四年级数学A班奥数专题-“最大与最小”问题
最新小学奥数 最大最小问题

最新小学奥数最大最小问题同学们在学习中经常能碰到求最大最小或最多最少的问题,这一讲就来讲解这个问题。
例1两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?分析与解:将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。
由此可知把15分成7与8之和,这两数的乘积最大。
结论1如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。
特别地,当这两个数相等时,他们的乘积最大。
例2比较下面两个乘积的大小:a=57128463×87596512,b=57128460×87596515。
分析与解:对于a,b两个积,它们都是8位数乘以8位数,尽管两组对应因数很相似,但并不完全相同。
直接计算出这两个8位数的乘积是很繁的。
仔细观察两组对应因数的大小发现,因为57128463比57128460多3,87596512比87596515少3,所以它们的两因数之和相等,即57128463+87596512=57128460+87596515。
因为a的两个因数之差小于b的两个因数之差,根据结论1可得a >b。
例3用长36米的竹篱笆围成一个长方形菜园,围成菜园的最大面积是多少?分析与解:已知这个长方形的周长是36米,即四边之和是定数。
长方形的面积等于长乘以宽。
因为长+宽=36÷2=18(米),由结论知,围成长方形的最大的面积是9×9=81(米2)。
例3说明,周长一定的长方形中,正方形的面积最大。
例4两个自然数的积是48,这两个自然数是什么值时,它们的和最小?分析与解:48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。
小学数学 最大最小问题

最大最小问题专题简析:人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。
最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
例1:a 和b 是小于100的两个不同的自然数,求a -b a+b的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950答:a -b a+b 的最大值是4950。
练习1:1、 设x 和y 是选自前100个自然数的两个不同的数,求x -y x+y的最大值。
2、 a 和b 是小于50的两个不同的自然数,且a >b ,求a -b a+b的最小值。
3、 设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+y x -y的最大值;②求x+y x -y的最小值。
例2:有甲、乙两个两位数,甲数27 等于乙数的23。
这两个两位数的差最多是多少? 甲数:乙数=23 :27=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。
练习2:1、 有甲、乙两个两位数,甲数的310 等于乙数的45。
这两个两位数的差最多是多少? 2、 甲、乙两数都是三位数,如果甲数的56 恰好等于乙数的14。
这两个两位数的和最小是多少?3、 加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?例3:如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。
问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。
小学数学--最大最小问题

最大最小问题专题简析:人们碰到の各种优化问题、高效低耗问题,最终都表现为数学上の极值问题,即小学阶段の最大最小问题。
最大最小问题设计到の知识多,灵活性强,解题时要善于综合运用所学の各种知识。
例1:a 和b 是小于100の两个不同の自然数,求a -b a+bの最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有の分数再添两个分数单位就等于1,可见应使所求分数の分数单位尽可能小,因此a=99a -b a+b の最大值是99-199+1 =4950答:a -b a+b の最大值是4950。
练习1:1、 设x 和y 是选自前100个自然数の两个不同の数,求x -y x+yの最大值。
2、 a 和b 是小于50の两个不同の自然数,且a >b ,求a -b a+bの最小值。
3、 设x 和y 是选自前200个自然数の两个不同の数,且x >y ,①求x+y x -yの最大值;②求x+y x -yの最小值。
例2:有甲、乙两个两位数,甲数27 等于乙数の23。
这两个两位数の差最多是多少? 甲数:乙数=23 :27=7:3,甲数の7份,乙数の3份。
由甲是两位数可知,每份の数量最大是14,甲数与乙数相差4份,所以,甲、乙两数の差是14×(7-3)=56 答:这两个两位数の差最多是56。
练习2:1、 有甲、乙两个两位数,甲数の310 等于乙数の45。
这两个两位数の差最多是多少? 2、 甲、乙两数都是三位数,如果甲数の56 恰好等于乙数の14。
这两个两位数の和最小是多少?3、 加工某种机器零件要三道工序,专做第一、二、三道工序の工人每小时分别能做48个、32个、28个,要使每天三道工序完成の个数相同,至少要安排多少工人?例3:如果两个四位数の差等于8921,就是说这两个四位数组成一个数对。
问:这样の数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件の四位数对。
(完整版)最大和最小问题

华西英语培训学校——四年级奥数第三讲最大和最小问题1、最短的时间内完成作业,有更多时间去发展自己的业余爱好2、怎样乘车路程最短,话费时间最少3、怎样做可以使原材料最省4、大桥在什么位置,才能方便附件可能多数居民例1:幼儿园老师要把100根小棒分给小朋友做数学游戏,每个小朋友分的小棒根数不同。
那么,最多能分给几个小朋友?例2:把自然数1、2、3……19依次排列,1234567891011……1819,划去24个数字后得到一个多位数,这个数最大是多少?练习:1、先从0、1、2、4、6、8、9这七个数字中,选出5个数字组成一个能被5整除并且尽可能大的五位数,这个五位数是多少?2、小明看一本90页的童话故事,每天看的页数不同,而且一天中最少看3页,那么小明看完这本说最多需要几天?3、把自然数1、2、3……39、40依次排列,1234567891011……3940,划去65个数字后得到一个多位数,这个数最大是多少?观察下面两组算式的结果怎样变化,由此得出什么规律10=1+9 1×9=910=2+8 2×8=1610=3+7 3×7=2110=4+6 4×6=2410=5+5 5×5=25规律1:两个数的,这两个数和一定时,这两个数越接近,它们的乘积越大;当两个数相等时,它们的乘积最大。
例3:周长为36米的竹篱笆围成一个长方形菜园,要使菜园的面积最大,它的长和宽应该是多少?这时的最大面积是多少?观察下面两组算式的结果怎样变化,由此得出什么规律?16=1×16 1+16=1716=2×8 2+8=1016=4×4 4+4=8规律2:两数的积一定时,这两个数越接近,它们的和越小;当两个数相等时,它们的和最小。
例4:用竹篱笆围一个面积为25平方米的长方形菜园。
这个长方形的长、宽各是多少米时,最省材料?练习:1、a,b是两个自然数,a+b=16,那么a×b最大是多少?2、a,b是两个自然数,a×b=49,那么a+b最小是多少?3、用40厘米长的铁丝围成的长方形(不计接头长度)中,最大一个的面积是多少平方米?4、教室一个窗户的面积是225平方分米,怎样设计窗户的形状和尺寸最省材料?5、把14拆成两个数的和。
四年级寒假数学奥数班第10讲 最大 最小

最大 最小
月 日 姓 名
【知识要点】
1.和一定,两数越接近,积越大; 2.积一定,两数越接近,和越小。
【典型例题】
例1 小明用40米长的竹篱笆围成一个长方形的养鸡场,要使长和宽都是整数,怎样围才使养鸡场的面积最大?
例2 把13分成两个自然数的和,怎样分才能使它们的乘积最大?最大的乘积是多少?
例3 用竹篱笆围成一个面积为48平方米的长方形菜园,长方形的长和宽都是整米数,为节省材料,所用竹篱笆最短是多少米?
例4 两个自然数的乘积是40
例 5 用3~6
大。
【课堂大练兵】
1.一个长方形的周长是48厘米,当长是厘米,厘米时面积最大,最大面积是平方厘米。
2.要砌一个面积为72
形的边长都是自然数,这个猪圈的墙总长最少是米。
3.用1~4这四个数字组成两个两位数,
姓名: 成绩:
1.把21分成两个自然数的和,怎样分才能使它们的乘积最大?求出最大的乘积?
2.两个自然数的乘积是45,问这两个数的和最小是多少?
3.一个长方形的周长是108厘米,当长是 厘米,宽是 厘米时,面积最大,最大面积是 平方厘米。
4.一个面积为72平方米的长方形水池,长与宽都为自然数,周长最少为多少米?
5.用6~9这四个数字组成两个两位数,使这两个两位数的乘积最大。
一定是我的!。
四年级奥数题及答案-去除数字求最大和最小值

四年级奥数题及答案-去除数字求最大和最小值
【题目】今天小明的妈妈给小明出了一道难题,妈妈在纸上写下了一个有29位数字组成的一串数字:12345678910111213141516171819,小明可以在这串数字中任意去除10个数字,妈妈的题目是:去除后可以得到的最大的数字和最小的数字分别是多少?
【解析】
我们可以在29位数字中去掉其中的10位,那样我们就有了19位数,在遇到这种比较大小的题目时,我们可以从两个方面考虑:①位数②高位数字,现在位数是固定的,那么我们就从高位数字入手。
我们先来找最大值:我们想到高位数字最大的必然是数字9,因此这串数字中我们先来去除12345678,剩下910111213141516171819,我们要去掉9后面最小的0,接下来是1,这样就得到了最大值9111213141516171819。
最小值的求法类似:我们先来确定最高位一定是除0外最小的数字,即1,其次我们要考虑让次高位的数字放上最小的数字0,这样我们就把234567891都去掉,剩下10111213141516171819,我们把0后面的数字2去掉,这样最小的数字就是1011113141516171819。
四年级数学培优之最大与最小

长(m)宽(m) 长+宽 面积(m²)
哪个是(m)
3
长17m 宽13m
1 2
豪宅? 19
11
30
18
12
30
209 216
3
17
13
30
221
4
长16m 宽14m
4
16
14
30
224
5
15
15
30
225
5
长15m 宽15m
抢答题开始啦……
抢答
1 和为9,积为最大的两个自然数是?
4×5=20
2 和为12,积为最大的两个自然数是? 6×6=36
选房子
四年级 A班
mi
Agela
石头
Cindy
天天
1
长19m 宽11m
2
长18m 宽12m
3
长17m
宽13m
4
长16m
宽14m
5
长15m 宽15m
长16长长m长长117181m5m9mm 宽14宽m宽宽宽1113215mm1mm
选房啦
1
长19m 发现:和相等,两数越接近,积越大
宽11m
2
长18m 宽12m
1
40
41
2
20
22
4
10
14
5
8
13
大
小
小
发现:积相等,两数越接近,和越小
例3 小明用40米长的竹篱笆围城一个长方形的养鸡场,要使长 和宽都是整数,怎样围才使养鸡场面积最大?最大面积是多少?
周长
长
40
19
40
18
40
17
四年级奥数之最值问题

四年级奥数之最值问题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#四年级奥数之最值问题知识点睛:在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。
“最大”、“最小”是我们所熟悉的两个概念,多年来各级数学竞赛中经常会出现求最值问题,解决办法有:一、枚举法例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。
但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁(北京市第三届“迎春杯”数学竞赛试题)分析与解开第一把锁,按最坏情况考虑试了3把还未成功,则第4把不用试了,它一定能打开这把锁,因此需要3次。
同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁则不用再试了。
这样最多要试的次数为:3+2+1=6(次)。
二、综合法例2x3=84A(x、A均为自然数)。
A的最小值是______。
(1997年南通市数学通讯赛试题)分析与解根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A的质因数至少含有一个2、两个3、两个7,才能满足上述要求。
即A的最小值为(2×3×3×7×7=)882。
三、分析法例3一个三位数除以43,商是a,余数是b,(a、b均为自然数),a+b 的最大值是多少(广州市五年级数学竞赛试题)分析与解若要求a+b的最大值,我们只要保证在符合题意之下,a、b尽可能大。
由乘除法关系得43a+b=一个三位数因为b是余数,它必须比除数小,即b<43b的最大值可取42。
根据上面式子,考虑到a不能超过23。
(因为24×43>1000,并不是一个三位数)当a=23时,43×23+10=999,此时b最大值为10。
当a=22时,43×22+42=988,此时b最大值为42。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级数学A班奥数专题->“最大与最小”问题在应用数学知识解决日常生活中的一些实际问题时,经常会出现解决方案不止一种,有时还会有无数种的情况。
在这种情况下,我们往往需要找最大量或最小量。
例1试求乘积为36,和为最小的两个自然数。
分析与解不考虑因数顺序,乘积是36的两个自然数有以下五种情况:1×36、2×18、3×12、4×9、6×6。
相应的两个乘数的和是:1+36=37、2+18=20、3+12=15、4+9=13、6+6=12。
显然,乘积是36,和为最小的两个自然数是6与6。
例2试求乘积是80,和为最小的三个自然数。
分析与解不考虑因数顺序,乘积是80的三个自然数有以下八种情况:1×2×40、1×4×20、1×5×16、1×8×10、2×2×20、2×4×10、2×5×8、4×4×5。
经过计算,容易得知,乘积是80,和为最小的三个自然数是4、4、5。
结论一:从上述两例可见,m个自然数的乘积是一个常数,则当这m 个乘数相等或最相近时,其和最小。
例3试求和为8,积为最大的两个自然数。
分析与解不考虑加数顺序,和为8的两个自然数有以下四种情况:1+7、2+6、3+5、4+4。
相对应的两个加数的积是:1×7=7、2×6=12、3×5=15、4×4=16。
显然,和为8,积为最大的两个自然数是4和4。
例4试求和为13,积为最大的两个自然数。
分析与解不考虑加数顺序,和为13的两个自然数有以下六种情况:1+12、2+11、3+10、4+9、5+8、6+7。
经过计算,不难发现,和为13,积为最大的两个结论二:从上述两例可知,m个自然数的和是一个常数,则当这m个数相等或最相近时,其积最大。
例5砌一平方米的围墙要用砖50块,现有5600块砖,用来砌一个矩形晒谷场的围墙。
如果围墙高2米,则砌成的晒谷场的长和宽各是多少米时,晒的谷最多?分析与解根据题意,首先可知5600块砖可砌围墙(5600÷50÷2=)56米,即长方形晒谷场的周长为56米。
要使晒谷场晒的谷最多,实际就是长方形晒谷场的面积(长×宽)要最大。
而长方形的周长56米一定,即长与宽的和(56÷2=)28米也一定,因此只有当长与宽相等(都是14米)时,面积才最大。
所以,晒谷场的长和宽都是14米时,晒的谷最多。
这时晒谷场的面积是:14×14=196(平方米)例6要用竹篱笆围一个面积为6400平方米的矩形养鸡场。
如果每米篱笆要用去30千克毛竹,那么该怎样围,才能使毛竹最省?分析与解要使毛竹最省,就是养鸡场的周长要最小,而矩形养鸡场的面积6400平方米一定,即长与宽的积一定,因此,只有当长与宽相等(都是80米)时,周长才最小。
所以,只有当养鸡场的长和宽都为80米时,所用毛竹最省。
这时所需毛竹是:30×〔(80+80)×2〕=30×320=9600(千克)例7用2到9这八个数字分别组成两个四位数,使这两个四位数的乘积最大。
分析与解用2、3、4、5、6、7、8、9这八个数字组成两个四位数,使乘积最大,显然,9和8应分别作两个数的千位数,7和6应分别作百位数,但7和6分别放在9和8谁的后面呢?因为:97+86=183,96+87=183,它们的和相等。
又有:97-86=11,96-87=9显然,96与87之间比97与86之间相隔更少,更相近。
所以,96与87的乘积一定大于97与86的乘积。
所以,7应放在8后面,6应放在9后面。
同理,可安排后面两位数字,得到的两个四位数是9642和8753。
它们的积是9642×8753=84396426例8试比较下列两数的大小:a=8753689×7963845b=8753688×7963846分析与解此题若采用转化法或设置中间数法都能比较出结果,但过程复杂。
仔细观察两数会发现,a中两个因数的和与b中两个因数的和相等。
因此,要比较a与b谁大,只要看a与b哪一个数中的两个因数之间相隔更少,更相近。
很容易看出8753688与7963846之间比8753689与7963845之间相隔更少,更相近,所以,可得出b>a。
专题训练(十二)1、用四张纸片:1、9、9和5,可组成的四位数中,则最小的数与最大的数之和是。
2、把47个苹果分放在盘内,要求每个盘子都有苹果,且个数不相同,这些苹果最多可放多少盘?3、七人参加数学竞赛,共得110分,但每人得分都不相等,最高分是20分,得分最低的至少是多少分?4、小明看一本90页的童话故事,每天看的页数不同,而且一天中最少看3次,那么小明看完这本书最多需要几天?5、把自然数1、2、3、4、……、39、40依次排列,1234567891011……3940,划去65个数字得到的多位数最大是多少?6、a、b是两个自然数,a+b=16,那么a×b最大是多少?7、a、b是两个自然数,a×b=49,那么a+b最小是多少?8、用40厘米长的铁丝围成的长方形中,最大一个面积是多少?9、教室一个窗户的面积是225平方分米,怎样设计窗户的形状和尺寸最省材料?10把16拆成若干个自然数的和,要求这些自然数的积尽量大,应如何拆?50呢?11、在下面的一排数字之间添上五个加号,组成一个连加算式,求这个连加算式的结果的最小值。
1 2 3 4 5 6 7 8 912、三个两位的连续偶数,它们的个位数字的和是7的倍数,这三个数的和最少是多少?“抽屉原理”教学设计【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第68页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。
3. 通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
下面我们开始上课,可以吗?二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
3支笔放进2个盒子里呢?生:不管怎么放,总有一个盒子里至少有2枝笔?是:是这样吗?谁还有这样的发现,再说一说。
师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。
(师巡视,了解情况,个别指导)师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。
(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗?生:没有了。
师:你能发现什么?生:不管怎么放,总有一个盒子里至少有2枝铅笔。
师:“总有”是什么意思?生:一定有师:“至少”有2枝什么意思?生:不少于两只,可能是2枝,也可能是多于2枝?师:就是不能少于2枝。
(通过操作让学生充分体验感受)师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
这是我们通过实际操作现了这个结论。
那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考——组内交流——汇报师:哪一组同学能把你们的想法汇报一下?组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
师:你能结合操作给大家演示一遍吗?(学生操作演示)师:同学们自己说说看,同位之间边演示边说一说好吗?师:这种分法,实际就是先怎么分的?生众:平均分师:为什么要先平均分?(组织学生讨论)生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……:你发现什么?生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
2.解决问题。
(1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?(学生活动—独立思考自主探究)(2)交流、说理活动。
师:谁能说说为什么?生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。
不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。
生2:我们也是这样想的。
生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。
生4:可以用5÷4=1……1,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?生:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:5÷4=1……1)师:同位之间再说一说,对这种方法的理解。