中考数学知识点-平行四边形(含答案)-

中考数学知识点-平行四边形(含答案)-
中考数学知识点-平行四边形(含答案)-

知识点:

平行四边形的性质和判定,两点之间距离,

点到直线距离,两平行线的距离,

平行四边形有关的计算和证明

(1)(泰州市)在平面上,四边形ABCD的对角线AC与BD相交于O,且满足AB=CD.有下列

四个条件:(1)OB=OC;(2)AD∥BC;(3);

(4)∠OAD=∠OBC.若只增加其中的一个条件,就一定能使∠BAC=∠CDB成立,这样的条件可以是(D)

A.(2)、(4) B.(2) C.(3)、(4) D.(4)

(2)(四川达州市)如图,一个四边形花坛,

被两条线段分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是

,若

,则有( C )A.

B.

C.D.都不对

(3)(山东东营)只用下列图形不能镶嵌的是( C )

A.三角形B.四边形 C.正五边形D.正六边形

(4)(佳木斯)如图,将沿

折叠,使点与

边的中点

重合,下列结论中:①且

;②

;③

;④

,正确的个数是( B )A.1 B.2 C.3 D.4

(5)(陕西省)如图,四边形的对角线互相平分,要使它变为矩形,需要添加的条件是( D )

A.

B.C.

D.

(6)(江西南昌)如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确

...的是( A )

A.

B.

C.四边形AECD是等腰梯形 D.

(7)(江苏南京)如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的(B)

A.三角形

B.平行四边形

C.矩形

D.正方形

(8)(四川凉山州)下列四个图形中大于

的是( B )

(9)(黑龙江哈尔滨)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形。若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( B )(A)4种(B)3种(C)2种(D)1种

(10)(贵州贵阳)如图,在平行四边形中,

是延长线上的一点,若

,则

的度数为( B )A.

B.

C.

D.

(10)(?南宁市)以三角形的三个顶点及三边中点为顶点的平行四边形共有:(C)(A)1个(B)2个(C)3个(D)4个

(11)(山东潍坊)在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC和DA的三等分点,已知四边形A4 B2 C4 D2的积为1,则平行四边形ABCD面积为( C )

A.2

B.

C. D.15

(12)(四川自贡)下面几组条件中,能判断一个四边形是平行四边形的是( B )A.一组对边相等 B.两条对角线互相平分

C.一组对边平行 D.两条对角线互相垂直

(13)(湖南怀化)如图6,在平行四边形ABCD中,DB=DC、

CE BD于E,

则 25°.

(14)(重庆)如图,在□ABCD中,AB=5cm,BC=4cm,则□ABCD的周长为 18 cm.

(15)(湖南郴州)已知四边形ABCD中,,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是: AB=BC或者BC=CD 或者CD=DA或者DA=AB

(16)(湖南郴州)如图,D是AB边上的中点,将

中考数学圆知识点归纳

圆知识点归纳 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: ? 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 ? 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O 的半径为r ,OP=d 。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距 离相等。 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d 表示圆心到直线的距离,r 表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; d = r 点P 在⊙O 上 d < r (r > d 点P 在⊙O 内 d > r (r

中考数学必备知识点

中考数学必备知识点 1、同角或等角的余角相等 2、过一点有且只有一条直线和已知直线垂直 3、过两点有且只有一条直线 4、两点之间线段最短 5、同角或等角的补角相等 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、定理线段垂直平分线上的点和这条线段两个端点的距离相等 10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 12、定理1关于某条直线对称的两个图形是全等形 13、13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 初中几何公式定理:角 16、同位角相等,两直线平行17、内错角相等,两直线平行 18、同旁内角互补,两直线平行19、两直线平行,同位角相等 20、两直线平行,内错角相等 21、两直线平行,同旁内角互补 22、定理1在角的平分线上的点到这个角的两边的距离相等 23、定理2到一个角的两边的距离相同的点,在这个角的平分线上 24、角的平分线是到角的两边距离相等的所有点的集合 初中几何公式定理:三角形

25、定理三角形两边的和大于第三边 26、推论三角形两边的差小于第三边 27、三角形内角和定理三角形三个内角的和等于180° 28、推论1直角三角形的两个锐角互余 29、推论2三角形的一个外角等于和它不相邻的两个内角的和 30、推论3三角形的一个外角大于任何一个和它不相邻的内角 31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 初中几何公式定理:等腰、直角三角形 33、等腰三角形的性质定理等腰三角形的两个底角相等 34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边 35、等腰三角形的顶角平分线、底边上的中线和高互相重合 36、推论3等边三角形的各角都相等,并且每一个角都等于60° 37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 38、推论1三个角都相等的三角形是等边三角形 39、推论2有一个角等于60°的等腰三角形是等边三角形 40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 41、直角三角形斜边上的中线等于斜边上的一半 初中几何公式定理:相似、全等三角形 42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

中考数学平行四边形的判定经典题型精编

平行四边形的判定 一、【基础知识精讲】 1.平行四边形的判定方法: ① 两组对边分别平行 ② 两组对边分别相等 ③ 一组对边平行且相等 ④ 两组对角分别相等 ⑤ 对角线互相平分 2.平行四边形性质的运用: ① 直接运用平行四边形性质解决某些问题,如求角的度数, 线段的长度,证明角相等或互补,证明线段相等或倍分等. ② 判别一个四边形为平行四边形,从而得到两直线平行. ③ 先判别—个四边形是平行四边形,然后再用平行四边形的特征去解决某些问题. 二、【例题精讲】 例1.(1)根据下列条件,不能判别四边形是平行四边形的是( ) A .一组对边平行且相等的四边形 B .两组对角分别相等的四边形 C .对角线相等的四边形 D .对角线互相平分的四边形 (2)下列条件中不能确定四边形ABCD 是平行四边形的是( ) A .AB=CD ,AD ∥BC B .AB=CD ,AB ∥CD C .AB ∥C D ,AD ∥BC D .AB=CD ,AD=BC 例2.已知:如图,□ABCD 中,点E 、F 在对角线上,且AE =CF . 求证:四边形BEDF 是平行四边形. 的四边形是平行四边形

例3.如图,□ABCD 的对角线AC 、BD 交于O ,EF 过点O 交AD 于E ,交BC 于F , G 是OA 的中点,H 是OC 的中点,求证:四边形EGFH 是平行四边形. 三、【同步练习】 A 组 1.如图,四边形ABCD ,AC 、BD 相交于点O , 若OA=OC,OB=OD,则四边形ABCD 是______, 根据是_____________________ . 2.在图中,AC=BD , AB=CD=EF ,CE=DF , 图中有哪些互相平行的线段? 3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( ) A .88°,108°,88° B .88°,104°,108° C .88°,92°,92° D .88°,92°,88° 4.如图,四边形ABCD 中,AD=BC ,DE ⊥AC ,BF ⊥AC ,垂足分别是E 、F ,AF=CE . 求证:四边形ABCD 是平行四边形. D

初三数学上册圆的知识点总结—全面资料

圆 章节知识点 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 二、点与圆的位置关系 1、点在圆内 ?d r ? 点A 在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +;外切(图2)? 有一个交点?d R r =+; 相交(图3)? 有两个交点?R r d R r -<<+;内切(图4)? 有一个交点?d R r =-; 内含(图5)? 无交点 ?d R r <-; A

r R d 图3 r R d 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六、圆心角定理 r R d O E D C O D A B

人教版备考2020年中考数学二轮复习拔高训练卷 专题2 方程与不等式D卷

人教版备考2020年中考数学二轮复习拔高训练卷专题2 方程与不 等式D卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共10题;共20分) 1. (2分)若方程:的解互为相反数,则a的值为() A . B . C . D . -1 2. (2分)已知关于x的一元二次方程3x2+4x-5=0,下列说法不正确的是(). A . 方程有两个相等的实数根 B . 方程有两个不相等的实数根 C . 没有实数根 D . 无法确定 3. (2分) (2015九上·句容竞赛) 设m是整数,关于x的方程mx2-(m-1)x+1=0有有理根,则方程的根为()。 A . B . x=-1 C . D . 有无数个根

4. (2分)设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=() A . 2014 B . ﹣2014 C . 2011 D . ﹣2011 5. (2分)若a为方程(x- )2=100的一根,b为方程(y-4)2=17的一根,且a、b都是正数,则a-b之值是(). A . 5 B . 6 C . D . 10- 6. (2分)(2016·大庆) 若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2 ,则M与N的大小关系正确的为() A . M>N B . M=N C . M<N D . 不确定 7. (2分)(2018·龙岗模拟) 二次函数的图象如图,下列四个结论:

;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是 ) A . 4个 B . 3个 C . 2个 D . 1个 8. (2分)某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为() A . 20% B . 30% C . 50% D . 120% 9. (2分)(2017·百色) 以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b 与⊙O相交,则b的取值范围是() A . 0≤b<2

中考数学重点知识点及重要题型

中考数学重点知识点及重要题型 知识点1:一元二次方程的基本概念 1.一元二次方程3x 2+5x-2=0的常数项是-2. 2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0. 知识点2:直角坐标系与点的位置 1.直角坐标系中,点A (3,0)在y 轴上。 2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限. 知识点3:已知自变量的值求函数值 1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=2 1-x 的值为1. 3.当x=-1时,函数y=3 21-x 的值为1. 知识点4:基本函数的概念及性质 1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 2 1-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(2 12+-=x y 的顶点坐标是(1,2). 7.反比例函数x y 2 = 的图象在第一、三象限. 知识点5:数据的平均数中位数与众数 1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4. 3.数据1,2,3,4,5的中位数是3. 知识点6:特殊三角函数值 1.cos30°= 2 3. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2.

全国中考数学平行四边形的综合中考真题分类汇总附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E. (1)如图1,线段AB与OE之间的数量关系为.(请直接填结论) (2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F. ①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由. ②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明. ③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论) 【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE, 【解析】 试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论; (2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得 EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证; ②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证; ③同②的方法可证. 试题解析:(1)∵AC,BD是正方形的对角线, ∴OA=OC=OB,∠BAD=∠ABC=90°, ∵OE⊥AB,

初三数学圆的知识点整理

1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另 一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径。 2.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。 3.圆上任意两点间的部分叫作圆弧,简称弧。圆的任意一条直 径的两个端点把圆分成两条弧,每一条弧都叫做半圆。能够重合的两个圆叫做等圆。在同圆或等圆中,能够互相重合的弧叫做等弧。 4.P108圆是轴对称图形,任何一条直径所在直线都是它的对称 轴,圆心是它的对称中心(p110) 5.垂直于弦的直径平分弦,并且平分弦所对的两条弧。(逆定理: 经过弦中点的直径垂直于这条弦并且平分弦所对的两条弧) 6.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧。 7.我们把顶点在圆心的角叫做圆心角。 8.定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦也相等。 9.在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相 等。 10.定理3:在同圆或等圆中,相等的弦所对的两条劣弧(优弧) 相等,相等的劣弧(优弧)所对的圆心角相等。相等的圆心角所对的弦相等的优劣弧之间的关系 11.不在同一条直线上的三个点确定一个圆(P117) 12.顶点在圆上,并且两边都与圆相交(弦)的角叫做圆周角。 13.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这 条弧所对的圆心角的一半。(p122)4-23 14.定理:(p119-120)半圆(或直径)所对的圆周角是直角,90° 的圆周角所对的弦是直径。 15.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫 做圆内接多边形,这个圆叫做这个多边形的外接圆。 16.P123推论:在同圆或等圆中,如果两个圆周角相等,他们所 对的弧一定相等。 17.圆内接四边形的对角互补,圆内接四边形的一个外角等于互 补角的内对角;对角互补的四边形内接于圆 下接PPT 18.点P在圆外——d > r 点P在圆上——d = r 点P在圆内— —d < r

中考初三数学冲刺拔高专题训练(含答案)(可编辑修改word版)

1 中考数学冲刺拔高 专题训练 目录 专题提升(一) 数形结合与实数的运算 (1) 专题提升(二) 代数式的化简与求值 (8) 专题提升(三) 数式规律型问题 (12) 专题提升(四) 整式方程(组)的应用 (21) 专题提升(五) 一次函数的图象与性质的应用 (28) 专题提升(六) 一次函数与反比例函数的综合 (37) 专题提升(七) 二次函数的图象和性质的综合运用 (47) 专题提升(八) 二次函数在实际生活中的应用 (54) 专题提升(九) 以全等为背景的计算与证明 (60) 专题提升(十) 以等腰或直角三角形为背景的计算与证明 (66) 专题提升(十一) 以平行四边形为背景的计算与证明 (75) 专题提升(十二) 与圆的切线有关的计算与证明 (83) 专题提升(十三) 以圆为背景的相似三角形的计算与 (89) 专题提升(十四) 利用解直角三角形测量物体高度或宽度 (97) 专题提升(十五) 巧用旋转进行证明与计算 (104) 专题提升(十六) 统计与概率的综合运用 (111)

专题提升(一)数形结合与实数的运算 类型之一数轴与实数 【经典母题】 如图Z1-1,通过画边长为1的正方形的边长,就能准确地把2和-2表示在数轴上. 图Z1-1 【思想方法】(1)在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都可以表示一个实数.我们说实数和数轴上的点一一对应; (2)数形结合是重要的数学思想,利用它可以比较直观地解决问题.利用数轴进行实 数的大小比较,求数轴上的点表示的实数,是中考的热点考题. 【中考变形】 1.[2017·北市区一模]如图Z1-2,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是(C)

初中数学中考必考的21个知识点

初中数学中考必考的21个知识点 以下是为大家整理的初中数学中考必考的21个知识点的相关范文,本文关键词为初中,数学,中考,必考,21个,知识点,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。 初中数学中考必考的21个知识点 一、数轴 1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。 数轴的三要素:原点,单位长度,正方向。 2.数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数) 3.用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。 二、相反数

1.相反数的概念:只有符号不同的两个数叫做互为相反数。 2.相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。 3.多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。 4.规律方法总结:求一个数的相反数的方法就是在这个 -1- 数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。 三、绝对值 1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。 ①互为相反数的两个数绝对值相等; ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。 ③有理数的绝对值都是非负数。 2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定: ①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零。即|a|={a(a>0)0(a=0)﹣a(a<0)四、有理数大小比较 1.有理数的大小比较:

中考数学圆的知识点总结

2019年中考数学圆的知识点总结 一、圆及圆的相关量的定义(28个) 1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。 6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 二、有关圆的字母表示方法(7个)

圆--⊙半径—r 弧--⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个) 1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离): P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO 2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。 5.一条弧所对的圆周角等于它所对的圆心角的一半。 6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 7.不在同一直线上的3个点确定一个圆。 8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。 9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB

2020中考数学拔高压轴题附答题技巧

2020中考数学拔高压轴30练,附答题技巧 何时注意分类讨论 分类讨论在数学题中经常以最后压轴题的方式出现,稍不注意就会出现解答不全面的问题。以下几点是需要大家注意分类讨论的: 1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。 2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。 3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。 4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。 5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。 6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。 值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。 最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。 压轴题解题技巧 纵观全国各地的中考数学试卷,数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题 是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。 初中已知函数有: ①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;

最新推荐中考数学总复习知识点总结(最新版)

最新推荐中考数学 复习资料

第一章 实数 考点一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3 π +8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等 考点二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ±”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性: -a (a <0) a ≥0 3、立方根 如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。 考点四、科学记数法和近似数 1、有效数字 一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。 2、科学记数法 把一个数写做n a 10?±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。 考点五、实数大小的比较 1、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

(完整版)初中数学圆知识点总结

A 图5 圆的总结 一 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 二 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 三 位置关系: 1点与圆的位置关系: 点在圆内 dr 点A 在圆外 2 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d

D B B A B A 四 垂径定理: 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD 五 圆心角定理 六 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴ AB 是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ??BC BD =??AC AD =

初中数学能力提高试卷:中考数学拔高题精选

初中数学能力提高试卷 一.单项选择。 1.如图,梯形ABCD中,AB∥CD,AB⊥BC,M为AD中点,AB=2cm,BC=2cm,CD=0.5cm, 点P在梯形的边上沿B?C?D?M运动,速度为1cm/s,则△BPM的面积ycm2与点P 经过的路程xcm之间的函数关系用图象表示大致是下图中的() 2. 如图,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB 方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点.线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.则大致反映S与t变化关系的图象是() A B C D 3. 如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是() A、 B、 C D、 A B C D

4. 如图,Rt △ABC 中,AC ⊥BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AD 交AB 于点E ,M 为AE 的中点,BF ⊥BC 交CM 的延长线于点F ,BD =4,CD =3.下列结论:①∠AED =∠ADC ;②DE DA =3 4 ;③AC ·BE =12;④3BF =4AC ,其中结论正确的个数有( ) A .1个 B .2个 C .3个 D .4个 5. 如图,分别以Rt △ABC 的斜边AB 、直角边AC 为边向外作等边△ABD 和△ACE ,F 为AB 的中点,连接DF 、EF 、DE ,EF 与AC 交于点O ,DE 与AB 交于点G ,连接 OG ,若∠BAC=30°,下列结论:①△DBF ≌△EFA ;②AD=AE ;③EF ⊥AC ;④AD=4AG ;⑤△AOG 与△EOG 的面积比为1:4.其中正确结论的序号是( ) A 、①②③ B 、①④⑤ C 、①③⑤ D 、①③④ 6. 如图,正方形ABCD 中,在AD 的延长线上取点E 、F ,使DE=AD ,DF=BD ;BF 分别交CD ,CE 于H 、G 点,连接DG ,下列结论:①∠GDH=∠GHD ;②△GDH 为正三角形;③EG=CH ;④EC=2DG ;⑤S △CGH :S △DBH =1:2.其中正确的是( ) A 、①②③ B 、②③④ C 、③④⑤ D 、①③⑤ 7. 如图∠A=∠ABC=∠C=45°,E 、F 分别是AB 、BC 的中点,则下列结论,①EF ⊥BD ,②EF= BD ,③∠ADC=∠BEF+∠BFE ,④AD=DC ,其中正确的是( ) A 、①②③④B 、①②③C 、①②④D 、②③④

初三数学圆知识点总结

初三数学圆知识点总结 一、本章知识框架 二、本章重点 1.圆的定义: (1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆. (2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论: (1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. (2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧. (4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等. 5.三角形的内心、外心、重心、垂心 (1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示. (2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示. (4)垂心:是三角形三边高线的交点. 6.切线的判定、性质: (1)切线的判定: ①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线. (2)切线的性质: ①圆的切线垂直于过切点的半径. ②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心. (3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长. (4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形 (1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角. (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系: 设⊙O 半径为R,点O到直线l的距离为d. (1)直线和圆没有公共点直线和圆相离d>R. (2)直线和⊙O有唯一公共点直线l和⊙O相切d=R. (3)直线l和⊙O 有两个公共点直线l和⊙O 相交dr),圆心距.

中考数学必考知识点总结

中考数学必考知识点总结 反比例函数y=xk的图象是双曲线 ①图象上的点〔x,y〕的横纵坐标的积是定值k,即xy=k; ②双曲线是关于原点对称的,两个分支上的点也是关于原点对称; ③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. 反比例函数的性质 〔1〕反比例函数y=xk〔k≠0〕的图象是双曲线; 注意:反比例函数的图象与坐标轴没有交点。 比例系数k的几何意义 在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. 在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|2,且保持不变。 用描点法画反比例函数的图象 步骤:列表---描点---连线。 〔1〕列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以〝0〞为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值。 与当今〝教师〞一称最接近的〝老师〞概念,最早也要追溯至宋元时期。金代元好问?示侄孙伯安?诗云:〝伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。〞于是看,宋元时期小学教师被称为〝老师〞有案可稽。清代称主考官也为〝老师〞,而一般学堂里的先生那么称为〝教师〞或〝教习〞。可见,〝教师〞一说是比较晚的事了。如今体会,〝教师〞的含义比之〝老师〞一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称〝教师〞为〝教员〞。 〔2〕由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确。

中考数学平行四边形知识点及练习题及答案

中考数学平行四边形知识点及练习题及答案 一、解答题 1.如图,在Rt ABC 中,90ACB ∠=?,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE (1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由; (2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形. 2.在矩形ABCD 中,AE ⊥BD 于点E ,点P 是边AD 上一点,PF ⊥BD 于点F ,PA =PF . (1)试判断四边形AGFP 的形状,并说明理由. (2)若AB =1,BC =2,求四边形AGFP 的周长. 3.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG . (1)如图,当ABCD 为正方形且点H 在ABC ?的内部,连结,AH CH ,求证:AH CH =; (2)经过点E 且把矩形ABCD 面积平分的直线有______条; (3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值. 4.如图,点P 是正方形ABCD 内的一点,连接,CP 将线段CP 绕点C 顺时针旋转90,?得到线段,CQ 连接,BP DQ . ()1如图甲,求证:CBP CDQ ∠=∠;

()2如图乙,延长BP交直线DQ于点E.求证:BE DQ ⊥; ()3如图丙,若BCP为等边三角形,探索线段, PD PE之间的数量关系,并说明理由. 5.如图,在平面直角坐标系中,已知?OABC的顶点A(10,0)、C(2,4),点D是OA 的中点,点P在BC上由点B向点C运动. (1)求点B的坐标; (2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值; (3)当△ODP是等腰三角形时,直接写出点P的坐标.

中考数学重点知识点及重要题型

知识点:一元二次方程的基本概念 .一元二次方程的常数项是. .一元二次方程的一次项系数为,常数项是. .一元二次方程的二次项系数为,常数项是. .把方程()化为一般式为. 知识点:直角坐标系及点的位置 .直角坐标系中,点(,)在轴上。 .直角坐标系中,轴上的任意点的横坐标为. .直角坐标系中,点(,)在第一象限. .直角坐标系中,点(,)在第四象限. .直角坐标系中,点(,)在第二象限. 知识点:已知自变量的值求函数值 .当时,函数32 x 的值为. .当时,函数的值为. .当时,函数的值为. 知识点:基本函数的概念及性质 .函数是一次函数. .函数是正比例函数. .函数是反比例函数. .抛物线()的开口向下. .抛物线()的对称轴是. .抛物线的顶点坐标是(). .反比例函数的图象在第一、三象限. 知识点:数据的平均数中位数及众数 .数据的平均数是. .数据的众数是. .数据,,,,的中位数是. 知识点:特殊三角函数值 .° 2 3. .° ° . .° ° . .° .

.° ° . 知识点:圆的基本性质 .半圆或直径所对的圆周角是直角. .任意一个三角形一定有一个外接圆. .在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. .在同圆或等圆中,相等的圆心角所对的弧相等. .同弧所对的圆周角等于圆心角的一半. .同圆或等圆的半径相等. .过三个点一定可以作一个圆. .长度相等的两条弧是等弧. .在同圆或等圆中,相等的圆心角所对的弧相等. .经过圆心平分弦的直径垂直于弦。 知识点:直线及圆的位置关系 .直线及圆有唯一公共点时,叫做直线及圆相切. .三角形的外接圆的圆心叫做三角形的外心. .弦切角等于所夹的弧所对的圆心角. .三角形的内切圆的圆心叫做三角形的内心. .垂直于半径的直线必为圆的切线. .过半径的外端点并且垂直于半径的直线是圆的切线. .垂直于半径的直线是圆的切线. .圆的切线垂直于过切点的半径. 知识点:圆及圆的位置关系 .两个圆有且只有一个公共点时,叫做这两个圆外切. .相交两圆的连心线垂直平分公共弦. .两个圆有两个公共点时,叫做这两个圆相交. .两个圆内切时,这两个圆的公切线只有一条. .相切两圆的连心线必过切点. 知识点:正多边形基本性质 .正六边形的中心角为°. .矩形是正多边形. .正多边形都是轴对称图形. .正多边形都是中心对称图形. 知识点:一元二次方程的解 .方程042=-x 的根为 .

相关文档
最新文档