单效蒸发.

合集下载

单效蒸发及计算

单效蒸发及计算

单效蒸发及计算一.物料衡算(materialbalance)对图片5-13所示的单效蒸发器进行溶质的质量衡算,可得由上式可得水的蒸发量及完成液的浓度分别为(5-1)(5-2)式中F———原料液量,kg/h;W———水的蒸发量,kg/h;L———完成液量,kg/h;x0———料液中溶质的浓度,质量分率;x1———完成液中溶质的浓度,质量分率。

二.能量衡算(energybalance)仍参见图片(5-13),设加热蒸汽的冷凝液在饱和温度下排出,则由蒸发器的热量衡算得(5-3)或(5-3a)式中D———加热蒸汽耗量,kg/h;H———加热蒸汽的焓,kJ/kg;h0———原料液的焓,kJ/kg;H'———二次蒸汽的焓,kJ/kg;h1———完成液的焓,kJ/kg;hc———冷凝水的焓,kJ/kg;QL———蒸发器的热损失,kJ/h;Q———蒸发器的热负荷或传热速率,kJ/h。

由式5-3或5-3a可知,如果各物流的焓值已知及热损失给定,即可求出加热蒸汽用量D以及蒸发器的热负荷Q。

溶液的焓值是其浓度和温度的函数。

对于不同种类的溶液,其焓值与浓度和温度的这种函数关系有很大的差异。

因此,在应用式5-3或5-3a求算D时,按两种情况分别讨论:溶液的稀释热可以忽略的情形和稀释热较大的情形。

1.可忽略溶液稀释热的情况大多数溶液属于此种情况。

例如许多无机盐的水溶液在中等浓度时,其稀释的热效应均较小。

对于这种溶液,其焓值可由比热容近似计算。

若以0℃的溶液为基准,则(5-4)(5-4a)将上二式代入式5-3a得(5-3b)式中t0———原料液的温度,℃;t1———完成液的温度,℃;C0———原料液的比热容,℃;C1———完成液的比热容,℃;当溶液溶解的热效应不大时,其比热容可近似按线性加合原则,由水的比热容和溶质的比热容加合计算,即(5-5)(5-5a)式中CW———水的比热容,℃;CB———溶质的比热容,℃。

将式5-5与5-5a联立消去CB并代入式5-2中,可得,再将上式代入式5-3b中,并整理得(5-6)由于已假定加热蒸汽的冷凝水在饱和温度下排出,则上式中的即为加热蒸汽的冷凝潜热,即(5-7)但由于溶液的沸点升高,二次蒸汽的温度与溶液温度t1并不相同(下面还要详细讨论)。

单效蒸发器操作规程

单效蒸发器操作规程

单效蒸发器操作规程单效蒸发器是一种常见的分离设备,广泛应用于化工、制药、食品等行业。

为了确保单效蒸发器的安全运行和高效生产,需要遵守一系列操作规程。

一、操作准备1. 进行操作前,必须对单效蒸发器进行检查,确认设备完好无损,各侧管道通畅,有无泄漏、堵塞等异常情况。

2. 根据所处理物料的性质和工艺要求,准备好所需的原料、溶剂和辅助设备。

二、启动预检1. 将单效蒸发器冷却系统的循环泵和空气螺杆压缩机启动,确保水泵压力和空气压力正常。

2. 开启蒸汽系统,确认蒸汽阀门处于开启状态。

3. 开启真空泵,在合适的压力范围内对设备进行真空抽气,确保系统能够正常运行。

三、操作步骤1. 将预处理的物料通过加料泵送入单效蒸发器内,控制物料的进料流量。

2. 打开进料阀门,调整出料阀门,使物料流入蒸发器内,并通过观察玻璃、液位计或压力表来控制物料的进料速度和液位。

3. 开启加热系统,调整加热介质的温度,使物料逐渐加热。

4. 观察和记录物料的蒸发和浓缩效果,根据工艺要求进行调整。

5. 当物料浓缩到预定浓度时,关闭进料阀门,停止加热。

6. 关闭蒸汽系统,断开加热介质的供应。

7. 关闭真空泵,停止真空抽气。

8. 打开出料阀门,将浓缩后的物料从单效蒸发器中排出,并输送至下一工序或收集容器。

9. 关闭蒸发器的各种系统设备,完成操作。

四、操作注意事项1. 操作人员必须穿戴好安全防护装备,如安全帽、防护眼镜、防护手套等。

2. 调整加热介质的温度时,要谨慎操作,避免温度过高引发事故。

3. 注意观察物料的蒸发和浓缩效果,及时调整操作参数,以保证设备稳定运行。

4. 在操作过程中,严禁私自调整或操作未经授权的设备部件。

5. 如发现设备异常情况,如温度异常、压力异常、泄漏等,应立即停机检修,并通知相关人员进行维修。

6. 操作结束后,及时清理设备和管道,保持设备的清洁和无污染状态。

五、紧急情况处理1. 如遇到设备突发故障或其他紧急情况,操作人员应立即停止操作,并向相关人员汇报。

化工原理 单效蒸发

化工原理  单效蒸发
温度差损失Δ=ΔtT-Δt=(Ts-T)-(Ts-t)=t-T
溶液的沸点t=T+Δ,有效传热温度差Δt=ΔtT-Δ
温度差损失原因:〈〈12〉〉溶蒸液发的器沸中点液升柱高静压头的影响 〈3〉流体摩擦阻力损失
⑴ 溶液的沸点升高与杜林规则
将1atm下的沸点升高
杜林(Duhling)规则:溶液的沸点与同温度 近似地作为其它压力
若为沸点进料,即t0 t1,并忽略热损失和比热C1和C0的差别,则有:
D Wr r
或 D r Wr
由于蒸汽在t1和T下的潜热r和r相差不大,
D W
r R
1
②溶液的浓缩热不可忽略
(3)蒸发Байду номын сангаас传热面积的计算
A Q DR K (Ts t1 ) K (Ts t1 )
1 K
1
i
Ri
1
o
Ro
5.3 2 蒸发设备中的温度差损失
Q H s hs
9.87 105
2728 556.51000
0.455kg / s 1640kg / h
2·求料液流量F
DH s Fh0 WH (F W )h1 Dhs QL
查NaOH的焓浓图得:料液的焓h0=120kJ/kg,完成液的焓 h1=540kJ/kg
又热损失 QL=0·03Q 0.03 9.87 105 29600W 29.6kW
h1=c1t1,h0=c0t0代入热量衡算C式1=:4.187 1-0.5+2.01 0.5=3.1
0·455(2728-556·5)+F 3·75 35=F-W 3·1100+2681W+29·6
178·7F+2371W=958·4 将W=0·6F代入,解得:F=0·6kg/s,W=0·36kg/s

单效蒸发

单效蒸发

h = cpt
h0 =c p , 0 t0
c p = c p,w (1 w) + c p,b w = c p,w (c p,w c p,b )w c p,0 = c p,w (1 w0 ) + c p,b w0 = c p,w (c p,w c p,b )w0
代入热流量公式得:
Φ = qm,v r0 = qm,0c p,0 (t t0 ) + qm,wr′ + Φ L
t '" = 0.5 ~ 1° C
5.3 单效蒸发 5.3.1 物料衡算
目的: 目的:计算蒸发水量和完成液浓度 对溶质: 对溶质:
料液 qm0,w0, t0 ,c0 ,h0
加热室
二次蒸汽 qmwT’,H’
qm,0 w0 = (qm,0 qm,w )w
蒸发水量: q m,w w0 = q m ,0 (1 ) w
完成液 qm0-qmw,w, t,c,h
因此,溶液的沸点: 因此,溶液的沸点:
t = T ′ + t ' + t " + t '" = T ′ + t t
② 传热温差损失 溶液沸点升高,造成传热温差减小。
理论传热温度差: tT = T T ′
有效传热温差:
传热温度差损失:
t = T t
tT t = t T ′ = t t
若沸点进料,忽略热损失时,
t0 = t
qm , w qm , v
ΦL = 0
qm ,v =
qm , w r ′ r0
r = ≈1 r′
生蒸汽的经济性(经济程度) 生蒸汽的经济性(经济程度)qmw/qmv * 蒸发操作重要经济指标之一,反映蒸发操作能耗的大小; * 实际由于沸点升高和热损失,单效蒸发 qmw/qmv ≈0.9 。

单效蒸发及其计算

单效蒸发及其计算

温度差损失), ℃;
Δ′——操作压强下由于溶液蒸气压下降而引起的沸点升高, ℃;
F——校正系数,无因次,其经验计算式为
式中 T′——操作压强下二次蒸气的温度, ℃; r′——操作压力下水的汽化热,kJ/kg。
单效蒸发及其计算
2. 按杜林规则计算
杜林规则说明溶液的沸点和同压强下标准溶液沸点间呈线性关 系。由于容易获得纯水在各种压强下的沸点,故一般选用纯水作为 标准溶液。只要知道溶液和水在两个不同压强下的沸点,以溶液沸 点为纵坐标,以水的沸点为横坐标,在直角坐标图上标绘相对应的 沸点值即可得到一条直线(称为杜林直线)。由此直线就可求得该 溶液在其他压强下的沸点。图5-2是由试验测定的不同组成的 NaOH水溶液的沸点与对应压力下纯水沸点的关系线图,已知任意 压力下水的沸点,可由图查出不同浓度下NaOH的沸点。
单效蒸发及其计算
(三)由于管路阻力而引起的温度差损失Δ″
二次蒸气由分离器送至冷凝器要克服管道 中流动阻力,所以分离室内二次蒸气压强应略 高于冷凝器中规定的压强。相应的蒸气温度也 高于冷凝器中蒸气的温度,两者的差值称为由 于管路阻力引起的温度差损失Δ″,其值与蒸气 的流速、物性及管路特性有关,一般取经验值 1~1.5 ℃。
单效蒸发及其计算
解:(1)求Δ′ 取冷凝器绝压pk为15kPa,可查出15 kPa下水蒸气的饱和 温度T′为53.5℃。取因流动阻力而引起的温度差损失Δ 1 ℃,故二次蒸气温度T′=54.5 ℃。由附表查出二次蒸气其他参 数为:T″=54.5 ℃,p′=15.4 kPa ,汽化潜热r′=2367.6 kJ/kg。
单效蒸发及其计算
单效蒸发及其计算
二、 单效蒸发的计算
单效蒸发中要计算的内容有:(1)单位时间内由溶 液中整除的二次蒸气质量,称为蒸发量;(2)单位时间内 消耗的加热蒸气量;(3)所需的蒸发器传热面积S。

项目四 任务一单效蒸发.

项目四 任务一单效蒸发.

所以沸腾液体的平均温度为 :
t t ( p) '' '
在大多数教材中,液柱内部的平均压力取的是液面压力和液柱 底部压力的平均值,即
1 LG 2 1 ' ' t ( p Lg ) t ( p ) 5 pm p
2. 蒸发设备中的温度差损失
(3)因蒸汽流动阻力引起的温度差损失 ' ' '
二、 单效蒸发
1.单效蒸发的计算
对于单效蒸发,在给定的生产任务和确定了操作条 件以后,通常需要计算以下的这些内容: ① 分的蒸发量; ② 热蒸汽消耗量; ③ 发器的传热面积。 要解决以上问题,我们可应用物料衡算方程,热量 衡算方程和传热速率方程来解决。
1. 单效蒸发的计算
(1)物料衡算 溶质在蒸发过程中不挥发,且蒸发过程是个定态过程, 单位时间进入和离开蒸发器的量相等,即
一、 概述
(5)蒸发操作的特点 ① 沸点升高 蒸发的物料是溶有不挥发溶质的溶液。由拉乌尔定律可 知:在相同温度下,其蒸汽压纯溶剂的为低,因此,在相同的 压力下,溶液的沸点高于纯溶剂的沸点。故当加热蒸汽温一定 时,蒸发溶液时的传热温差就比蒸发纯溶剂时来得小,而溶液 的浓度越大,这种影响就越显著。 ② 节约能源 ③ 物料的工艺特性 本章的重点就是研究上述问题,同时还考虑从二次蒸汽 中分离夹带液沫的问题。
Fw0 ( F W )w
水分蒸发量: 完成液的浓度:
w0 W F (1 ) w
w Fw0 F W
1. 单效蒸发的计算
(2)热量衡算 对蒸发器作热量衡算,当加热蒸汽在饱和温度下排出时,
DIs Fi0 ( F W )i WI Dis Q损 D( I s is ) F (i i0 ) W ( I i) Q损

单效蒸发及计算

单效蒸发及计算

一.物料衡算二.能量衡算1.可忽略溶液稀释热的情况2.溶液稀释热不可忽略的情况三.传热设备的计算1.传热的平均温度差2.蒸发器的传热系数3.传热面积计算四.蒸发强度与加热蒸汽的经济性1.蒸发器的生产能力和蒸发强度2.加热蒸汽的经济性单效蒸发及计算一.物料衡算(materialbalance)对图片5-13所示的单效蒸发器进行溶质的质量衡算,可得由上式可得水的蒸发量及完成液的浓度分别为(5-1)(5-2)式中F———原料液量,kg/h;W———水的蒸发量,kg/h;L———完成液量,kg/h;x0———料液中溶质的浓度,质量分率;x1———完成液中溶质的浓度,质量分率。

二.能量衡算(energybalance)仍参见图片(5-13),设加热蒸汽的冷凝液在饱和温度下排出,则由蒸发器的热量衡算得(5-3)或(5-3a)式中D———加热蒸汽耗量,kg/h;H———加热蒸汽的焓,kJ/kg;h0———原料液的焓,kJ/kg;H'———二次蒸汽的焓,kJ/kg;h1———完成液的焓,kJ/kg;hc———冷凝水的焓,kJ/kg;QL———蒸发器的热损失,kJ/h;Q———蒸发器的热负荷或传热速率,kJ/h。

由式5-3或5-3a可知,如果各物流的焓值已知及热损失给定,即可求出加热蒸汽用量D以及蒸发器的热负荷Q。

溶液的焓值是其浓度和温度的函数。

对于不同种类的溶液,其焓值与浓度和温度的这种函数关系有很大的差异。

因此,在应用式5-3或5-3a求算D时,按两种情况分别讨论:溶液的稀释热可以忽略的情形和稀释热较大的情形。

1.可忽略溶液稀释热的情况大多数溶液属于此种情况。

例如许多无机盐的水溶液在中等浓度时,其稀释的热效应均较小。

对于这种溶液,其焓值可由比热容近似计算。

若以0℃的溶液为基准,则(5-4)(5-4a)将上二式代入式5-3a得(5-3b)式中t0———原料液的温度,℃;t1———完成液的温度,℃;C0———原料液的比热容,℃;C1———完成液的比热容,℃;当溶液溶解的热效应不大时,其比热容可近似按线性加合原则,由水的比热容和溶质的比热容加合计算,即(5-5)(5-5a)式中CW———水的比热容,℃;CB———溶质的比热容,℃。

单效蒸发器蒸发计算方式

单效蒸发器蒸发计算方式

页眉内容单效蒸发器蒸发计算方式单效蒸发设计计算内容有: ①确定水的蒸发量; ②加热蒸汽消耗量; ③蒸发器所需传热面积。

在给定生产任务和操作条件,如进料量、温度和浓度,完成液的浓度,加热蒸汽的压力和冷凝器操作压力的情况下,上述任务可通过物料衡算、热量衡算和传热速率方程求解。

一、蒸发水量的计算对图5-13所示蒸发器进行溶质的物料衡算,可得由此可得水的蒸发量(5—1)完成液的浓度(5—2)式中:F ——原料液量,kg/h ; W ——蒸发水量,kg/h ; L ——完成液量,kg/h ; x 0——原料液中溶质的浓度,质量分数;x 1——完成液中溶质的浓度,质量分数。

二、加热蒸汽消耗量的计算加热蒸汽用量可通过热量衡算求得,即对图5-13作热量衡算可得:(5—3)110)(Lx x W F Fx =-=)1(1x x F W -=W F Fx x -=1Lc 10Q Dh Lh WH Fh DH +++=+‘图5-13 单效蒸发器或(5—3a )式中:H ——加热蒸汽的焓,kJ/kg ; H ´——二次蒸汽的焓,kJ/kg ; h 0 ——原料液的焓,kJ/kg ; h 1 ——完成液的焓,kJ/kg ;h c ——加热室排出冷凝液的焓,kJ/h ; Q ——蒸发器的热负荷或传热速率,kJ/h ; Q L ——热损失,可取Q 的某一百分数,kJ/kg ; c 0、c 1——为原料、完成液的比热,kJ/(kg ·℃) 。

考虑溶液浓缩热不大,并将H ´取t 1下饱和蒸汽的焓,则(9—3a )式可写成:(5—4)式中: r 、r ´——分别为加热蒸汽和二次蒸汽的汽化潜热,kJ/kg 。

若原料由预热器加热至沸点后进料(沸点进料),即t 0=t 1,并不计热损失,则(4—5)式可写为:(5—5)或(5—5a ) 式中:D /W 称为单位蒸汽消耗量,它表示加热蒸汽的利用程度,也称蒸汽的经济性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进入和离开蒸发器的量相等,即
水分蒸发量: 完成液的浓度:
Fw0 (F W )w W F (1 w0 )
w w Fw0
F W
5.2.1 单效蒸发的计算
(2)热量衡算 对蒸发器作热量衡算,当加热蒸汽在饱和温度下排出时,
DI s Fi0 (F W )i WI Dis Q损
(2)热量衡算
③ 沸点进料,t0 t ,并忽略热损失和溶液浓度较低时,c c0 , 则
W (I ct) Wr
D

r0
r0

D I ct r 1
W
r0
r0
式中称D /W为单位蒸汽消耗量,用来表示蒸汽利用的经济程度 (或生蒸汽的利用率)。
5.2.1 单效蒸发的计算
(3)蒸发器传热面积的计算
第五章 蒸发
5.1 概述 5.2 单效蒸发 5.3 多效蒸发 5.4 蒸发设备
5.1 概述
(1)蒸发操作的目的 ① 获得浓缩的溶液直接作为化工产品 或半成品。 ② 脱除溶剂,将溶液增溶至饱和状态, 随后加以冷却,析出固体产物,即采 用蒸发,结晶的联合操作以获得固体 溶质。 ③ 除杂质,获得纯净的溶剂。
5.2 单效蒸发
5.2.1 单效蒸发的计算
对于单效蒸发,在给定的生产任务和确定了操作条件以后,通 常需要计算以下的这些内容:
① 水分的蒸发量; ② 加热蒸汽消耗量; ③蒸发器的传热面积。 要解决以上问题,我们可应用物料衡算方程,热量衡算方程和 传热速率方程来解决。
5.2.1 单效蒸发的计算
(1)物料衡算 溶质在蒸发过程中不挥发,且蒸发过程是个定态过程,单位时间
A Q Dr0 K (T0 t) K (T0 t)
5.2.1 单效蒸发的计算
(4)浓缩热和溶液的焓浓图 如图5-21为NaOH水溶液从0℃为基准温度的焓浓图。
5.2.2 蒸发设备中的温度差损失
蒸发器中的传热温差等于 tm(T0 t) ,当加热蒸汽的温度 T0一定 (如用45k kN/m2(绝压)的水蒸气作为加热蒸汽,T0 150 ℃),若蒸 发室的压力为1atm而蒸发的又是水(其沸点 T 100℃)而不是溶液, 此时的传热温差最大,用 tT 表示:
某一百分数。
(2)热量衡算
用以上两个式子进行计算时,必须预知溶液在一定浓度和温度 下的焓。对于大多数物料的蒸发,可以不计溶液的浓缩热,而由比 热求得其焓。习惯上取0℃为基准,即0℃时的焓为零,则有
is c*T0 i0 c0t0 0 c0t0 i ct 0 ct 代入前面的两式得: D(I s is ) F (ct c0t0 ) W (I ct) Q损
5.2.2 蒸发设备中的温(T0 T ) (T0 t) t T
溶液沸点
t T
有效传热温差 t tT
温度差损失的原因 : ① 溶液沸点的升高。这是由于溶液蒸汽压较纯溶剂(水)
在同一温度下的蒸汽压为低,致使溶液的沸点比纯溶剂(水)高; ② 蒸发器中静压头的影响以及流体流过加热管是产生的摩
擦阻力,都导致溶液沸点的进一步上升。
空)蒸发。 ② 按二次蒸汽的利用情况可以分为单效蒸发和多效蒸发。
5.1 概述
(5)蒸发操作的特点 ① 沸点升高 蒸发的物料是溶有不挥发溶质的溶液。由拉乌尔定律可知:在 相同温度下,其蒸汽压纯溶剂的为低,因此,在相同的压力下,溶 液的沸点高于纯溶剂的沸点。故当加热蒸汽温一定时,蒸发溶液时 的传热温差就比蒸发纯溶剂时来得小,而溶液的浓度越大,这种影 响就越显著。 ② 节约能源 ③ 物料的工艺特性 本章的重点就是研究上述问题,同时还考虑从二次蒸汽中分离 夹带液沫的问题。
D F (i i0 ) W (I i) Q损 Is is
① 忽略浓缩热时 ② 浓缩热且I ct r
D F (ct c0t0 ) W (I ct) Q损 Is is
,I s is r0
D F (ct c0t0 ) Wr Q损 r0
由传热速率方程得
A Q Kt m
式中
A ——蒸发器传热面积,m2; Q ——传热量,w; K ——传热系数,w/m2·K; t m——平均传热温差,K。
(3)蒸发器传热面积的计算
由于蒸发过程的蒸汽冷凝和溶液沸腾之间的恒温差传热, tm T0 t ,且蒸发器的热负荷 Q Dr0 ,所以有
(2)热量衡算
为了避免使用不同溶液浓度下的比热,可以近似认为溶液的比热 容和所含溶质的浓度呈加和关系,即
c0 c* (1 w0 ) cB w0 c c* (1 w) cBw
式中 c* ——水的比热,kJ/kg; cB ——溶质的比热,kJ/kg。
(2)热量衡算
由式(3)或式(4)可得加热蒸汽的消耗量为:
(2)蒸发的流程
5.1 概述
(3)加热蒸汽和二次蒸汽 蒸发需要不断的供给热能。工业上采用的热源通常为水蒸气,而 蒸发的物料大多是水溶液,蒸发时产生的蒸汽也是水蒸气。为了 区别,将加热的蒸汽称为加热蒸汽,而由溶液蒸发出来的蒸汽称 之为二次蒸汽。
(4)分类 ① 按蒸发操作空间的压力可分为:常压,加压,或者减压(真
(3)
D(I s is ) F (i i0 ) W (I i) Q损
(4)
式中 D ——加热蒸汽消耗量,kg/s;
t0 ,t ——加料液与完成液的温度,℃; i0 ,i ,is——加料液,完成液和冷凝水的热焓,kJ/kg;
I ,I s ——二次蒸汽和加热蒸汽的热焓,kJ/kg。 式中热损失 Q损可视具体条件来取加热蒸汽放热量( Dr0 )的
tT T0 T 150 100 50
如果蒸发的是30%的NaOH水溶液,在常压下其沸点是高于100℃。 若其沸点 t 120 ℃,则有效传热温差 t T0 t 150 120 30℃,t比 tT 所减小的值,称为传热温度差损失,简称温度差损失,用 表示
相关文档
最新文档