中考数学知识点-平行四边形(含答案)-

合集下载

中考数学黄金知识点系列专题26四边形26--(附解析答案)

中考数学黄金知识点系列专题26四边形26--(附解析答案)

专题26 四边形聚焦考点☆温习理解一、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n 边形的内角和等于•-)2(n 180°;多边形的外角和定理:任意多边形的外角和等于360°。

二、平行四边形 1、平行四边形的概念两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质(1)平行四边形的邻角互补,对角相等。

(2)平行四边形的对边平行且相等。

推论:夹在两条平行线间的平行线段相等。

(3)平行四边形的对角线互相平分。

(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。

3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形三、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形四、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半五、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

九年级中考数学平行四边形专题复习(含答案)

九年级中考数学平行四边形专题复习(含答案)

九年级中考数学平行四边形专题复习一、选择题:1.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( ) A.选①② B.选②③ C.选①③ D.选②④2.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是( )A.△EBD是等腰三角形,EB=ED B.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形 D.△EBA和△EDC一定是全等三角形3.有下列说法:①由许多条线段连接而成的图形叫做多边形;②多边形的边数是不小于4的自然数;③从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成(n-2)个三角形;④半圆是扇形.其中正确的结论有( )A.1个 B.2个 C.3个 D.4个4.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( )95°D D.85°105°C C.95°A.115°115°B B.105°5.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )A.1.8B.2.4C.3.2D.3.66.现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为( )A.2a+3b B.2a+b C.a+3b D.无法确定7.如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形 ENCM 的面积之比为( )A.9:4 B.12:5 C.3:1 D.5:28.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为( )A. B.2 C. +1 D.2+19.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )A.1 B.2 C.3 D.410.如图,已知矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点D与点B重合,折痕为EF,则△ABE的面积为( )A.6cm2 B.8cm2 C.10cm2 D.12cm2二、填空题:11.如图,矩形ABCD中,点E在线段AD延长线上,AD=DE,连接BE与DC相交于点F,连接AF,请从图中找出一个等腰三角形______.12.如图,在▱ABCD中,点E在BC边上,且AE⊥BC于点E,ED平分∠CDA,若BE:EC=1:2,则∠BCD度数为 .13.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG 木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为______m.14.如图,正方形ABCD的长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH,则四边形EFGH面积的最小值是 cm2.15.在中,,其面积为,则的最大值是.16.已知平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+0.5m-0.25=0的两个实数根.当m= 时,四边形ABCD是菱形.三、解答题:17.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.求平行四边形ABCD的周长.18.如图,已知在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.19.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上, 顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.20.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的九分之一?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.21.下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长为 ;(2)在图中画出两条裁剪线,并画出将此六边形剪拼成的正方形.22.如图,在正方形ABCD中,E为直线AB上的动点(不与A,B重合),作射线DE并绕点D逆时针旋转45°,交直线BC边于点F,连结EF.探究:当点E在边AB上,求证:EF=AE+CF.应用:(1)当点E在边AB上,且AD=2时,则△BEF的周长是 .(2)当点E不在边AB上时,EF,AE,CF三者的数量关系是 .参考答案1.B2.B3.B4.C5.D6.A7.D8.B9.C10.A11.答案为:△AFE(答案不唯一).12.答案为:120°.13.答案为:.14.答案为:32.15.答案为:16.答案为:1.17.解:在平行四边形ABCD中,∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABE=∠EBC,∠BCE=∠ECD.,∴∠EBC+∠BCE=90°,∴∠BEC=90°, ∴BC22=BE22+CE22=1222+522=1322∴BC=13cm,∵AD∥BC,∴∠AEB=∠EBC,∴∠AEB=∠ABE,∴AB=AE,同理CD=ED,∵AB=CD,∴AB=AE=CD=ED=0.5BC=6.5cm,∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm18.提示:取BE的中点P,证明四边形EFPC是平行四边形.19.(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.20.21.答案为:(1);(2)如图:22.探究:证明:如图,延长BA到G,使AG=CF,连接DG,∵四边形ABCD 是正方形,∴DA=DC ,∠DAG=∠DCF=90°, ∴△DAG ≌△DCF (SAS ),∴∠1=∠3,DG=DF ,∵∠ADC=90°,∠EDF=45°,∴∠EDG=∠1+∠2=∠3+∠2=45°2=45°==∠EDF , ∵DE=DE ,∴△GDE ≌△FDE (SAS ),∴EF=EG=AE+AG=AE+CF ; 应用:解:(1)△BEF 的周长=BE+BF+EF ,由探究得:EF=AE+CF , ∴△BEF 的周长=BE+BF+AE+CF=AB+BC=2+2=4,故答案为:4; (2)当点E 不在边AB 上时,分两种情况:①点E 在BA 的延长线上时,如图2,EF=CF ﹣AE ,理由是:在CB 上取CG=AE ,连接DG , ∵∠DAE=∠DCG=90°,AD=DC ,∴△DAE ≌△DCG (SAS )∴DE=DG ,∠EDA=∠GDC ∵∠ADC=90°,∴∠EDG=90°∴∠EDF+∠FDG=90°,∵∠EDF=45°,∴∠FDG=90°﹣45°45°=45°=45°,∴∠EDF=∠FDG=45°, 在△EDF 和△GDF 中,∵,∴△EDF ≌△GDF (SAS ),∴EF=FG ,∴EF=CF ﹣CG=CF ﹣AE ;②当点E 在AB 的延长线上时,如图3,EF=AE ﹣CF ,理由是:把△DAE 绕点D 逆时针旋转90°至△DCG ,可使AD 与DC 重合,连接DG , 由旋转得:DE=DG ,∠EDG=90°,AE=CG ,∵∠EDF=45°,∴∠GDF=90°﹣45°45°=45°=45°,∴∠EDF=∠GDF , ∵DF=DF ,∴△EDF ≌△GDF ,∴EF=GF ,∴EF=CG ﹣CF=AE ﹣CF ;综上所述,当点E 不在边AB 上时,EF ,AE ,CF 三者的数量关系是:EF=CF ﹣AE 或EF=AE ﹣CF ;故答案为:EF=CF ﹣AE 或EF=AE ﹣CF .。

初中数学中考中的平行四边形(含答案)

初中数学中考中的平行四边形(含答案)

F,AB=6,DH=4,BF:FA=1:5.

19.( 2018?赤峰)如图, P 是?ABCD的边 AD上一点, E、F 分别是 PB、PC的中点,若 ?ABCD的面积
为 16cm2,则△ PEF的面积(阴影部分)是
cm2.
三、解答题
1. (2018 潍坊 ) 如图 1, 在□ABCD中, DH⊥AB于点 H,CD的垂直平分线交 CD于点 E, 交 AB于点
的周长为(
)A.20 B.16 C.12 D. 8
5 题图
6
题图
7 题图
8 题图
6.( 2018?眉山)如图,在 ?ABCD中, CD=2A,D BE⊥AD于点 E, F 为 DC的中点,连结 EF、BF,
下列结论:①∠ ABC=2∠ABF;② EF=BF;③ S 四边形 DEBC=2S△EFB;④∠ CFE=3∠ DEF,其中正确结论的个 数共有( ) A. 1 个 B.2 个 C. 3 个 D.4 个
不能判定四边形 BCED为平行四边形的是(

A.∠ ABD=∠ DCE B. DF= CF
C.∠ AEB=∠ BCD D.∠ AEC=∠ CBD
12. ( 2019 湖北随州) 如图, 在平行四边形 ABCD中,E 为 BC的中点, BD,AE 交于点 O,若随机向平行四边形 ABCD
2
内投一粒米,则米粒落在图中阴影部分的概率为(
1 题图
3
题图
4 题图
1
2.(2018?宜宾)在 ?ABCD中,若∠ BAD与∠ CDA的角平分线交于点 E,则△ AED的形状是( )
A.锐角三角形 B .直角三角形 C.钝角三角形 D .不能确定
3.( 2018?黔南州)如图在 ?ABCD中,已知 AC=4cm,若△ ACD的周长为 13cm,则 ?ABCD的周长为

中考数学一轮复习平行四边形知识点及练习题含答案

中考数学一轮复习平行四边形知识点及练习题含答案

中考数学一轮复习平行四边形知识点及练习题含答案一、选择题1.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=12AB;②图中与△EGD 全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④ S四边形ODGF= S△ABF.其中正确的结论是()A.①③B.①③④C.①②③D.②②④2.如图,点P是正方形ABCD的对角线BD上一点(点P不与点B、D重合),PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③仅有当∠DAP=45°或67.5°时,△APD是等腰三角形;④∠PFE=∠BAP:⑤22PD=EC.其中有正确有()个.A.2 B.3 C.4 D.53.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).A5B21C.212+D.512+4.如图,正方形ABCD中,AB=12,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=GC ;③AG ∥CF ;④S △FGC =28.8. 其中正确结论的个数是( )A .4B .3C .2D .15.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.86.如图,点E 在正方形ABCD 外,连接AE BE DE ,,,过点A 作AE 的垂线交DE 于F ,若210AE AF BF ===,,则下列结论不正确的是( )A .AFD AEB ∆≅∆B .点B 到直线AE 的距离为2C .EB ED ⊥ D .16AFD AFB S S ∆∆+=+7.如图所示,在四边形ABCD 中,AD BC =,E 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于点H 、G ,则( )A .AHE BGE ∠>∠B .AHE BGE ∠=∠C .AHE BGE ∠<∠D .AHE ∠与BGE ∠的大小关系不确定8.线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为37. 其中正确的是()A.②③B.①②③④C.①③④D.②③④9.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连结EF,则线段EF的长的最小值是( )A.2.5 B.2.4 C.2.2 D.210.如图,矩形ABCD和矩形CEFG,AB=1,BC=CG=2,CE=4,点P在边GF上,点Q 在边CE上,且PF=CQ,连结AC和PQ,M,N分别是AC,PQ的中点,则MN的长为()A.3 B.6 C.372D.17二、填空题11.在平行四边形ABCD 中, BC边上的高为4 ,AB=5 ,25AC ,则平行四边形ABCD 的周长等于______________ .12.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为_____.13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,3AB =,2AC =,则BD 的长为_______________.14.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.15.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.16.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.17.如图,在矩形ABCD 中,AB =2,AD =3,E 为BC 边上一动点,作EF ⊥AE ,且EF =AE .连接DF ,AF .当DF ⊥EF 时,△ADF 的面积为_____.18.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.19.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.22.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =.(1)求证:QAB QMC ∠=∠(2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图223.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.24.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.25.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.26.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.27.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.28.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .29.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.30.点E 在正方形ABCD 的边BC 上,点F 在AE 上,连接FB ,FD ,∠ABF=∠AFB . (1)如图1,求证:∠AFD=∠ADF ;(2)如图2,过点F 作垂线交AB 于G ,交DC 的延长线于H ,求证:DH=2 AG ; (3)在(2)的条件下,若EF=2,CH=3,求EC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12 CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DEAB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴=在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确; ∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确。

中考数学分类(含答案)平行四边形

中考数学分类(含答案)平行四边形

中考数学分类(含答案)平行四边形一、选择题1.(2010江苏苏州)如图,在平行四边形ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=2,则平行四边形ABCD 的周长是 ▲ .【答案】122.(2010台湾)图(十)为一个平行四边形ABCD ,其中H 、G 两点分别在BC 、 CD 上,AH ⊥BC ,AG ⊥CD ,且AH 、AC 、AG 将∠BAD 分成 ∠1、∠2、∠3、∠4四个角。

若AH =5,AG =6,则下列关系何者 正确? (A) ∠1=∠2 (B) ∠3=∠4 (C) BH =GD (D) HC =CG 。

【答案】A3.(2010重庆綦江县)如图,在ABCD中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G ,点G 在点A 、E 之间,连结CG 、CF ,则以下四个结论一定正确的是( )①△CDF ≌△EBC ②∠CDF =∠EAF ③△ECF 是等边三角形 ④CG ⊥AEGFEDCBAA .只有①②B .只有①②③C .只有③④D .①②③④【答案】BA BCD G H12 3 4图(十)4.(2010山东临沂)如图,在ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,4AB ,则OE 的长是(A )2 (B(C )1 (D )12【答案】A 5.(2010湖南衡阳)如图,在□ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( ) A.8 B.9.5 C.10D.11.5【答案】A6.(2010 河北)如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为A .6B .9C .12D .15【答案】C 7.(2010浙江湖州)如图在ABCD 中,AD =3cm ,AB =2cm ,则ABCD 的周长等于( )A .10cmB .6cmC .5cmD .4cmAD CBABCD图2EODCBA【答案】A . 8.(2010 四川成都)已知四边形ABCD ,有以下四个条件:①//AB CD ;②A B C D =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( )(A )6种 (B )5种 (C )4种 (D )3种 【答案】C 9.(2010山东泰安)如图,E 是□ABCD 的边AD 的中点,CE 与BA 的延长线交于点F ,若∠FCD=∠D ,则下列结论不成立的是( )A 、AD=CFB 、BF=CFC 、AF=CD D 、DE=EF【答案】C 10.(2010 内蒙古包头)已知下列命题: ①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B11.(2010 重庆江津)如图,四边形ABCD 的对角线互相平分,要使它成为矩形, 那么需要添加的条件是( ) A .AB CD = B .AD BC = C .AB BC =D .AC BD =【答案】D 12.(2010宁夏回族自治区)点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有 ( )A .1个B .2个C .3个D .4个 【答案】C13.(2010鄂尔多斯)如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确...的是 A.S △ADF=2S △EBF B.BF=21DF C.四边形AECD 是等腰梯形 D. ∠AEC=∠ADC【答案】A 14.(2010广东清远)如图2,在 ABCD 中,已知∠ODA =90°,AC =10cm ,BD =6cm ,则AD 的长为( ) A .4cm B .5cm C .6cm D .8cm【答案】A 二、填空题 1.(2010福建福州)如图,在ABCD 中,对角线AC 、BD 相交于点O ,若AC =14,BD =8,AB =10,则△OAB 的周长为_______.(第14题)【答案】212.(2010福建宁德)如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____.【答案】4 3.(2010 山东滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分别在CD 、BC的延长线上,AE ∥BD,EF ⊥BC,DF=2,则EF 的长为 .第16题图FA E BCD【答案】4.(2010山东潍坊)如图,在△ABC 中,AB =BC ,AB =12cm ,F 是AB 边上的一点,过点F 作FE ∥BC 交CA 于点E ,过点E 作ED ∥AB 交于BC 于点D ,则四边形BDEF 的周长是 .【答案】24cm5.(2010湖南常德)如图2,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 .(填一个即可).【答案】AB CD A C AD =∠=∠或或∥BC 等 6.(2010湖南郴州)如图,已知平行四边形ABCD ,E 是AB 延长线上一点,连结DE 交BC 于点F ,在不添加任何辅助线的情况下,请补充一个条件,使CDF BEF △≌△,这个条件是 .(只要填一个)【答案】DC EB =或CF BF =或DF EF = 或F 为DE 的中点或F 为BC 的中点或AB BE =或B 为AE 的中点 7.(2010湖北荆州)如图,在平行四边形ABCD 中,∠A=130°,在AD 上取DE=DC , 则∠ECB 的度数是 .AB EFD C第13题DBCA图2【答案】65° 8.(2010湖北恩施自治州)如图,在ABCD 中,已知AB =9㎝,AD =6㎝,BE 平分∠ABC 交DC 边于点E ,则DE 等 于 ㎝.【答案】3 9.(2010云南红河哈尼族彝族自治州) 如图4,在图(1)中,A 1、B 1、C 1分别是△ABC的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有 个.【答案】3n 10.(2010 江苏镇江)如图,在平行四边形ABCD 中,CD=10,F 是AB 边上一点,DF交AC 于点E ,且的面积的面积则CDE AEF EC AE ∆∆=,52= ,BF=.【答案】6,25411.(2010 广西钦州市)如图,□ABCD 的对角线AC 、BD 相交于点O ,点E 是CD 的中点,若AD =4cm ,则OE 的长为 ▲ cm .(3)(2)(1)C 3B 3A 3A 2C 1B 11CBAC 2B 2B 2C 2ABC1B 1C 1A 2C 1B 11CBA…图4【答案】2 12.(2010青海西宁)如图1,在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是.图1 【答案】3﹤x ﹤11.13.(2010广西梧州)如图2,在□ABCD 中,E 是对角线BD 上的点,且EF ∥AB ,DE :EB =2:3,EF =4,则CD =的长为________【答案】1014.(2010广东深圳)如图3,在□ABCD 中,AB=5,AD=8,DE 平分∠ADC ,则BE=【答案】3 15.(2010辽宁本溪)过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB =4,AE =6,则DF 的长是 . 【答案】2或1016.(2010广西河池)如图1,在□ABCD 中,∠A =120°,则∠D = °.【答案】60三、解答题图2ABCD F ED第5题ECBA OB D图11.(2010浙江嘉兴)如图,在□ABCD中,已知点E在AB上,点F在CD上,且CFAE=.(1)求证:BFDE=;(2)连结BD,并写出图中所有的全等三角形.(不要求证明)全品中考网【答案】(1)在□ABCD中,AB//CD,AB=CD.∵AE=CF,∴BE=DF,且BE//DF.∴四边形BFDE是平行四边形.∴BFDE=.…5分(2)连结BD,如图,图中有三对全等三角形:△ADE≌△CBF,△BDE≌△DBF,△ABD≌△CDB.…3分2.(2010 嵊州市)(10分)已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系。

2020中考数学 几何复习:平行四边形(含详解版)

2020中考数学 几何复习:平行四边形(含详解版)

2020中考数学 几何复习:平行四边形(含答案)一、选择题1.如图,在四边形ABCD 中,E 是BC 边的中点,连结DE 并延长,交AB 的延长线于F 点,.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A .B .C .D .2.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3C .D .3.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A .2cmB .4cmC .6cmD .8cm二、填空题1.如图,在□ABCD 中,∠A =120°,则∠D =_ _°.AB BF =AD BC =CD BF =A C ∠=∠F CDE ∠=∠2223ABCDAB CDEEBAFCD2.如图所示,在中,对角线相交于点,过点的直线分别交于点,若的面积为2,的面积为4,则的面积为.3.如图,在□ABCD中,BD为对角线,E、F分别是AD.BD的中点,连接EF.若EF=3,则CD的长为.4.如图,□ABCD的对角线、相交于点,点是的中点,的周长为16cm,则的周长是 cm.5.如图,在四边形中,已知,再添加一个条件___________(写出一个即可),则四边形是平行四边形.(图形中不再添加辅助线)三、解答题1.如图,在△ABC中,∠ACB=90°,点E为AB中点,连结CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.ABCDY AC BD、O O AD BC、M N、CON△DOM△AOB△AC BD O E CD ABD△DOE△ABCD AB CD=ABCDD CBA5题ACDBEOO2.如图,是平行四边形对角线上两点,,求证:.3.如图,l 1、l 2、l 3、l 4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h ,正方形ABCD 的四个顶点分别在这四条直线上,且正方形ABCD 的面积是25.(1)连结EF ,证明△ABE、△FBE、△EDF、△CDF 的面积相等. (2)求h 的值.4.如图,E 、F 是四边形ABCD 的对角线AC 上两点,. 求证:(1). (2)四边形是平行四边形.E F 、ABCD AC BE DF ∥AF CE=AF CE DF BE DF BE ==,,∥AFD CEB △≌△ABCD DCAB E F5.如图,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点.证明:四边形DECF 是平行四边形.6.在所给的9×9方格中,每个小正方形的边长都是1.按要求画平行四边形,使它的四个顶点以及对角线交点都在方格的顶点上.(1)在图甲中画一个平行四边形,使它的周长是整数;(2)在图乙中画一个平行四边形,使它的周长不是整数.(注:图甲、图乙在答题纸上)7.如图:点A .D .B .E 在同一直线上,AD =BE ,AC =DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)A FE D CBABDEFC8. 如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE•与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.【参考答案】 选择题1. D2. C3. B 填空题 1. 60 2. 63. 6 因为EF 是△ABD 的中位线,则AB =6,又AB =CD ,所以CD =6.4. 85.解答题1. 证明:∵点E 为Rt△ABC 的斜边中点,∴EC=EA =EB ∴∠EAC=∠ECA. ∵AF =CE ,CE =EA ∴AF =AE , ∴∠AFE=∠AEF. ∵∠ACB =∠EDB =90° ∴FD∥BC ∴∠AEF=∠E AC∴∠EAC=∠ECA=∠AFE=∠AEF.∴∠EAF=180°-∠AFE-∠AEF =180°-∠EAC-∠ECA=∠AEC ∴AF∥CE 又∵AF =CE∴四边形ACEF 是平行四边形.2. 证明:平行四边形中,,, .180180AB CD AD BCA DB C∥°°=????或或或等ABCD AD BC ∥AD BC =ACB CAD ∴∠=∠又,, ,3. 解:连结EF∵l 1∥l 2∥l 3∥l 4,且四边形ABCD 是正方形 ∴BE∥FD,BF∥ED∴四边形EBFD 为平行四边形 ∴BE=FD又∵l 1、l 2、l 3和l 4之间的距离为h∴S △ABE =BE·h,S △FBE =BE·h,S △EDF =FD·h,S △CDF =FD·h ∴S △ABE = S △FBE = S △EDF = S △CDF (2)过A 点作AH⊥BE 于H 点。

2023年中考数学 几何专题:特殊的平行四边形(含答案)

2023年中考数学 几何专题:特殊的平行四边形(含答案)

2023中考数学 几何专题:特殊的平行四边形(含答案)例1 矩形的性质(1)如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α=∠________度.(2)矩形边长为10和15,其中一内角平分线分长边为两部分,这两部分的长为( )A .6和9B .5和10C .4和11D .7和8(3) 如图,矩形ABCD中,120AOD BC ∠=︒=,,则下列结论:①AOB △是等边三角形②130∠=︒③3cm AB =④6cm AC =⑤2ABCD S =矩形.其中正确的有( )A .①②③B .①②③④C .②③④⑤D .①②③④⑤(4) 如图,矩形ABCD 中,O 是两对角线的交点,AE BD ⊥,垂足为E.若2OD OE AE =,则DE 的长为________.【答案】(1)30;(2)B ;(3)D ;(4)3例2 矩形模型 (1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥,垂足为E ,:3:1DAE BAE ∠∠=,则EAC ∠的度数为_______.α60°lm DCBAO 1DC BA第14题图E OCBDAA B(2)如图所示,矩形ABCD 内一点P 到A 、B 、C 的长分别是2、3、4,则PD 的长为_______.(3)已知,如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3AB =,4AD =,那么PE+PF=_______.【答案】(1)45︒;(2(3)125例3 矩形的判定(1)在四边形ABCD 中,AB DC =,AD BC =.请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是________.(写出一种即可)【答案】AC BD =或AB BC ⊥或90ABC =︒∠(答案不唯一)(2)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,若MA=MC ,∠BAN=90°,求证:四边形ADCN 是矩形.证明:∵CN ∥AB , ∴∠DAC=∠NCA , 在△AMD 和△CMN 中,∵∠DAC =∠NCA ,MA =MC ,∠AMD =∠CMN ∴△AMD ≌△CMN (ASA ), ∴AD=CN . 又∵AD ∥CN ,∴四边形ADCN 是平行四边形. 又∵∠BAN=90度,∴四边形ADCN 是矩形.(3)如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分PDCBAABCDPEF线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.例4 (1)如图,已知菱形ABCD 的两条对角线相交于点O ,若6AC =,4BD =,则菱形ABCD 的周长是( )A .24B .16C.D.(2)如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( ) A .2.4cmB .4.8cmC .5cmD .9.6cm(3)如图,在边长为2的菱形ABCD 中,∠A=60°,DE ⊥AB ,DF ⊥BC ,则△DEF 的周长为_______(4)如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若70B =︒∠,则AED ∠的大小为( )NMQPDCBAODC BAA .60︒B .55︒C .65︒D .70︒ (5)如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点E ,点F 为垂足,连接DE ,则CDE ∠=( )A .80︒B .70︒C .65︒D .60︒(6)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 是对角线AC 上的一个动点,点E 是AB 边上的中点,则PB PE +的最小值为( )A .2B.C. D .4【答案】(1)C ;(2)B ;(3)(4)B ;(5)D ;(6)B能力提升例5 菱形的判定(1)已知:如图,平行四边形的对角线、相交于点,且,,求证:平行四边形是菱形;ABCDEHFABCDEABCD AC BD O 10AB =5AO =BO =ABCD【答案】∵在中,,, ∴ ∴是直角三角形∴平行四边形是菱形.AOB △10AB =5AO=BO =222AB AO BO =+AOB △AC BD ⊥ABCD(2)如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD 于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.【答案】∵∠ACB=90°,AD 是∠CAB 的平分线,DE ⊥AB , ∴DC=DE ,∠CAD=∠EAD ,∠CDF+∠CAD=90°, ∵CH 是AB 边上的高, ∴CH ⊥AB ,∴CH ∥DE ,∠AFH+∠EAD=90°, ∴∠CDF=∠AFH , ∵∠CFD=∠AFH , ∴∠CDF=∠CFD , ∴CF=DC , ∴CF=DE ,∴四边形CDEF 是平行四边形, ∴四边形CDEF 是菱形.例6 (1)如图,在正方形ABCD 中,E 是对角线BD 上任意一点,过E 作EF ⊥BC 于F ,作EG ⊥CD 于G ,若正方形ABCD 的周长为m ,则四边形EFCG 的周长为(2)如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,联结EB ,ED ,当126BED ∠=°时,EDA ∠的度数为( )A .54°B .27°C .36°D .18°(3)已知正方形ABCD ,以AB 为边构造等边ABP ∆,那么DCP ∠=HF DECBAEDCB A【答案】(1)2m;(2)D ;(3)15°或75° 例7 下列说法不正确的是( ) A .有一个角是直角的菱形是正方形 B .两条对角线相等的菱形是正方形 C .对角线互相垂直的矩形是正方形D .四条边都相等的四边形是正方形【答案】D练1 (1)如图,矩形ABCD 中,3AB =,两条对角线AC 、BD 所夹的钝角为120︒,则对角线BD 的长为________(2) 矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长是 .【答案】(1)6 ;(2)10cm练2 (1)下列说法不能判定四边形是矩形的是( ) A .三个角是直角的四边形 B .四个角都相等的四边形 C .对角线相等的平行四边形 D .对角线垂直且相等的四边形 【答案】D(2)已知:如图,M 为▱ABCD 的AD 边上的中点,且MB=MC , 求证:▱ABCD 是矩形.证明:∵四边形ABCD 是平行四边形, ∴AB=CD .∵AM=DM ,MB=MC , ∴△ABM ≌△DCM . ∴∠A=∠D . ∵AB ∥CD ,∴∠A+∠D=180°. ∴∠A=90°.∴▱ABCD 是矩形.练3 (1)如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为_______;BC 上的高为_____(2)菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较长的对角线的长度为 【答案】(1)5、245;(2)练4 如图.矩形的对角线相交于点.,. ⑴ 求证:四边形是菱形;⑵ 若,菱形的面积为ABCD 的面积.【答案】⑴ ∵, ∴四边形是平行四边形 ∵四边形是矩形∴(矩形对角线相等且互相平分)∴四边形是菱形(邻边相等的平行四边形是菱形)⑵ABCD S练5 四边形ABCD 是正方形,延长BC 至E ,使CE AC =,连结AE 交CD 于F ,那么AFC ∠的度数为________.【答案】112.5°ABCD O DE AC ∥CE BD ∥OCED 30ACB ∠=︒OCED OEDC BADE AC ∥CE BD ∥OCED ABCD OC OD =OCED 12OCD OCED S S =△菱形FED CBA。

中考数学二轮复习平行四边形知识点-+典型题及解析

中考数学二轮复习平行四边形知识点-+典型题及解析

一、选择题1.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有( )A .2个B .3个C .4个D .5个2.在正方形 ABCD 中, P 为 AB 的中点,BE PD ⊥的延长线于点 E ,连接 AE 、 BE ,FA AE ⊥ 交 DP 于点 F ,连接 BF 、FC ,下列结论:① ABE ADF ≅ ;② FB = AB ;③ CF PD ⊥ ;④ FC = EF . 其中正确的是( )A .①②④B .①③④C .①②③D .①②③④3.正方形ABCD ,正方形CEFG 如图放置,点B 、C 、E 在同一条直线上,点P 在BC 边上,PA =PF ,且∠APF =90°,连接AF 交CD 于点M .有下列结论:①EC =BP ;②AP =AM :③∠BAP =∠GFP ;④AB 2+CE 2=12AF 2;⑤S 正方形ABCD +S 正方形CGFE =2S △APF ,其中正确的是( )A .①②③B .①③④C .①②④⑤D .①③④⑤4.如图,在矩形ABCD 中,25,4,BC AB O ==为边AB 的中点,P 为矩形ABCD 外一动点,且90APC ∠=,则线段OP 的最大值为( )A .53+B .35+C .452-D .231+5.如图,在矩形ABCD 中,AB =6,BC =8,E 是BC 边上一点,将矩形沿AE 折叠,点B 落在点B '处,当△B 'EC 是直角三角形时,BE 的长为( )A .2B .6C .3或6D .2或3或66.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF =4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .6D .87.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BE:BC=5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .48.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连结EF ,则线段EF 的长的最小值是( )A .2.5B .2.4C .2.2D .29.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个10.如图,在□ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF=12∠BCD ;(2)EF=CF ;(3)S △BEC = 2S △CEF ;(4)∠DFE=3∠AEF ;其中正确的结论是( )A .(1)(2)B .(1)(2)(4)C .(2)(3)(4)D .(1)(3)(4)二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC = ,则平行四边形ABCD 的周长等于______________ .12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.13.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62BC=______.14.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.15.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________16.如图,在矩形ABCD 中,∠ACB =30°,BC =23,点E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.17.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.18.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.19.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由; (2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.22.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.23.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF . (1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数; (2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .24.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.25.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =; (2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .26.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =;(2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.27.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.28.在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数是否发生改变?探究问题:(1)首先考察点的两个特殊位置:①当点与点重合时,如图1所示,____________②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.29.已知:在矩形ABCD中,点F为AD中点,点E为AB边上一点,连接CE、EF、CF,EF 平分∠AEC.(1)如图1,求证:CF⊥EF;(2)如图2,延长CE、DA交于点K, 过点F作FG∥AB交CE于点G若,点H为FG上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.30.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点:
平行四边形的性质和判定,两点之间距离,
点到直线距离,两平行线的距离,
平行四边形有关的计算和证明
(1)(泰州市)在平面上,四边形ABCD的对角线AC与BD相交于O,且满足AB=CD.有下列
四个条件:(1)OB=OC;(2)AD∥BC;(3);
(4)∠OAD=∠OBC.若只增加其中的一个条件,就一定能使∠BAC=∠CDB成立,这样的条件可以是(D)
A.(2)、(4) B.(2) C.(3)、(4) D.(4)
(2)(四川达州市)如图,一个四边形花坛,
被两条线段分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是
,若

,则有( C )A.
B.
C.D.都不对
(3)(山东东营)只用下列图形不能镶嵌的是( C )
A.三角形B.四边形 C.正五边形D.正六边形
(4)(佳木斯)如图,将沿
折叠,使点与
边的中点
重合,下列结论中:①且
;②
;③
;④
,正确的个数是( B )A.1 B.2 C.3 D.4
(5)(陕西省)如图,四边形的对角线互相平分,要使它变为矩形,需要添加的条件是( D )
A.
B.C.
D.
(6)(江西南昌)如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确
...的是( A )
A.
B.
C.四边形AECD是等腰梯形 D.
(7)(江苏南京)如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的(B)
A.三角形
B.平行四边形
C.矩形
D.正方形
(8)(四川凉山州)下列四个图形中大于
的是( B )
(9)(黑龙江哈尔滨)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形。

若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( B )(A)4种(B)3种(C)2种(D)1种
(10)(贵州贵阳)如图,在平行四边形中,
是延长线上的一点,若
,则
的度数为( B )A.
B.
C.
D.
(10)(•南宁市)以三角形的三个顶点及三边中点为顶点的平行四边形共有:(C)(A)1个(B)2个(C)3个(D)4个
(11)(山东潍坊)在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC和DA的三等分点,已知四边形A4 B2 C4 D2的积为1,则平行四边形ABCD面积为( C )
A.2
B.
C. D.15
(12)(四川自贡)下面几组条件中,能判断一个四边形是平行四边形的是( B )A.一组对边相等 B.两条对角线互相平分
C.一组对边平行 D.两条对角线互相垂直
(13)(湖南怀化)如图6,在平行四边形ABCD中,DB=DC、

CE BD于E,
则 25°.
(14)(重庆)如图,在□ABCD中,AB=5cm,BC=4cm,则□ABCD的周长为 18 cm.
(15)(湖南郴州)已知四边形ABCD中,,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是: AB=BC或者BC=CD 或者CD=DA或者DA=AB
(16)(湖南郴州)如图,D是AB边上的中点,将
沿过D的直线折叠,使点A落在BC 上F处,若,则
___80__度
(17)(山东济南)如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C 重合),AD与EF交于点O,连接DE、DF,要使四边形AEDF为平行四边形,需要添加条件_BD=CD,OE=OF,DE∥AC_.(只添加一个条件)
(18)(福建龙岩)□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE= 25°.
(19)(赤峰)如图,已知平分


,则 3 .
(20)(资阳市)如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形:ΔAOB≌ΔCOD、ΔAOD≌ΔCOB、ΔADB≌ΔCBD、ΔABC≌ΔCDA(答案不唯一)
(21)(兰州)如图,平行四边形中,

,.对角线相交于点
,将直线
绕点顺时针旋转,分别交
于点

(1)证明:当旋转角为时,四边形
是平行四边形;
(2)试说明在旋转过程中,线段与
总保持相等;
(3)在旋转过程中,四边形可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时
绕点
顺时针旋转的度数.
(1)证明:当时,

又,
四边形
为平行四边形.
(2)证明:四边形
为平行四边形,


(3)四边形可以是菱形.
理由:如图,连接,由(2)知,得

与互相平分.

时,四边形
为菱形.
在中,

,又



绕点
顺时针旋转
时,四边形
为菱形.
(22)(山西省)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF。

(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明。

(2)判断四边形ABDF是怎样的四边形,并说明理由。

(3)若AB=6,BD=2DC,求四边形ABEF的面积。

证明:(1)(选证一)
(选证二)
证明:
(选证三)
证明:
(2)四边形ABDF是平行四边形。

由(1)知,、

都是等边三角形。

(3)由(2)知,)四边形ABDF是平行四边形。

(23)(佛山23)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.
(1) 当AB≠AC时,证明四边形ADFE为平行四边形;
(2) 当AB = AC时,顺次连结A、D、F、E四点所构成的图形有哪几类?直接写出构成
图形的类型和相应的条件.
解:(1) ∵△ABE、△BCF为等边三角形,
∴AB = BE = AE,BC = CF = FB,∠ABE = ∠CBF = 60°.
∴∠FBE = ∠CBA.
∴△FBE ≌△CBA.
∴EF = AC.
又∵△ADC为等边三角形,
∴CD = AD = AC.
∴EF = AD.
同理可得AE = DF.
∴四边形AEFD是平行四边形.
(2) 构成的图形有两类,一类是菱形,一类是线段.
当图形为菱形时,∠ BAC≠60°(或A与F不重合、△ABC不为正三角形)
(若写出图形为平行四边形时,不给分)
当图形为线段时,∠BAC = 60°(或A与F重合、△ABC为正三角形)
(24)(云南省双柏县)如图,是平行四边形的对角线
上的点,
.请你猜想:

有怎样的位置
..关系?并
..关系和数量
对你的猜想加以证明.
猜想:
证明:
猜想:,证明:。

相关文档
最新文档