性质,掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角是解题的关键.也考查了锐角三角函数定义,坐标与图形性质.7.【分析】根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.【解答】解:根据平行四边形和菱形的性质得到ACD均正确,而B不正确,因为对角线互相垂直的四边形也可能是梯形.故选:B.【点评】主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.8.【分析】过点A作AM⊥BC于点M′,根据勾股定理求出BC的长,再由三角形的面积公式求出AM′的长.根据题意得出四边形AEMF是矩形,故可得出AM=EF,MN=AM,当MN最小时,AM最短,此时M与M′重合,据此可得出结论.【解答】解:过点A作AM⊥BC于点M′,∵在△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∴AM′==.∵ME⊥AB于E,MF⊥AC于F,∴四边形AEMF是矩形,∴AM=EF,MN=AM,∴当MN最小时,AM最短,此时点M与M′重合,∴MN=AM′==2.4.故选:B.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AM的最小值是关键.9.【分析】由条件可知AB∥CD,AD∥BC,再再证明AB=BC即可解决问题.【解答】解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.【点评】本题考查了菱形的判定,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.【分析】根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【解答】解:由已知,根据折叠原理,对折后可得:∠FAB=∠B=∠AFE=90°,AB=AF,∴四边形ABEF是正方形,故选:D.【点评】此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等.二.填空题(共8小题)11.【分析】根据平行四边形的性质可知∠DEC=∠ECB,又因为CE平分∠BCD,所以∠DCE=∠ECB,则∠DEC=∠DCE,则DE=DC,同理可证AF=AB,那么EF就可表示为AF+ED﹣BC=2AB﹣BC,继而可得出答案.【解答】解:∵平行四边形ABCD,∴∠DEC=∠ECB,又CE平分∠BCD,∴∠DCE=∠ECB,∴∠DEC=∠DCE,∴DE=DC,同理可证:AF=AB,∴2AB﹣BC=AF+ED﹣BC=EF=2.故答案为2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.12.【分析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.【解答】解:可选条件①③,∵AD∥BC,∴∠DAO=∠OCB,∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴DO=BO,∴四边形ABCD是平行四边形.故答案为:①③.【点评】此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形.13.【分析】根据折叠的性质易知,重合部分为菱形,然后根据菱形的面积公式计算即可.【解答】解:如图,过点A作AE⊥BC于点E,AF⊥CD于点F.则AE=AF=2.∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是2,∴S四边形ABCD=BC×2=CD×2,∴BC=CD,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.∴四边形ABCD的面积为2×2×=4.故答案是:4.【点评】本题主要考查菱形的性质和特殊角的三角函数值,通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.【分析】四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可.【解答】解:根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20﹣t,解得t=4(s).故答案是:4.【点评】本题考查了矩形的判定与性质.此题利用了矩形的对边相等的性质进行解题的.15.【分析】由平行四边形的性质和角平分线证出AD=DF,由F为DC中点,AB=CD,求出AD与DF 的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由AAS证明ADF≌△ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=4,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD中,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=2×2=4,故答案为:4【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解本题的关键.16.【分析】根据平行线的性质得到∠ADF=∠DFC,根据角平分线的定义得到∠BAE=∠DAE,推出AB=BE,根据已知条件推出∠ADF=∠ADC,得到∠DFC=∠CDF,推出CF=CD,于是得到结论.【解答】解:①如图1,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE+CF﹣EF=2AB﹣EF=2AB﹣4=10,∴AB=7;②如图2,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE++EF+CF=2AB+EF=2AB+4=10,∴AB=3;综上所述:AB的长为7或3.故答案为:7或3.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出AB=BE=CF=CD.17.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD﹣AP=2,GD=GC﹣CD=4﹣2=2∴GP==2∴GH=GP=故答案为:【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.18.【分析】由ASA证明△DBF≌△DCE,得出BF=CE=2﹣t,得出AF=AB+BF=4﹣t,即可得出点F的坐标;分两种情况:①当AE=AF时,根据勾股定理得出AE2=OA2+OE2,得出方程22+t2=(4﹣t)2,解方程即可求出t的值;②当AE=EF时,点E在AF的垂直平分线上,得出OE=AF,即t=(4﹣t),解方程即可求出t的值,从而求解.【解答】解:(1)∵四边形OABC是正方形,∴OA=AB=BC=OC=2,∠AOC=∠ABC=∠BCO=90°,∴∠FBD=90°,∵D是BC的中点,∴BD=CD,在△DBF和△DCE中,,∴△DBF≌△DCE(ASA),∴BF=CE=2﹣t,∴AF=AB+BF=4﹣t,∴D的坐标为(﹣2,4﹣t),当△AEF是以AE为腰的等腰三角形时,分两种情况:①当AE=AF时,∵AE2=OA2+OE2,∴22+t2=(4﹣t)2,解得:t=1.5;②当AE=EF时,点E在AF的垂直平分线上,∴OE=AF,即t=(4﹣t),解得:t=.综上所述:当△AEF是以AE为腰的等腰三角形时,点E的坐标是(0,1.5)或(0,).故答案为:(0,1.5)或(0,).【点评】考查了正方形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质等知识;本题综合性强,有一定难度,需要进行分类讨论才能得出结果.三.解答题(共7小题)19.【分析】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.【解答】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE=CF=×4=2.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的判定与性质,作辅助线构造出以DE为中位线的三角形是解题的关键.20.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF,即可得出四边形DFBE是平行四边形;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF,又∵DE∥BF,∴四边形DFBE是平行四边形;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE;以GH为对角线的平行四边形有GFHE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.21.【分析】由矩形的性质可得出BA=CD、∠A=∠D,由AM=DN可得出AN=DM,进而即可证出△ABN≌△DCM(SAS),根据全等三角形的性质可证出BN=CM.【解答】证明:∵四边形ABCD为矩形,∴BA=CD,∠A=∠D.∵AM=DN,∴AN=DM.在△ABN和△DCM中,,∴△ABN≌△DCM(SAS),∴BN=CM.【点评】本题考查了矩形的性质以及全等三角形的判定与性质,利用全等三角形的判定定理SAS 证出△ABN≌△DCM是解题的关键.22.【分析】延长EM交AD于点P,延长FM交AB于点Q,根据正方形的性质可得出:四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,进而可得出AQ=FM,QM=ME,结合∠AQM=∠FME=90°即可证出△AQM≌△FME(SAS),再利用全等三角形的性质可证出AM=EF.【解答】证明:延长EM交AD于点P,延长FM交AB于点Q,如图所示.∵四边形ABCD为正方形,点M为对角线BD上一点,∴四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,∴AQ=PM=FM,QM=ME.在△AQM和△FME中,,∴△AQM≌△FME(SAS),∴AM=EF.【点评】本题考查了全等三角形的判定与性质、正方形的性质以及矩形的性质,利用全等三角形的判定定值SAS证出△AQM≌△FME是解题的关键.23.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,可求BE=DE,根据等腰三角形的性质,可得结论;(2)根据题意可得BE=5,BF=3,根据勾股定理可求EF的长【解答】证明:(1)连接BE,DE∵∠ABC=∠ADC=90°,点E是AC的中点,∴BE=AC,DE=AC∴BE=DE∵点F是BD的中点,BE=DE∴EF⊥BD(2)∵BE=AC∴BE=5∵点F是BD的中点∴BF=DF=3在Rt△BEF中,EF===4【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半是本题的关键.24.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,根据菱形的判定得出即可;(2)设CE=2x,AC=3x,求出BC=4x,DF=AC=3x,根据菱形的面积公式求出x,求出EF和CE,根据勾股定理求出CF即可.【解答】(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∴四边形BDCF是菱形;(2)解:∵tan∠EAC==,∴设CE=2x,AC=3x,∵四边形BDCF是菱形,∴BE=CE=2x,∴BC=4x,∵四边形ADFC是平行四边形,∴DF=AC=3x,∵四边形BDCF的面积为24,∴=24,解得:x=2(负数舍去),∴CE=4,DF=6,∴DE=EF=×6=3,∵DE⊥BC,∴∠CEF=90°,∴由勾股定理得:CF===5.【点评】本题考查了勾股定理,平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.25.【分析】(1)过G作GH⊥CD于H,根据三角形的内角和得到∠CDE=60°,根据平行四边形的性质得到AD∥BC,AB=CD=2,得到∠ADC=120°,解直角三角形即可得到结论;(2)根据全等三角形的性质得到∠ADH=∠EDC,∠H=∠C,DH=DC,根据平行四边形的性质得到AB=CD,AB∥CD,推出∠DFA=∠C,在DH上截取HM=AH,得到∠HAM=∠HMA,求得∠DAM =∠H,根据全等三角形的性质即可得到结论..【解答】解:(1)如图1,过G作GH⊥CD于H,∵DE⊥BC,∴∠DEC=90°,∵∠C=60°,∴∠CDE=60°,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=2,∴∠ADC=120°,∵AD=DF,∴∠DAF=∠DFA=30°,∴∠GDF=∠DFG,∴DG=GF,∵CD=2,∴DF=,∴HF=DF=,∴GF=1;(2)∵AH⊥AD,DE⊥BC,∴∠DAH=∠DEC=90°,在△ADE与△DEC中,,∴△ADE≌△DEC(SAS),∴∠ADH=∠EDC,∠H=∠C,DH=DC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠DAB=∠C,∠DFA=∠BAF,∵AD=DF,∴∠DAF=∠DFA,∴∠DFA=∠C,如图2,在DH上截取HM=AH,∴∠HAM=∠HMA,∴∠H=180°﹣2∠HAM,∵∠MAD=90°﹣∠HAM,∴∠DAM=∠H,∴∠MAD=∠GFD,在△ADM与△FDG中,,∴△ADM≌△FDG(ASA),∴DM=DG,∵AB=CD=DH=HM+DM,∴AB=AH+DG.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.。
初中八年级数学下册第十八章平行四边形单元复习试题二(含答案) (57)

初中八年级数学下册第十八章平行四边形单元复习试题二(含答案)如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE并延长交AD 于点F ,已知S △AEF =4,则下列结论:①AF FD =12;①△AEF ∽△ACD ;①S △BCE =36;①S △ABE =12.其中一定正确的是_____(填序号)【答案】①①①【解析】【分析】由AF ①BC ,推出AF BC =AE EC =EF BE =13,AEF EBC S S =(13)2,求出①ABE ,①BEC 的面积即可判断;【详解】解:①四边形ABCD 是平行四边形,①AD =BC ,AD ①BC ,OA =OC ,①AE =EO ,①AE :EC =1:3,①AF ①BC , ①AF BC =AE EC =EF BE =13,AEF EBC S S=(13)2, ①AF :AD =1:3,①AF:DF=1:2,故①正确,①S△AEF=4,①S△AEB=3×4=12,S△EBC=4×9=36,故①①正确,①EF不平行CD,①①AEF与①ACD不一定相似,故①错误,故答案为①①①.【点睛】本题考查平行四边形相关性质并结合相似三角形相关性质进行分析.82.在□ABCD中,∠A+∠C=270°,则∠B=______,∠C=______.【答案】45°135°【解析】解:∵已知平行四边形ABCD,∴∴A=∴C,∴B+∴C=180°.又∵∠A+∴C=270°,∴2∴C=270°,∴C=135°,∴∴B=180°-∴C=180°-135°=45°.故答案为:∠C=135°,∴B=45°.三、解答题83.在①ABC中,①ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.(1)如图1,若①ABC=30°,则①CAD的度数为________.(2)已知AC=1,BC=3.①依题意将图2补全;①求CD的长;(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).【答案】(1)105°;(2)①答案见解析;②CD;(3)AC+BC CD.【解析】试题分析:(1)先判断出∠CAD=∠DBE,再利用等腰直角三角形求出∠ABD=45°,进而求出∠CBD,最后用邻补角即可得出结论;(2)①根据题意及基本作图即可补全图形;②构造出△ACD≌△BED,进而判断出△CDE是等腰直角三角形,再利用等腰直角三角形的性质即可得出解;构造出△BDH≌△ADG,进而判断出△CDH是等腰直角三角形,再利用等腰直角三角形的性质即可得出结论;(3)同(2)的方法即可得出结论.试题解析:(1)∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵△ADB是等腰直角三角形,∴∠ABD=45°,∵∠ABC=30°,∴∠CBD=∠ABD+∠ABC=75°,∴∠CAD=∠DBE=180°-75°=105°故答案为:105°.(2)①补全图形,如图所示.②如图2,∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE=90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴.如图2,∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DAG+∠CAD═180°,∴∠CBD=∠DAG.∵DA=DB,∠DGA=∠DHB=90°,∴△BDH≌△ADG.∴DH=DG,BH=AG.∴∠DCH=∠DCG=45°.∴△CHD为等腰直角三角形.∵AC=1,BC=3,∴CH=2.∴.(3)CD,理由:如图2,∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE=90°.∴△CDE为等腰直角三角形.∴CD,∵CE=BC+BE=BC+AC.即:AC+BC CD.【点睛】三角形综合题,主要考查了等角的补角相等,全等三角形的判定和性质,等腰直角三角形的性质和判定,解本题的关键是构造出全等三角形,进而判断出△CDE或△CDH是等腰直角三角形,是一道中等难度的中考常考题.84.如图,AD是△ABC的中线,延长AD,过点B作BE⊥AD交AD的延长线于点E,过点C作CF⊥AD于点F.求证:DE=DF.【答案】见解析【解析】【分析】根据三角形中线的定义得到BD =CD ,然后利用AAS 证明△BDE ≌△CDF 即可.【详解】证明:∵AD 是△ABC 的中线,∴BD =CD ,又∵BE ⊥AD ,CF ⊥AD ,∴∠E =∠CFD =90°,在△BDE 和△CDF 中,BDE CDF E CFD 90BD CD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△BDE ≌△CDF(AAS),∴DE =DF .【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键,属于基础题.85.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形AB C D ''',使点B 的对应点B '落在AC 上,B C ''交AD 于点E ,在B C ''上取点F ,使B F AB '=.(1)证:AE C E '=.(2)FBB '∠的度数.(3)知2AB =,求BF 的长.【答案】(1)见解析;(2)15︒ ;(3【解析】【分析】(1)由AC =2AB ,得到∠ACB =30°,进而得到B AC ''∠=30°,通过旋转得到B AC ''∠=60°,求出=30EAC '∠︒,由EAC '∠=AC B ''∠=30°,得到AE C E '=.(2)由(1)得△ABB '为等边三角形,求出BB F '∠=150°,再由B F BB ''=得到FBB '∠=BFB '∠,最后由三角形内角和得到FBB '∠的度数.(3)作AH ⊥BF 于点H ,判断△ABH 是等腰直角三角形,可求出AH =BH =,由勾股定理求出AF =,HF ,最后可以求出BF 的长度.【详解】解:(1)证明:∵在Rt △ABC 中,AC =2AB∴∠ACB =∠CAD =30°,∠BAC =60°∵矩形旋转∴AC B ''∠=∠ACB =30,∠BAC =B AC ''∠=60°∴=-EAC B AC DAC '''∠∠∠=30°∴EAC AC B '''∠=∠=30°∴AE C E '=(2)由(1)知∠BAC =60°∵AB =AB '∴△ABB '为等边三角形∴∠AB B '=60°∵∠AB C ''=90°∴∠BB F '=∠AB B '+∠AB C ''=150°∵B F AB '=∴B F BB ''=∴FBB '∠=BFB '∠∵FBB BFB BB F '''∠+∠+∠=180°∴2FBB '∠+150°=180°∴FBB '∠=15°(3)如图,连接AF ,作AH ⊥BF 于点H∵在Rt △ABH 中,∠AHB =90°,AB =2,∠ABH =ABB FBB ''∠-∠=45° ∴Rt △ABH 是等腰直角三角形∴AH =BH =AB ·sin ∠ABH =2∵在Rt △AB F '中,∠AB F '=90°,AB B F ''==AB=2∴AF=∴在Rt △AHF 中,HF∴BF =BH +HF【点睛】本题主要考查图形的旋转、等腰三角形以及直角三角形的性质,能够正确作出辅助线以及勾股定理的计算与证明是解决本题的关键.86.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 在BC 上,AE 交BD 于F .(1)若E 是靠近点B 的三等分点,求;①BF DF 的值;②△BEF 与△DAF 的面积比;(2)当BF n FO m =时,求BE EC的值. 【答案】(1)①BF 1DF 3=;②19BFE ADF S S =;(2)2BE n EC m=. 【解析】【分析】(1)①利用平行线分线段成比例定理即可解决问题;②利用相似三角形的中面积比等于相似比的平方即可解决问题;(2)利用平行四边形的性质可知OB =OD ,BC ∥AD ,BC =AD ,由题意BF n FO m=可知BF :DF =n :(2m+n ),即BE :AD =BF :DF =n :(2m+n ),故求得BE EC =2n m. 【详解】解:(1)①∵四边形ABCD 是平行四边形,∴BC =AD ,BC ∥AD ,∵BE :BC =1:3, ∴BF DF =BE AD =13. ②∵BE ∥AD ,∴△BEF ∽△DAF , ∴BFE ADF S S =(BE AD)2=19. (2)∵四边形ABCD 是平行四边形,∴OB =OD ,BC ∥AD ,BC =AD ,∵BF :OF =n :m ,∴BF :DF =n :(2m+n ),∴BE :AD =BF :DF =n :(2m+n ), ∴BE EC =2n m.【点睛】本题考查相似三角形的判定和性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.87.如图,▱ABCD中,∠BAC=90°,AB=AC,点E是边AD上一点,且BE=BC,BE交AC于点F,过点C作BE的垂线,垂足为点O,与AD交于点G.(1)若AB,求AE的长;(2)求证;BF=【答案】1;(2)证明见解析.【解析】【分析】(1)过E作EH⊥BA交BA的延长线于于H,根据等腰直角三角形的性质得到∠ABC=45°,BC=BE=2,根据平行线的性质得到∠HAE=∠ABC=45°,设AH=HE=a,得到AE a,根据勾股定理即可得到结论;(2)由(1)知,∠OBC=30°,得到BF=OB﹣OF=3OC﹣OE,过G作GH⊥BC于H,求出OE=(2﹣3)OC,把OE=(2﹣3)OC代入3OC﹣OE 求得BF=2(3﹣1)OC,代入求得CO+3EO=2(3﹣1)OC,于是得到结论.【详解】解:(1)过E作EH⊥BA交BA的延长线于于H,∵∠BAC=90°,AB=AC,∴∠ABC=45°,BC=BE=2,∵AD∥BC,∴∠HAE=∠ABC=45°,∴设AH=HE=a,∴AE a,在Rt△EBH中,∵BH2+EH2=BE2,∴)2+a2=22,∴a∴AE1;(2)过A作AM⊥BC于M,GH⊥BC于H,EN⊥BC于N,则AM=GH=EN=12BC=1,∴sin∠EBC=12,∴∠EBC=30°,∴OC=12BC=1,∴∠OBC=30°,∵BE=BC,∴∠BEC=75°,∵∠CFE=45°+30°=75°,∴CF=CE,∴OF=OE,∵OC⊥BO,∴BO=,∴BF=OB﹣OF=OC﹣OE,过G作GH⊥BC于H,∴GH=EN=OC OE),∴OC,∴OE=(2,∴BF=OB﹣OF=OC﹣OE=2(﹣1)OC,∵=)OC=1)OC,∴BF=【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.88.如图,四边形ABCD是平行四边形,以AB为直径的①O经过点D,E是①O上一点,且①AED=45°.(1)判断CD与①O的位置关系,并说明理由;(2)若①O半径为4cm,AE=6cm,求①ADE的正切值.【答案】(1)CD与⊙O相切,理由见解析;(2)7【解析】【分析】(1)连接OD,首先根据圆周角定理求出∠AOD=90°,然后利用平行四边形的性质得到AB∥DC,利用平行线的性质即可得出结论;(2)连接BE,则①ADE=①ABE,由AB是①O的直径得到①AEB=90°,而AB=2×4=8(cm).在Rt①ABE中,根据勾股定理求出BE的长,再利用三角函数的定义即可求解.【详解】解:(1)CD与⊙O相切.理由如下:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切;(2)连接BE ,则∠ADE=∠ABE .∵AB 是⊙O 的直径,∴∠AEB=90°,AB=2×4=8(cm ).在Rt △ABE 中,由勾股定理得,==cm ),∴tan ∠ABE=7AE BE ==.∴∠ADE 的正切值为7. 【点睛】本题主要考查了切线的判定,三角函数的定义,圆周角定理的推论,平行四边形的性质以及勾股定理等知识.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.89.(1)①如图1,已知AB ∥CD ,∠ABC=60°,根据 .可得∠BCD= ;②如图2,在①的条件下,如果CM 平分∠BCD ,则∠BCM= ; ③如图3,在①、②的条件下,如果CN ⊥CM ,则∠BCN= .(2)尝试解决下面问题:已知如图4,AB ∥CD ,∠B=40°,CN 是∠BCE 的平分线,CN ⊥CM ,求∠BCM 的度数.【答案】(1)①两直线平行,内错角相等;60°;②30°;③60°;(2)20°.【解析】解:(1)两直线平行,内错角相等;60°.(2)因为CM 平分∠BCD ,所以∠BCM =12 ∠BCD =1602⨯︒ =30°. (3)因为CN ⊥CM ,所以∴MCN =90°,由(2)得∠BCM =30°, 所以∴BCN =90°-30°=60°.(4)因为AB ∴CD ,∴B =40°,所以∴BCE =140°,因为CN 平分∠BCE ,所以∠BCN =1140702⨯︒=︒ , 因为CN ⊥CM ,所以∴MCN =90°,所以∠BCM =90°-70°=20°.90.如图,四边形ABCD 是平行四边形,点E 、F 在BC 上,且CF=BE,连接DE,过点F 作FG ⊥AB 于点G .(1)如图1,若∠B=60°,DE 平分∠ADC ,且 CD =,6CD =,求平行四边形ABCD 的面积.(2)点H 在GF 上,且HE=HF ,延长EH 交AC ,CD 于点O ,Q ,连接AQ ,若AC=BC=EQ ,∠EQC=45°,求证: CE DQ =+.【答案】(1);(2)见详解.【解析】【分析】(1)由角平分线的定义及平行四边形的性质,得CD=CE=6,从而得CF=,进而得.过点A作AM⊥BC于点M,得AM=行四边形的面积公式,即可求解.(2)过点C作CN⊥EQ于点N,其延长线交AD于点K,先证△BGF≌△CNE(AAS),再证△ACK≌△QEC(ASA),进而即可得到结论.【详解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠CED,∴∠CED=∠CDE,∴CD=CE=6,∵CD ,∴CF=∵CF=BE,∴∴过点A作AM⊥BC于点M,∵∠B=60°,AB=CD=6,∴∠BAM=30°,∴BM=3,∴∴平行四边形ABCD的面积=()×+9;(2)过点C作CN⊥EQ于点N,其延长线交AD于点K,∵①EQC=45°,∴①CNQ为等腰直角三角形,∴①NQC=①NCQ=45°,且CN,∵HE=HF,∴①HEF=①HFE,∵FG⊥AB,CN⊥EQ,∴①FGB=①ENC=90°,又∵BE=CF,∴BF=CE,∴①BGF①①CNE(AAS),∴BG=CN,①B=①ECN,∴,又∵AC=BC=AD,∴①D=①ACD,又∵∠B=∠D,∴∠ECN=∠ACD,∴①KAC=①BCA=①NCQ=45°,∴①BAC=①ACD=①B=①CDA=∠ECN =67.5°,∴①ACK= ∠ECN-∠BCA =22.5°,①QEC=180°-90°-①ECN =22.5°,即:∠ACK=∠QEC,又∵∠KAC=①CQE=45°,AC=QE,∴①ACK①①QEC(ASA),∴CK=CE,∵∠CDA=67.5°,∠NCQ=45°,∴∠CKD=180°-45°-67.5°=67.5°,∴∠CKD=∠CDA,∴CK=CD,∴CE=CD,∵BG+DQ,∴CE DQ=+.【点睛】本题主要考查平行四边形的性质,等腰三角形的判定和性质以及全等三角形的判定和性质,添加辅助线,构造直角三角形和全等三角形,是解题的关键.。
2020年春苏科版八年级数学下册第九章《平行四边》中考真题提优单元测试(有答案)

2020年苏科版八年级数学第九单元《平行四边》中考真题提优单元测试(有答案)一、选择题(24分)1.(2019.十堰)矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分2.(2018.徐州)下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.3.(2018.宿迁)如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是()A. B. 2 C. D. 44.(2019.池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF5.(2018.黔南州)如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为()A.26cm B.24cm C.20cm D.18cm6.(2018.宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°7.(2018.海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.248.(2018.东营)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF二、填空题(30分)1.(2018.十堰)如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为。
2020中考数学复习《平行四边形》专题练习(含答案)

2020中考数学复习《平⾏四边形》专题练习(含答案)中考复习数学分类汇编:平⾏四边形专题练习含答案⼀、选择题1. (2018·宜宾)在ABCD Y 中,若BAD ∠与CDA ∠的平分线交于点E ,则AED ∠的形状是( )A.锐⾓三⾓形B.直⾓三⾓形C.钝⾓三⾓形D.不能确定2. (2018·黔西南州)如图,在ABCD Y 中,4AC =cm.若ACD ?的周长为13 cm ,则ABCD Y 的周长为( )A. 26 cmB. 24 cmC. 20 cmD. 18 cm3. (2018·海南)如图ABCD Y 的周长为36,对⾓线,AC BD 相交于点O ,E 是CD 的中点,12BD =,则DOE ?的周长为( )A.15B. 18C. 21D. 244. ( 2018·台州)如图,在ABCD Y 中,2,3AB BC ==.以点C 为圆⼼,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点,P Q 为圆⼼,⼤于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A. 12 B. 1 C. 65 D. 325. (2018·东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB BF =.添加⼀个条件使四边形ABCD 是平⾏四边形,你认为下列四个条件中可选择的是( )A. AD BC =B. CD BF =C. A C ∠=∠D. F CDF ∠=∠6. (2018·安徽)在ABCD Y 中,,E F 是对⾓线BD 上不同的两点.下列条件中,不能得出四边形AECF ⼀定为平⾏四边形的是( )A. BE DF =B. AE CF =C. //AF CED. BAE DCF ∠=∠7. (2018·⽟林)在四边形ABCD 中:①//AB CD ;②//AD BC ;③AB CD =;④AD BC =,从以上选择两个条件使四边形ABCD 为平⾏四边形的选法共有( )A. 3种B. 4种C. 5种D. 6种8. (2018·呼和浩特)顺次连接平⾯上,,,A B C D 四点得到⼀个四边形,从①//AB CD ;②BC AD =;③A C ∠=∠;④B D ∠=∠四个条件中任取其中两个,可以得出‘“四边形ABCD 是平⾏四边形”这⼀结论的情况共有( )A. 5种B. 4种C. 3种D. 1种9. (2018·眉⼭)如图,在ABCD Y 中,2CD AD =,BE AD ⊥于点E ,F 为DC 的中点,连接,EF BF ,下列结论:①2ABC ABF ∠=∠;②EF BF =;③2EFB DEBC S S ?=四边形;④3CFE DEF ∠=∠.其中正确的结论共有( )A.1个B. 2个C. 3个D. 4个10. (2018·通辽)如图,ABCD Y 的对⾓线,AC BD 交于点O ,DE 平分ADC ∠交AB 于点E ,60BCD ∠=?,12AD AB =,连接OE .下列结论:①ABCD S AD BD =Y g ; ②DB 平分CDE ∠; ③AO DE =;④5ADE OFE S S ??=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个⼆、填空题11. (2018·常州)如图,在ABCD Y 中,70A ∠=?,DC DB =,则C D B ∠= .12. (2018·⼗堰)如图,ABCD Y 的对⾓线,AC BD 相交于点O ,且8AC =,10BD =,5AB =,则OCD ?的周长为 .13. (2018·泰州)如图,在A B C D Y 中,,A C B D 相交于点O .若6,16AD AC BD =+=,则BOC ?的周长为 .14. (2018·衡阳)如图,ABCD Y 的对⾓线相交于点O ,且AD CD ≠,过点O 作OM AC ⊥,交AD 于点M .如果CDM ?的周长为8,那么ABCD Y 的周长是 .15.(2018·临沂)如图,在ABCD Y 中,10,6AB AD ==,AC BC ⊥,则BD 的长为 .16. (2018·东营)如图,(3,3)B -,(5,0)C ,以,O C C B 为边作OABC Y ,则经过点A 的反⽐例函数的解析式为 .17. (2018·株洲)如图,在ABCD Y 中,连接BD ,且B D C D =,过点A 作AM BD⊥于点M ,过点D 作DN AB ⊥于点N ,且DN =在DB 的延长线上取⼀点P ,满⾜ABD MAP PAB ∠=∠+∠,则AP 的长为 .18.(导学号78816053)(2018·⽆锡)如图,60XOY ∠=?,点A 在边OX 上,2OA =.过点A 作AC OY ⊥于点C ,以AC 为⼀边在XOY ∠内作等边三⾓形ABC ,P 是ABC ?围成的区域(包括各边)内的⼀点,过点P 作//PD OY 交OX 于点D ,作//PE OX 交OY 于点E .设,OD a OE b ==,则2a b +的取值范围是 .三、解答题19. (2018·⽆锡)如图,在ABCD Y 中,,E F 分别是边,BC AD 的中点.求证:ABF CDE ∠=∠.20. (2018·衢州)如图,在ABCD⊥,DF AC⊥,垂Y中,AC是对⾓线,BE AC⾜分别为E,F.求证:AE CF=.21. (2018·⼤连)如图,ABCDY的对⾓线,AC BD相交于点O,点,E F在AC上,且AF CE =.=.求证:BE DF22. (2018·福建)如图,ABCDY的对⾓线,AC BD相交于点O,EF过点O且与AD BC分别相交于点,E F.求证:OE OF,=.23. (2018·宿迁)如图,在ABCD Y 中,点,E F 分别在边,CB AD 的延长线上,且BE DF =,EF 分别与,AB CD 交于点,G H .求证:AG CH =.24. (2018·曲靖)如图,在ABCD Y 的边,AB CD 上截取,AF CE ,使得AF CE =,连接,,EF M N 是线段EF 上两点,且EM FN =,连接,AN CM .(1)求证: AFN CEM ;(2)若107CMF ∠=?,72CEM ∠=?,求NAF ∠的度数.25. (2018·岳阳)如图,在ABCD Y 中,AE CF =.求证:四边形BFDE 是平⾏四边形.26. (2018·孝感)如图,,,,B E C F 在⼀条直线上,已知//,//,A B D E A C D F B E C F =,连接AD .求证:四边形ABED 是平⾏四边形.27. (2018·陕西)如图,//AB CD ,,E F 分别为,AB CD 上的点,且//EC BF ,连接AD ,分别与,EC BF 相交于点,G H ,若AB CD =,求证:AG DH =.28. (2018·巴中)如图,在ABCD Y 中,过点B 作BM AC ⊥于点E ,交CD 于点M ,过点D 作DN AC ⊥于点F ,交AB 于点N .(1)求证:四边形BMDN 是平⾏四边形;(2)已知12,5AF EM ==,求AN 的长.29. (2018·江西)如图,在四边形ABCD 中,//AB CD ,2AB CD =,E 为AB 的中点,请仅⽤⽆刻度的直尺分别按下⾯的要求画图.(保留画图痕迹)(1)在图①中,画出ABD ?的BD 边上的中线;(2)在图②中,若BA BD =,画出ABD ?的AD 边上的⾼.30. (2018·黄冈)如图,在ABCD Y 中,分别以边,BC CD 作等腰三⾓形BCF 、等腰三⾓形CDE ,使,BC BF CD DE ==,CBF CDE ∠=∠,连接,AF AE .(1)求证: ABF EDA ;(2)延长AB 与CF ,相交于点G ,若AF AE ⊥,求证: BF BC ⊥.31. (2018·永州)如图,在ABC∠=?,以线段AB为∠=?,30CAB中,90ACB边向外作等边三⾓形ABD,E是线段AB的中点,连接CE并延长交线段AD 于点F.(1)求证:四边形BCFD为平⾏四边形;(2)若6Y的⾯积.AB=,求BCFD32. (2018·重庆)如图,在ABCDY中,O是对⾓线AC的中点,E是BC上⼀点,且AB AE=,连接EO并延长交AD于点F.过点B作AE的垂线,垂⾜为H,交AC于点G.(1)若3,1的⾯积;AH HE==,求ABE(2)若45∠=?,求证:DF=.ACB参考答案⼀、1. B 2. D 3. A 4. B 5. D 6. B 7. B 8. C 9. D 10. B⼆、填空题11. 40?12. 1413. 1414. 1615. 16. 6y=x17. 618. 225≤+≤a b三、19. 点拨:证明()∠=∠.,即可得ABF CDEABF CDE SAS20. 点拨:证明()=.,即可得AE CFABE CDF AAS21. 点拨:证明()=.BEO DFO SAS,即可得BE DF22. 点拨:证明()AOE COF ASA ,即可得OE OF =.23. 点拨:证明()AGF CHE ASA ,即可得AG CH =.24. (1)点拨:由FN EM AFN CEM AF CE =??∠=∠??=?,得到AFN CEM(2) 35NAF ∠=?25. 点拨:由//BF DE BF DF ??=?,得到四边形BFDE 是平⾏四边形 26. 点拨:证明()ABC DEF ASA ,得到AB DE =,⼜∵//AB DE ,∴四边形ABED 是平⾏四边形.27. 点拨:证明()AEG DFH ASA ,得到AG DH =.28. (1) 点拨:由////CD AB DN BM,得到四边形BMDN 是平⾏四边形; (2)13AN =29. (1)如图①,连接CE ,交BD 于点F ,连接AF ,线段AF 即为所求(2)如图②,连接CE ,交BD 于点F ,连接AF ,DE 交于点G ,连接BG ,并延长BG ,交AD 于点H ,线段BH 即为所求30. (1) 点拨:由BF DA ABF EDA AB DE =??∠=∠??=?,得到ABF EDA(2) 点拨:由90CBF EAF ∠=∠=?,得到BF BC ⊥31. (1) 点拨:由////BC DF CF BD,得到四边形BCFD 为平⾏四边形; (2)BCFD S =Y 32. (1)ABE S ?= (2) 点拨:AOF COE ,得到AF CE =,∵AD BC =,∴DF BE =. AME BNG ,得到ME NG =,∴22BE ME NG ==在Rt GNC ?中,45GCN ∠=?,∴CG =,2NG =,∴DF =。
中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。
中考数学复习《平行四边形》专项综合练习含答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.(1)、动手操作:如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .(2)、观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(3)、实践与运用:将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.【答案】(1)125°;(2)同意;(3)60°【解析】试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°;(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根据折叠重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°.;(2)、同意,如图,设AD与EF交于点G由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.由折叠知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF为等腰三角形.(3)、由题意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折叠可知,MF=PF,∴NF=PF,而由题意得出:MP=MN,又∵MF=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°.考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定2.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴EO=22BE OB=2133,∴EF=2EO=4133.点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题5.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .【解析】【分析】(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC 是等腰三角形,根据BD ⊥AC,AF ⊥AC ,找到角度之间的关系,证明△DAE 是等腰三角形,进而得到BC =BD =BA =AF =DF ,即可解题,见详解.【详解】(1)如图1中,∵∠BCD =∠BDC ,∴BC =BD ,∵△ABC 是等边三角形,∴AB =BC ,∵AB =AF ,∴BD =AF ,∵∠BDC =∠AEC ,∴BD ∥AF ,∴四边形ABDF 是平行四边形,∵AB =AF ,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.6.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF 与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.7.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.8.(1)问题发现如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC 满足的等量关系,并写出推理过程。
(必考题)初中八年级数学下册第十八章《平行四边形》经典测试卷(含答案解析)

一、选择题1.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24C解析:C【分析】 根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.2.如图,在ABC 中,点D 在边BC 上,过点D 作//DE AC ,//DF AB ,分别交AB ,AC 于E ,F 两点.则下列命题是假命题的是( )A .四边形AEDF 是平行四边形B .若90BC ∠+∠=︒,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD BD =,则四边形AEDF 是矩形C解析:C【分析】根据平行四边形判定定理,矩形的判定定理,菱形的判定定理判断即可.【详解】//,//DE AC DF AB∴四边形AEDF 是平行四边形,故A 选项正确;四边形AEDF 是平行四边形,90B C ∠+∠=︒90BAC ∴∠=︒∴四边形AEDF 是矩形,故B 选项正确;//DE AC12DE BD AC BC ∴== 12DE AC ∴= 同理12DF AB =要想四边形AEDF 是菱形,只需DE DF =,则需AC AB =显然没有这个条件,故C 选项错误;AD BD =,则B DAB ∠=∠,DAC C ∠=∠,180B C BAC ∠+∠+∠=︒90BAC ∴∠=︒∴∴四边形AEDF 是矩形,故D 选项正确;故选:C .【点睛】本题考查了平行四边形的判定,矩形的判定,菱形的判定,熟练掌握平行四边形判定定理,矩形的判定定理,菱形的判定定理是解题关键.3.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,四边形ABCD 是菱形B .当AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=时,四边形ABCD 是矩形D .当AC BD =时,四边形ABCD 是正方形D解析:D【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当=时,它是菱形,故本选项不符合题意;AB BC⊥时,四边形ABCD是菱B、根据对角线互相垂直的平行四边形是菱形知:当AC BD形,故本选项不符合题意;C、根据有一个角是直角的平行四边形是矩形知:当90∠=时,四边形ABCD是ABC矩形,故本选项不符合题意;=时,它是矩形,不是正方D、根据对角线相等的平行四边形是矩形可知:当AC BD形,故本选项符合题意;综上所述,符合题意是D选项;故选:D.【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中.4.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()=,则平行四边形ABCD是矩形A.若AB AD=,则平行四边形ABCD是正方形B.若AB AD⊥,则平行四边形ABCD是矩形C.若AB BC⊥,则平行四边形ABCD是正方形CD.若AC BD解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.5.下列结论中,菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对边相等且平行C 解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.6.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4 B.8 C13D.6A解析:A【分析】由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=12AB,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=12BD,∵菱形ABCD的面积=12×AC×BD=12×12×BD=48,∴BD=8,∴OH=12BD=4;故选:A.【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12 BD.7.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,30ACD ∠=︒,若ABC 的周长比AOB 的周长大10,则AB 的长为( ).A .103B .53C .10D .20A解析:A【分析】 由矩形的性质和已知条件求出AB=3BC ,BC=10,即可得出答案.【详解】解:∵四边形ABCD 是矩形,∴AO=CO=DO=BO ,AD=BC ,∠ABC=90°,AB ∥CD ,∴∠BAC=∠ACD=30°,∴AB=3BC ,∵△ABC 的周长=AB+AC+BC=AB+AO+OC+BC ,△AOB 的周长=AB +AO +BO ,又∵ABC 的周长比△AOB 的周长长10,∴AB+AC+BC-(AB +AO +BO )=BC=10,∴AB=3BC=103;故选:A .【点睛】本题考查了矩形的性质、含30°角的直角三角形的性质等知识,熟练掌握矩形的性质,求出BC 的长是解题的关键.8.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .3C .43D .423+D解析:D【分析】 只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.9.如图,矩形纸片ABCD 中,6AB =,10AD =,折叠纸片,使点A 落在BC 边上的点A 处,折痕为PQ ,当点1A 在BC 边上移动时,折痕的端点P 、Q 分别在AB 、AD 边上移动,则当1A B 最小时其值为( )A .2B .3C .4D .5A解析:A【分析】根据翻折的性质,可得当Q 与D 重合时,A 1B 最小,根据勾股定理,可得A 1C ,从而可得答案.【详解】解:由折叠可知:当Q 与D 重合时,A 1B 最小,A 1D=AD=10,由勾股定理,得:A 1C=221A D CD -=8,∴A 1B=10-8=2,故选A .【点睛】本题考查了翻折变换,利用了翻折的性质得到当Q 与D 重合时,A 1B 最小是解题的关键. 10.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A 3B 423C .2D 352解析:D【分析】 首先设AG =x ,由矩形纸片ABCD 中,AB =4,AD =3,可求得BD 的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x 2+22=(4-x )2,解此方程即可求得AG 的长,继而求得答案.【详解】解:设AG =x ,∵四边形ABCD 是矩形,∴∠A =90°,∵AB =4,AD =3,∴BD 22AD AB +5,由折叠的性质可得:A′D =AD =3,A′G =AG =x ,∠DA′G =∠A =90°,∴∠BA′G =90°,BG =AB-AG =4-x ,A′B =BD-A′D =5-3=2,∵在Rt △A′BG 中,A′G 2+A′B 2=BG 2,∴x 2+22=(4-x )2,解得:x =32, ∴AG =32, ∴在Rt △ADG 中,DG =22352AD AG +=. 故选:D .【点睛】 此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.二、填空题11.点O 是平行四边形ABCD 的对称中心,AD AB >,E 、F 分别是AB 边上的点,且12EF AB =;G 、H 分别是BC 边上的点,且13GH BC =;若1S ,2S 分别表示EOF 和GOH 的面积,则1S ,2S 之间的等量关系是1S =__________2S .【分析】如图连接OAOBOC 设平行四边形的面积为4S 求出S1S2(用s 表示)即可解决问题【详解】解:如图连接OAOBOC 设平行四边形的面积为4S ∵点O 是平行四边形ABCD 的对称中心∴S △AOB=S △解析:32【分析】如图,连接OA ,OB ,OC .设平行四边形的面积为4S .求出S 1,S 2(用s 表示)即可解决问题.【详解】解:如图,连接OA ,OB ,OC .设平行四边形的面积为4S .∵点O 是平行四边形ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD =S , ∵EF=12AB ,GH=13BC , ∴S 1=12S ,S 2=13S , ∴12132123S S S S ==, ∴1232S S =; 故答案为:32. 【点睛】本题考查中心对称,平行四边形的性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.12.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.13.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.10【分析】由菱形的性质和勾股定理求出CD=20证出平行四边形OCED 为矩形得OE =CD =10即可【详解】解:∵DEACCEBD ∴四边形OCED 为平行四边形∵四边形ABCD 是菱形∴AC ⊥BDOA =O解析:10【分析】由菱形的性质和勾股定理求出CD =20,证出平行四边形OCED 为矩形,得OE =CD =10即可.【详解】解:∵DE //AC ,CE //BD ,∴四边形OCED 为平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =6,OB =OD =12BD =8, ∴∠DOC =90︒,CD 22OC OD +2268+=10,∴平行四边形OCED 为矩形,∴OE =CD =10,故答案为:10.【点睛】本题考查了菱形的性质、矩形的判定与性质以及平行四边形判定与性质等知识;熟练掌握特殊四边形的判定与性质是解题的关键.14.在Rt ABC 中,∠C =90°,点D 是AB 边的中点,若AB =8,则CD =______.4【分析】根据直角三角形斜边上的中线等于斜边的一半可以得【详解】∵D 是AB 的中点∴∴故答案为:4【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质熟记性质是解题的关键解析:4.【分析】根据直角三角形斜边上的中线等于斜边的一半可以得2AB CD =.【详解】∵90C ∠=︒,D 是AB 的中点,∴2AB CD =,∴118422CD AB ==⨯=. 故答案为:4.【点睛】 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键. 15.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF 故四边形的周长=AD+CD+EF 根据已知求解即可【详解】解:在平行四边形ABCD 中AD ∥BCAC 与BD 互相平分∴AO=OC ∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF ,故四边形EFCD 的周长=AD+CD+EF ,根据已知求解即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,AC 与BD 互相平分∴AO=OC ,∠DAC=∠ACB ,∠AOE=∠COF∴△AOE ≌△COF∴AE=CF ,OF=OE=2.5∴四边形EFCD 的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.16.如图,直角三角形ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,AF 平分CAB ∠交CD 于点E ,交BC 于点F ,//EG AB 交CB 于点G ,FH AB ⊥于H ,以下4个结论:①ACD B ∠=∠;②CEF △是等边三角形;③CD FH DE =+;④BG CE =中正确的是______(将正确结论的序号填空)①③④【分析】连接EH 得出平行四边形EHBG 推出BG=EH 求出∠CEF=∠AFC 得出CE=CF 证△CAE ≌△HAE 推出CE=EH 即可得出答案【详解】解:如图连接EH ∵∠ACB=90°∴∠3+∠4=9解析:①③④【分析】连接EH ,得出平行四边形EHBG ,推出BG=EH ,求出∠CEF=∠AFC ,得出CE=CF ,证△CAE ≌△HAE ,推出CE=EH ,即可得出答案.【详解】解:如图,连接EH ,∵∠ACB=90°,∴∠3+∠4=90°,∵CD ⊥AB ,∴∠ADC=90°,∴∠B+∠4=90°,∴∠3=∠B ,故①正确;∵∠ADC=∠ACB=90°,∴∠1+∠AFC=90°,∠2+∠AED=90°,∵AE 平分∠CAB ,∴∠1=∠2,∵∠AED=∠CEF ,∴∠CEF=∠AFC ,∴CE=CF ,∴△CEF 是等腰三角形,故②错误;∵AF 平分∠CAB ,FH ⊥AB ,FC ⊥AC ,∴FH=FC ,在Rt △CAF 和Rt △HAF 中,AF AF CF FH =⎧⎨=⎩, ∴Rt △CAF ≌Rt △HAF (HL ),∴AC=AH ,在△CAE 和△HAE 中,12AC AH AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△HAE (SAS ),∴∠3=∠AHE ,CE=EH ,∵∠3=∠B ,∴∠AHE=∠B ,∴EH ∥BC ,∵CD ⊥AB ,FH ⊥AB ,∴CD ∥FH ,∴四边形CEHF 是平行四边形,∴CE=FH ,∴CD=CE+DE=FH+DE ,故③正确;∵EG ∥AB ,EH ∥BC ,∴四边形EHBG 是平行四边形,∴EH=BG ,∵CE=EH ,∴BG=CE .故④正确.所以正确的是①③④.故答案为:①③④.【点睛】本题考查了平行四边形的性质和判定,三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生综合运用定理进行推理的能力,有一定的难度.17.如图,在ABC 中,45BAC ∠=︒,4AB AC ==,点D 是AB 上一动点,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是________.2【分析】平行四边形ADCE 的对角线的交点是AC 的中点O 当OD ⊥AB 时OD 最小即DE 最小根据直角三角形勾股定理即可求解【详解】解:如图∵平行四边形ADCE 的对角线的交点是AC 的中点O 又AB=AC=4 解析:2【分析】平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD ⊥AB 时,OD 最小,即DE 最小,根据直角三角形勾股定理即可求解.【详解】解:如图∵平行四边形ADCE 的对角线的交点是AC 的中点O ,又AB=AC=4∴OC=OA=12AC=2 当OD ⊥AB 时,OD 最小,即DE 最小.∵OD ⊥BA ,∠BAC=45°,∴∠AOD=45°∴△ADO 为等腰直角三角形在Rt △ADO 由勾股定理可知OD= 22AO=2 ∴DE=2OD=22故答案为:22.【点睛】本题考查了勾股定理,平行四边形的性质,即平行四边形对角线互相平分,正确理解DE 最小值的条件是关键.18.如图,在ABC 中,已知AB =8,BC =6,AC =7,依次连接ABC 的三边中点,得到111A B C △,再依次连接111A B C △的三边中点,得到222A B C △,,按这样的规律下去,202020202020A B C △的周长为____.【分析】由再利用中位线的性质可得:再总结规律可得:从而运用规律可得答案【详解】解:探究规律:AB=8BC=6AC=7分别为的中点同理:总结规律:运用规律:当时故答案为:【点睛】本题考查的是图形周长的解析:2020212 【分析】 由21ABC C AB BC AC =++=,再利用中位线的性质可得:111121,22A B C ABC C C ==2221112121,22A B C A B C C C ==再总结规律可得:21,2n n n A B C n C =从而运用规律可得答案.【详解】解:探究规律:AB =8,BC =6,AC =7, 21ABC C AB BC AC ∴=++=,111,,A B C 分别为,,BC AC AB 的中点,111111111,,,222A B AB B C BC AC AC ∴=== 111121,22A B C ABC C C ∴== 同理:2221112112121,2222A B C A B C C C ==⨯= ······总结规律:21,2n n n A B C n C =运用规律: 当2020n =时,202020202020202021.2A B C C= 故答案为:202021.2 【点睛】本题考查的是图形周长的规律探究,三角形中位线的性质,掌握探究规律的方法与三角形中位线的性质是解题的关键.19.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____. 5【分析】根据三角形中位线定理分别求出的长度根据勾股定理计算即可得到答案【详解】FG 分别是的中点∴∵分别是BEBC 的中点∴∵∠FGH=90°∴由勾股定理得故答案为:5【点睛】本题考查的是勾股定理三角解析:5【分析】根据三角形中位线定理分别求出GF 、GH 的长度,根据勾股定理计算,即可得到答案.【详解】F ,G 分别是DE ,BE 的中点, ∴142GF BD ==, ∵G ,H 分别是BE ,BC 的中点,∴132GH CE ==, ∵∠FGH =90°, ∴由勾股定理得, 2222435FH GF GH =+=+=,故答案为:5.【点睛】本题考查的是勾股定理、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.20.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形2【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=. ∴在Rt MND △中,222222MN MD ==⨯=. 故答案为:2.【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND 是等腰直角三角形在结合勾股定理求解是解答本题的关键. 三、解答题21.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .解析:见解析【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.22.已知:如图,在正方形ABCD 中,点E 为边AB 的中点,连结DE ,点F 在DE 上CF CD =,过点F 作FG FC ⊥交AD 于点G .(1)求证:GF GD =;(2)联结AF ,求证:AF DE ⊥.解析:(1)见解析;(2)见解析【分析】(1)由CF CD =可证得CFD CDF ∠=∠,因为90ADC GFC ∠∠==,所以GFD GDF ∠=∠,再由等腰三角形的判定即可得证;(2)因为,CF CD GF GD ==,所以GC 是FD 的垂直平分线,再证DAE CDG △≌△由全等三角形对应边相等可得AE DG =,这样AG GD GF ==即可解决问题;【详解】证明:(1)四边形ABCD 是正方形,90ADC ∴∠=,FG FC ⊥,90GFC ∠∴=,CF CD =CFD CDE ∴∠=∠,GFC CFD ADC CDE ∠∠∠∠∴-=-,即GFD GDF ∠=∠,GF GD ∴=.(2)如图,连结CG .,CF CD GF GD ==∴点G 、C 在线段FD 的中垂线上,GC DE ∴⊥,90CDF DCG ∠∠∴+=,90CDF ADE ∠∠+=,DCG ADE ∠∠∴=.四边形ABCD 是正方形,,90AD DC DAE CDG ∠∠∴===,DAE CDG ∴△≌△,AE DG ∴=,点E 是边AB 的中点,∴点G 是边AD 的中点,AG GD GF ∴==,,DAF AFG GDF GFD ∠∠∠∠∴==180DAF AFG GFD GDF ∠∠∠∠+++=,22180AFG GFD ∠∠∴+=90AFD ∠∴=,即AF DE ⊥.【点睛】本题是正方形的综合题,考查了正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,线段垂直平分线的判定等知识,侧重考查了学生的逻辑推理能力和对知识的应用能力.23.已知:如图,在梯形ABCD 中,AD ∥BC ,点E 、F 在边BC 上,DE ∥AB ,AF ∥CD ,且四边形AEFD 是平行四边形.(1)试判断线段AD 与BC 的长度之间有怎样的数量关系?并证明你的结论; (2)现有三个论断:①AD AB =;②=B C +∠∠90°;③=2B C ∠∠.请从上述三个论断中选择一个论断作为条件,证明四边形AEFD 是菱形.解析:(1)3BC AD =,见解析;(2)见解析【分析】(1)先证明四边形ABED 是平行四边形,得到AD BE =,同理得到AD FC =,根据四边形AEFD 是平行四边形,得到AD EF =,从而得到AD BE EF FC ===,进而得到3BC AD =;(2)选择论断②作为条件.根据DE ∥AB ,得到B DEC ∠=∠,从而证明90DEC C ∠+∠=,得到90EDC ∠=,根据EF FC =,得到DF EF =,从而证明平行四边形AEFD 是菱形.【详解】解:(1)线段AD 与BC 的长度之间的数量为:3BC AD =.证明:∵AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形.∴AD BE =.同理可证,四边形AFCD 是平行四边形.∴AD FC =.又∵四边形AEFD 是平行四边形,∴AD EF =.∴AD BE EF FC ===.∴3BC AD =.(2)选择论断②作为条件.证明:∵DE ∥AB ,∴B DEC ∠=∠.∵90B C ∠+∠=,∴90DEC C ∠+∠=.即得90EDC ∠=.又∵EF FC =,∴DF EF =.∵四边形AEFD 是平行四边形,∴平行四边形AEFD 是菱形.【点睛】本题考查平行四边形的判定与性质,菱形的判定,直角三角形斜边上的中线等于斜边的一半等知识,熟知相关定理并根据题意灵活应用是解题关键.24.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 在BD 上,且BE DF =,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H .(1)求证:AE CF =;(2)若AC 平分HAG ∠,判断四边形AGCH 的形状,并证明你的结论.解析:(1)见解析;(2)四边形AGCH 是菱形,见解析【分析】(1)利用SAS 证明△AOE ≌△COF 即可得到结论;(2)四边形AGCH 是菱形.根据△AOE ≌△COF 得∠EAO=∠FCO ,推出AG ∥CH ,证得四边形AGCH 是平行四边形,再根据AD ∥BC ,AC 平分HAG ∠,得到GAC ACB ∠=∠,证得GA=GC ,即可得到结论.【详解】证明:(1)四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OB BE OD DF ∴-=-,即OE OF =,又AOE COF ∠=∠,AOE COF ∴≌,AE CF ∴=. (2)四边形AGCH 是菱形.理由:AOE COF ≌,EAO FCO ∴∠=∠,//AG CH ∴,四边形ABCD 是平行四边形,//AD BC ∴,∴四边形AGCH 是平行四边形,//AD BC ,HAC ACB ∠∠∴=,AC 平分HAG ∠,HAC GAC ∠∠∴=,∴GAC ACB ∠=∠,GA GC ∴=,∴平行四边形AGCH 是菱形.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定定理,等角对等边证明边相等,熟记平行四边形的判定定理是解题的关键.25.如图1,在四边形ABCD 中,若,A C ∠∠均为直角,则称这样的四边形为“美妙四边形”.(1)概念理解:长方形__________________美妙四边形(填“是”或“不是”); (2)性质探究:如图l ,试证明:2222CD AB AD BC -=-;(3)概念运用:如图2,在等腰直角三角形ABC 中,,90AB AC A =∠=︒,点D 为BC 的中点,点E ,点F 分别在,AB AC 上,连接,DE DF ,如果四边形AEDF 是美妙四边形,试证明:AE AF AB +=.解析:(1)是;(2)见解析;(3)见解析【分析】(1)因为长方形的四个角都是直角,所以长方形是美妙四边形;(2)连接BD ,在Rt △ABD 和Rt △CBD 中,根据勾股定理可以解决;(3)连接AD ,利用等腰直角三角形的性质证明90ADB ∠=︒,45DAF EBD ∠=∠=︒,AD BD =,于是可证ADF BDE ∠=∠,继而证明用ASA 证明BED AFD ∆≅∆,根据全等三角形的性质得BE AF =,据此可得AE AF AB +=.【详解】解:(1)∵长方形的四个角都是直角,∴长方形是美妙四边形;故答案是:是;(2)如图1,连接BD ,在Rt △ABD 中,222BD AB AD =+,在Rt △CBD 中,222BD BC CD =+,∴2222CD CB AD AB +=+,∴2222CD AB AD BC -=-;(3)如图2,连接AD ,∵四边形AEDF 是美妙四边形,90A ∠=︒,∴90EDF ∠=︒,∵,90AB AC A =∠=︒,点D 为BC 的中点,∴90ADB ∠=︒,45DAF EBD ∠=∠=︒,AD BD =,∴ADF BDE ∠=∠,在Rt △ADF 和Rt △BDE 中,DAF DBE AD BDADF BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BED AFD ASA ∆≅∆BE AF ∴=,AE AF AE BE AB ∴+=+=【点睛】本题考查了四边形综合问题,等腰直角三角形的性质及全等三角形的判定和性质,勾股定理,作辅助线构造直角三角形或全等三角形是解题关键.26.在Rt ABC 中,90ACB ︒∠=,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连接DE .(1)证明://DE CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形,并说明理由.解析:(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ;(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点,∴CE =12AB =AE .∵△ACD 是等边三角形,∴AD =CD .在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE =30°.∵∠DCB =150°,∴∠EDC +∠DCB =180°.∴DE ∥CB .(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°,∵∠DCB =150°,∴∠DCB +∠B =180°,∴DC ∥BE ,又∵DE ∥BC ,∴四边形DCBE 是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.27.如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,P ,Q 分别是BM ,DN 的中点.(1)求证:四边形BNDM 是平行四边形.(2)猜想:四边形MPNQ 是哪种特殊的平行四边形?并证明你的猜想.解析:(1)见解析;(2)菱形,理由见解析【分析】(1)因为M ,N 分别是AD ,BC 的中点,由矩形的性质可得DM=BN ,DM ∥BN ,利用平行四边形的判定定理可得结论;(2)由四边形DMBN 是平行四边形,求出BM=DN ,BM ∥DN ,求出三角形MPNQ 是平行四边形,根据直角三角形斜边上中线性质求出MQ=NQ ,根据菱形判定推出即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∵M 、N 分别AD 、BC 的中点,∴DM=BN ,∴四边形DMBN 是平行四边形;(2)四边形MPNQ 是菱形.∵四边形DMBN 是平行四边形,∴BM=DN ,BM ∥DN ,∵P 、Q 分别BM 、DN 的中点,∴MP=NQ ,MP ∥NQ ,∴四边形MPNC 是平行四边形,连接MN ,∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∵M 、N 分别AD 、BC 的中点,∴DM=CN ,∴四边形DMNC 是矩形,∴∠DMN=∠C=90°,∵Q 是DN 中点,∴MQ=NQ ,∴四边形MPNQ 是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,矩形的性质,综合运用各性质定理是解答此题的关键28.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长;(2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数.解析:(1)3;(2)见解析;(3)60︒或15︒或37.5︒【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解.【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒,∴BC=2AB=4,60B ∠=︒,∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒,∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,∵把AD 绕点A 逆时针旋转90°,得到AE ,∴AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,∵45ADB ∠=︒,∴45ADF AEN ∠=∠=︒,∴AEN ADF △≌△,∴AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,∵90EAD ∠=︒,EAN DAF ∠=∠,∴90NAF ∠=︒,∵90BAC ∠=︒,ANE AFD ∠=∠,∴,MAN BAF ANM AFB ∠=∠∠=∠,∵AN=AF ,∴AMN ABF △≌△, ∴12BF MN BC ==,即F 是BC 的中点, ∴AF=FC=DF+CD=EN+CD ,∵AN=AF ,∴AN EN CD =+; (3)解:由题意可得AD=AE ,90EAD ∠=︒,∴45EDA AED ∠=∠=︒,分三种情况:①AM=MD 时,∵AM=MD ,∴45EDA MAD ∠=∠=︒,∴90AMD ∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=60︒;②AM=AD 时,∵AM=AD ,∴45EDA AMD ∠=∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=15︒;③AD=MD 时,∵AD=MD ,∴AMD MAD ∠=∠,∴45EDA ∠=︒, ∴1804567.52AMD MAD ︒-︒∠=∠==︒, ∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=37.5︒.∴当ADM △为等腰三角形时,CDM ∠的度数为60︒或15︒或37.5︒.【点睛】本题主要考查了几何变换综合题,需要熟练掌握旋转的性质,直角三角形的性质,直角三角形斜边上中线的性质以及全等三角形的判定与性质,等腰三角形的性质,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.。
华东师大版八年级数学下册第十八章平行四边形中考真题训练含答案

∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAC=∠ACB.
由折叠可知:∠DAC=∠ACG,AE=CE,
∴∠ACB=∠ACG,∠EAC=∠ECA.
∵AB∥CD,∴∠ACD=∠CAE.
∴∠ACE=∠ACD,∴∠ECB=∠FCG.
(2)由折叠可知AD=CG.
∵DE=DA,AD⊥CD,∴∠E=45°,
∴∠E+∠C=180°,∴AE∥BC.
又∵AB∥CD,∴四边形ABCE是平行四边形,∴AE=BC.
(2)∵四边形ABCE是=2,
∴四边形ABCE的面积=3×2=6.
12.解:(1)如图所示CE为所作.
(2)∵四边形ABCD为平行四边形,
A.102°B.112°C.122°D.92°
图4图5
6.[2019·河池]如图5,在△ABC中,D,E分别是AB,BC的中点,点F在DE的延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()
A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF
二、填空题
7.[2018·常州]如图6,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=°.
三、解答题
10.[2019·遂宁]如图9,在四边形ABCD中,AD∥BC,延长BC到点E,使CE=BC,连结AE交CD于点F,F是CD的中点.
求证:(1)△ADF≌△ECF;
(2)四边形ABCD是平行四边形.
图9
11.[2019·本溪]如图10,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连结AE.
图6图7
8.[2018·泰州]如图7,在平行四边形ABCD中,AC,BD相交于点O.若AD=6,AC+BD=16,则△BOC的周长为.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;
(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]
(3)先利用勾股定理求出 ,再根据菱形的面积求出 ;
由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,
∴当DE∥BC时,DF⊥DE
∴∠FDE=∠DEA=90°
在△AED中,
∵∠DEA=90°,∠A=60°,AE=2t
∴AD=4t,
又∵AC=60cm,CD=4t,
∴AD+CD=AC,8t=60,
∴t= .
即t= 时,∠FDE=∠DEA=90°,△DEF为直角三角形.
【点睛】
本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.
2.(1)矩形;(2)菱形;(3) ;(4)见解析
【分析】
(1)由平移推出 即可证得四边形 是平行四边形,再根据 ,得到 即可得到结论;
(2)由平移推出 ,证得四边形 是平行四边形,根据 得到 ,再根据勾股定理求出AF=5=AD,即可证得四边形 是菱形;
∴CD=2AE
∴AE=DF.
(2)能,理由如下;
由(1)知AE=DF
又∵DF⊥BC,∠B=90°
∴AE∥DF
∴四边形AEFD是平行四边形.
当AD=DF时,平行四边形AEFD是菱形
∵AC=60cm,DF= CD,CD=4t,
∴AD=60-4t,DF=2t,
∴60-4t=2t
∴t=10.
(3)当t为 时,△DEF为直角三角形,理由如下;
深入探究:(2)如图②,在(1)中的四边形纸片 中,在 .上取一点 ,使 ,剪下 ,将它平移至 的位置,拼成四边形 ,试探究四边形 的形状;
拓展延伸:(3)在(2)的条件下,求出四边形 的两条对角线长;
(4)若四边形 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.
(1)求证: ;
(2)用等式表示线段 与 的数量关系,并证明.
5.如图,点 是正方形 内的一点,连接 将线段 绕点 顺时针旋转 得到线段 连接 .
如图甲,求证: ;
如图乙,延长 交直线 于点 .求证: ;
如图丙,若 为等边三角形,探索线段 之间的数量关系,并说明理由.
6.如图1,已知四边形ABCD是正方形,E是对角线BD上的一点,连接AE,CE.
中考数学平行四边形单元测试含答案
一、解答题
1.如图,在Rt ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动.同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
3.如图,在 中, 平分 交 于点 , 垂直平分 ,分别交 , , 于点 , , ,连接 , .
(1)求证:四边形 是菱形;
(2)若 , , ,求 的长;
(3)在(2)的条件下,求四边形 的面积.
4.如图,在正方形 中, 是边 上的一动点(不与点 、 重合),连接 ,点 关于直线 的对称点为 ,连接 并延长交 于点 ,连接 ,过点 作 交 的延长线于点 ,连接 .
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时, DEF为直角三角形?请说明理由.
2.综合与实践.
问题情境:
如图①,在纸片 中, , ,过点 作 ,垂足为点 ,沿 剪下 ,将它平移至 的位置,拼成四边形 .
独立思考:(1)试探究四边形 的形状.
(2)由题意知,四边形AEFD是平行四边形,令AD=DF,求解即可得出t值.
(3)由题意可知,当DE∥BC时,△DEF为直角三角形,利用AD+CD=AC的等量关系,代入式子求值即可.
【详解】
(1)由题意知:三角形CFD是直角三角形
∵∠B=90°,∠A=60°
∴∠C=30°,CD=2DF,
又∵由题意知CD=4t,AE=2t,
(2)若四边形DEBF是菱形,则需要增加一个条件是_________________,试说明理由;
(3)在(2)的条件下,若AB=8,AD=6,求EF的长.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)证明见解析;(2)能,10;(3) ,理由见解析;
【分析】
(1)利用题中所给的关系式,列出CD,DF,AE的式子,即可证明.
① ②
9.(解决问题)如图1,在 中, , 于点 .点 是 边上任意一点,过点 作 , ,垂足分别为点 ,点 .
(1)若 , ,则 的面积是______, ______.
(2)猜想线段 , , 的数量关系,并说明理由.
(3)(变式探究)如图2,在 中,若 ,点 是 内任意一点,且 , , ,垂足分别为点 ,点 ,点 ,求 的值.
(4)(拓展延伸)如图3,将长方形 沿 折叠,使点 落在点 上,点 落在点 处,点 为折痕 上的任意一点,过点 作 , ,垂足分别为点 ,点 .若 , ,直接写出 的值.
10.如图,矩形ABCD中,点O是对角线BD的中点,过点O的直线分别交AB,CD于点E,F.
(1)求证:四边形DEBF是平行四边形;
(1)求证:AE=CE;
(2)如图2,点P是边CD上的一点,且PE⊥BD于E,连接BP,O为BP的中点,连接EO.若∠PBC=30°,求∠POE的度数;
(3)在(2)的条件下,若OE= ,求CE的长.
7.已知如图1,四边形 是正方形, .
如图1,若点 分别在边 上,延长线段 至 ,使得 ,若 求 的长;
如图2,若点 分别在边 延长线上时,求证:
如图3,如果四边形 不是正方形,但满足 且 ,请你直接写出 的长.
8.猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.