初一上册数学解一元一次方程练习题
初一上册数学第五章练习题:一元一次方程(附解析)

初一上册数学第五章练习题:一元一次方程(附解析)我们经常听见如此的问题:你的数学如何那么好啊?教教我诀窍吧?事实上学习这门课没有什么窍门。
只要你多练习总会有收成的,期望这篇七年级上册数学第五章练习题,能够关心到您!一、选择题(每小题4分,共12分)1.方程3x+6=0的解的相反数是()A.2B.-2C.3D.-32.若2x+1=8,则4x+1的值为()A.15B.16C.17D.193.某同学解方程5x-1=□x+3时,把□处数字看错得x=- ,他把□处看成了()A.3B.-9C.8D.-8二、填空题(每小题4分,共12分)4.方程3x+1=x的解为.5.若代数式3x+7的值为-2,则x=.6.(2021潜江中考)学校举行大伙儿唱大伙儿跳文艺汇演,设置了唱歌与舞蹈两类节目,全校师生一共表演了30个节目,其中唱歌类节目比舞蹈类节目的3倍少2个,则全校师生表演的唱歌类节目有个.三、解答题(共26分)7.(8分)解下列方程.(1)2x+3=x-1.(2)2t-4=3t+5.8.(8分)(2021雅安中考)用一根绳子绕一个圆柱形油桶,若围绕油桶3周,则绳子还多4尺;若围绕油桶4周,则绳子又少了3尺.这根绳子有多长?围绕油桶一周需要多少尺?【拓展延伸】9.(10分)先看例子,再解类似的题目.例:解方程|x|+1=3.方法一:当x0 时,原方程化为x+1=3,解方程,得x=2;当x0时,原方程化为-x+1=3,解方程,得x=-2,因此方程|x|+1=3的解是x=2或x=-2.方法二:移项,得|x|=3-1,合并同类项,得|x|=2,由绝对值的意义知x=2,因此原方程的解为x=2 或x =-2.问题:用你发觉的规律解方程:2|x|-3=5.(用两种方法解)答案解析1.【解析】选A.方程3x+6=0移项得3x=-6,方程两边同除以3,得x=-2;则-2的相反数是2.2.【解析】选A.由方程2x+1=8得x= ,把x的值代入4x+1得15.3.【解析】选C.把x=- 代入5x-1=□x+3,得:- -1=- □+3,解得:□=8.4.【解析】原方程移项,得3x-x=-1,合并同类项,得2x=-1,方程两边同除以2,得x=- .答案:x=-5.【解析】因为代数式3x+7的值为-2,因此3x+7=-2,移项,得3x=-2-7,合并同类项,得3x=-9,方程两边同除以3,得x=-3.答案:-36 .【解析】设舞蹈类节目有x个,则3x-2+x=30,解得x=8,因此3x-2=22.答案:227.【解析】(1)移项,得2x-x=-1-3.合并同类项,得x=-4.(2)移项得:2t-3t= 5+4.合并同类项,得-t=9.方程两边同除以-1,得: t=-9.【归纳整合】若方程中左右两边的系数有一定的关系,可先依照等式的差不多性质,将系数进行化简,可使方程变得简单,更容易解方程.因此,解题之前要先认真观看方程的特点,再进行解答.8.【解析】设围绕油桶一周需要x尺,依照题意,得3x+4=4x-3,解得x=7,因此3x+4=25.答:这根绳子25尺,围绕油桶一周需要7尺.9.【解析】方法一:当x0时,原方程化为2x-3=5,解得x=4;当x0时,原方程化为-2x-3=5,解得x=-4,即原方程的解为x=4或x=-4.与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
初一数学上册一元一次方程100道

一百道题3X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X* ( 5+1)=60 99X=100-XX+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=4010*+6=26 *=2 24:8*=1 *=3 %8*+23=39 *=200 4*+9=21 *=36:2*=3 *=1 5%*- 3=2 *=100 6 ×+8=68 ×=10 8 :6×=1/3 ×=4 .x-3/0.5-x+4/0.2=1.6 x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2 (x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5 (x=4/5)4.x/0.7-(0.17-0.2x)/0.03=1 (x=14/17)14.59+x-25.31=0x=10.72②x-48.32+78.51=80x=49.81③820- 16x=45.5 ×8 x=28.5④(x - 6)×7=2x x=8.4⑤3x+x=18x=4.5⑥0.8+3.2=7.2x=5⑦12.5 -3x=6.5x=2⑧1.2(x -0.64)=0.54x=1.092x=3+5x=2*33x=x+1x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*1x=3*42x=5*610x=15x=106x=710x=1010=x+110=2x+110=3x+111=4x+111=2x+111=3x+111=5x+2311=6x+12311=7x+211=12x+3411=9x+111=9x+221=4x+121=2x+121=3x+121=5x+2321=6x+12321=7x+221=12x+3421=9x+121=9x+231=4x+131=2x+131=3x+131=5x+2331=6x+12331=7x+231=12x+3431=9x+131=9x+212=4x+112=2x+112=3x+112=5x+231=6x+12312=7x+212=12x+3412=9x+112=9x+23X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X* ( 5+1)=60 99X=100-XX+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=123y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100 道问题补充:第 3 章一元一次方程全章综合测试(时间90 分钟,满分100 分)一、填空题.(每小题 3 分,共 24 分)1.已知 4x2n-5+5=0 是关于 x 的一元一次方程,则n=_______ .2.若 x=-1 是方程 2x-3a=7 的解,则a=_______.3.当 x=______ 时,代数式x-1 和的值互为相反数.4.已知 x 的与 x 的 3 倍的和比x 的 2 倍少 6,列出方程为________.5.在方程 4x+3y=1 中,用 x 的代数式表示y,则 y=________ .6.某商品的进价为300 元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6 天完成,乙单独做需12 天完成,若甲、乙一起做,?则需 ________天完成.二、选择题.(每小题 3分,共30 分)9.方程 2m+x=1 和 3x-1=2x+1 有相同的解,则m 的值为().A . 0 B. 1 C. -2 D. -10.方程│ 3x│=18 的解的情况是().A .有一个解是 6 B.有两个解,是± 6C.无解D.有无数个解11.若方程 2ax-3=5x+b 无解,则 a, b 应满足().A .a≠, b≠3B . a= ,b=-3C.a≠,b=-3 D. a= , b≠-312.把方程的分母化为整数后的方程是().13.在 800 米跑道上有两人练中长跑,甲每分钟跑300 米,乙每分钟跑260 米, ?两人同地、同时、同向起跑,t分钟后第一次相遇,t 等于().A.10 分B.15 分C.20 分D.30 分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A .增加 10%B .减少 10% C.不增也不减D.减少 1%15.在梯形面积公式S= ( a+b) h 中,已知 h=6 厘米, a=3 厘米, S=24 平方厘米,则 b=( ?)厘米.A . 1B .5 C. 3 D. 416.已知甲组有 28 人,乙组有20 人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A .从甲组调 12 人去乙组B.从乙组调 4 人去甲组C.从乙组调 12 人去甲组D.从甲组调 12 人去乙组,或从乙组调 4 人去甲组17.足球比赛的规则为胜一场得 3 分,平一场得1 分,负一场是 0 分, ?一个队打了 14 场比赛,负了 5 场,共得19 分,那么这个队胜了()场.A . 3B .4 C.5 D. 618.如图所示,在甲图中的左盘上将2 个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3 个B.4 个C.5 个D.6 个三、解答题.( 19, 20 题每题 6 分, 21, 22 题每题 7 分, 23,24 题每题10 分,共 46 分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:( x-1) - (3x+2 ) = - (x-1 ).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,?这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.?已知卡片的短边长度为10 厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的 3 倍少 2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知 A 站至 H 站总里程数为 1500 千米,全程参考价为 180 元.下表是沿途各站至 H 站的里程数:车站名 A B C D E FGH各站至 H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从 B 站至 E 站火车票价,其票价为=87.36≈ 87(元).(1)求 A 站至 F 站的火车票价(结果精确到 1 元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:?“我快到站了吗?”乘务员看到王大妈手中的票价是66 元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50 人 51~100 人 100 人以上票价 5 元 4.5 元4 元某校初一甲、乙两班共 103 人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付 486 元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案 :一、 1.32.-3 (点拨:将x=-1 代入方程 2x-3a=7 ,得 -2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得 x= )4. x+3x=2x-6 5. y= - x6.525 (点拨:设标价为 x 元,则 =5% ,解得 x=525元)7. 18, 20, 228.4 [ 点拨:设需 x 天完成,则 x( + )=1 ,解得x=4] 二、 9.D10. B (点拨:用分类讨论法:当x≥ 0 时, 3x=18 ,∴ x=6当x<0 时, -3=18 ,∴ x=-6故本题应选B)11.D (点拨:由 2ax-3=5x+b ,得( 2a-5)x=b+3 ,欲使方程无解,必须使 2a-5=0,a= ,b+3 ≠0, b≠ -3,故本题应选 D .)12. B (点拨;在变形的过程中,利用分式的性质将分式的分子、 ?分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13. C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了 800?米, ?列方程得 260t+800=300t ,解得 t=20)14. D15.B (点拨:由公式 S= ( a+b)h,得 b= -3=5 厘米)16. D 17.C18. A (点拨:根据等式的性质2)三、 19.解:原方程变形为200( 2-3y ) -4.5= -9.5∴400-600y-4.5=1-100y-9.5 500y=404∴y=20.解:去分母,得15( x-1 ) -8( 3x+2) =2-30 ( x-1 )∴21x=63∴x=321.解:设卡片的长度为 x 厘米,根据图意和题意,得5x=3( x+10 ),解得 x=15所以需配正方形图片的边长为15-10=5 (厘米)答:需要配边长为 5 厘米的正方形图片.22.解:设十位上的数字为 x,则个位上的数字为 3x-2 ,百位上的数字为 x+1 ,故100( x+1 )+10x+( 3x-2 )+100(3x-2 )+10x+( x+1 ) =1171解得 x=3答:原三位数是 437.23.解:( 1)由已知可得=0.12A 站至 H 站的实际里程数为1500-219=1281(千米)所以 A 站至 F 站的火车票价为0.12×1281=153.72 ≈154(元)( 2)设王大妈实际乘车里程数为x 千米,根据题意,得=66解得 x=550 ,对照表格可知, D 站与 G 站距离为550 千米,所以王大妈是在 D 站或 G?站下的车.24.解:( 1)∵ 103>100∴每张门票按 4 元收费的总票额为103× 4=412 (元)可节省 486-412=74 (元)( 2)∵甲、乙两班共103 人,甲班人数>乙班人数∴甲班多于50 人,乙班有两种情形:①若乙班少于或等于 50 人,设乙班有 x 人,则甲班有( 103-x )人,依题意,得5x+4.5 ( 103-x) =486解得 x=45,∴ 103-45=58 (人)即甲班有 58 人,乙班有 45 人.②若乙班超过 50 人,设乙班 x 人,则甲班有( 103-x)人,根据题意,得4.5x+4.5 ( 103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为 58 人,乙班为45 人.3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点 1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.( 1)从 3x-8=2 ,得到 3x=2-8; ( 2)从 3x=x-6 ,得到 3x-x=6.2.下列变形中:①由方程=2 去分母,得x-12=10;②由方程x= 两边同除以,得 x=1;③由方程 6x-4=x+4 移项,得 7x=0;④由方程 2- 两边同乘以6,得 12-x-5=3 ( x+3) . 错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子 5x-7 与4x+9A.2 B.16 C. D.的值相等,则x 的值等于().4.合并下列式子,把结果写在横线上.(1) x-2x+4x=__________; ( 2)5y+3y-4y=_________; (3) 4y-2.5y-3.5y=__________ .5.解下列方程.( 1) 6x=3x-7 ( 2) 5=7+2x 3)y- = y-2 ( 4)7y+6=4y-36.根据下列条件求x 的值 :( 1) 25 与 x 的差是 -8.( 2)x的与8的和是2.7.如果方程 3x+4=0 与方程 3x+4k=8 是同解方程,则8.如果关于 y 的方程 3y+4=4a 和 y-5=a 有相同解,则知能点 2 用一元一次方程分析和解决实际问题k=________ .a 的值是 ________.9.一桶色拉油毛重8 千克,从桶中取出一半油后,毛重4.5 千克, ?桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有 50 克, 45 克盐,问应该从盘 A 内拿出多少盐放到盘 B 内,才能使两盘内所盛盐的质量相等.11.小明每天早上7: 50 从家出发,到距家5 分后,爸爸以180 米 /分的速度去追小明,( 1)爸爸追上小明用了多长时间?( 2)追上小明时距离学校有多远?1000 米的学校上学,?并且在途中追上了他.?每天的行走速度为80 米 /分.一天小明从家出发【综合应用提高】12.已知 y1=2x+8 , y2=6-2x .( 1)当 x 取何值时, y1=y2? ( 2)当 x 取何值时, y1 比 y2 小 5?13.已知关于x 的方程 x=-2 的根比关于x 的方程 5x-2a=0 的根大 2,求关于x 的方程-15=0 的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:( 1)题意适合一元一次方程;( 2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图 3-2 是某风景区的旅游路线示意图,其中B, C, D 为风景点, E 为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从 A 处出发,以 2 千米 / 时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线 A —D —C— E— A 游览回到 A 处时,共用了 3 小时,求 CE 的长.(2)若此学生打算从 A 处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,?并说明这样设计的理由(不考虑其他因素).答: 案1.( 1)题不对, -8 从等号的左边移到右边应该改变符号,应改为 3x=2+8 .(2)题不对, -6 在等号右边没有移项,不应该改变符号,应改为 3x-x=-6 .2. B [ 点拨:方程x= ,两边同除以,得 x= )3. B [ 点拨:由题意可列方程5x-7=4x+9 ,解得 x=16 )4.( 1) 3x ( 2) 4y ( 3) -2y5.( 1)6x=3x-7 ,移项,得6x-3x=-7 ,合并,得 3x=-7 ,∴方程 5x-2a=0 的根为 -6.系数化为1,得 x=- .∴ 5×( -6) -2a=0,∴ a=-15.( 2) 5=7+2x ,即 7+2x=5 ,移项,合并,得 2x=-2 ,系∴ -15=0 .数化为 1,得 x=-1.∴ x=-225 .( 3)y- = y-2,移项,得 y- y=-2+ ,合并,得 y=-,14.本题开放,答案不唯一.系数化为1,得 y=-3 .15.解:( 1)设 CE 的长为 x 千米,依据题意得( 4) 7y+6=4y-3 ,移项,得7y-4y=-3-6 ,合并同类项, 1.6+1+x+1=2 ( 3-2× 0.5)得 3y=-9 ,解得 x=0.4,即 CE 的长为 0.4 千米.系数化为1,得 y=-3 .( 2)若步行路线为 A —D — C— B— E— A(或 A —E— B6.( 1)根据题意可得方程:25-x=-8 ,移项,得25+8=x ,—C—D—A),合并,得 x=33 .则所用时间为( ?1.6+1+1.2+0.4+1 )+3 × 0.5=4.1(小时);( 2)根据题意可得方程:x+8=2 ,移项,得 x=2-8 ,若步行路线为A— D— C—E—B—E—A(或 A—E—B 合并,得x=-6 ,—E—C—D—A),系数化为1,得 x=-10 .则所用时间为( 1.6+1+0.4+0.4 × 2+1)+3 × 0.5=3.9(小7 . k=3 [ 点拨:解方程 3x+4=0 ,得 x=- ,把它代入时).3x+4k=8 ,得 -4+4k=8 ,解得 k=3] 故步行路线应为A—D—C—E—B—E—A(或 A —E—B8.19 [ 点拨:∵ 3y+4=4a ,y-5=a 是同解方程,∴ y==5+a ,—E—C—解得 a=19]9.解:设桶中原有油 x 千克,那么取掉一半油后,余下部分色拉油的毛重为( 8-0.5x )千克,由已知条件知,余下的色拉油的毛重为 4.5 千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5 .解这个方程,得x=7 .答:桶中原有油7 千克.[ 点拨:还有其他列法]10.解:设应该从盘 A 内拿出盐x 克,可列出表格:盘A盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘 A 内拿出盐x 克放在盘B 内,则根据题意,得50-x=45+x .解这个方程,得x=2.5 ,经检验,符合题意.答:应从盘 A 内拿出盐 2.5 克放入到盘 B 内.11.解:( 1)设爸爸追上小明时,用了x 分,由题意,得180x=80x+80 × 5,移项,得 100x=400 .系数化为1,得 x=4 .所以爸爸追上小明用时 4 分钟.(2) 180× 4=720(米),1000-720=280 (米).所以追上小明时,距离学校还有280 米.12.( 1) x=-[ 点拨:由题意可列方程2x+8=6-2x ,解得 x=- ] ( 2) x=-1.7(2x-1)-3(4x-1)=4(3x+2)-12.(5y+1)+ (1-y)= (9y+1)+ (1-3y)[ 点拨:由题意可列方程6-2x- ( 2x+8 ) =5,解得 x=- ]13.解:∵x=-2,∴ x=-4 .∵方程x=-2 的根比方程5x-2a=0 的根大 2,3.[ (- 2)-4 ]=x+24.20%+(1-20%)(320-x)=320 ×40%5.2(x-2)+2=x+16.2(x-2)-3(4x-1)=9(1-x)7.11x+64-2x=100-9x8.15-(8-5x)=7x+(4-3x)9.3(x-7)-2[9-4(2-x)]=2210.3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x10a+6b-7a+3b-10a+10b+12a+8b 4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2)(5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+11/2(x6^2-y)+1/3(x-y^2)+(x^2 )( ^为平方号)6-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy) 5b+2c-7b+4z-3z(3x2-4xy+2y2)+(x2+2xy-5y2) 3b+3c-6a+8b-7c-2a(x-y)2-(x-y)2-[(x-y)2-(x-y)2]3c-7b+5z-7b+4a-6n+8b-3v+9n-7v (2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b。
人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
七上解一元一次方程100道练习题(有答案)

七上解一元一次方程100道练习题(有答案)1.将2x + 1 = 7改为正确的格式:2x = 6,x = 3.这个方程的解为x = 3.2.将5x - 2 = 8改为正确的格式:5x = 10,x = 2.这个方程的解为x = 2.3.将3x + 3 = 2x + 7改为正确的格式:x =4.这个方程的解为x = 4.4.将x + 5 = 3x - 7改为正确的格式:2x = 12,x = 6.这个方程的解为x = 6.5.将11x - 2 = 14x - 9改为正确的格式:3x = 7,x = 7/3.这个方程的解为x = 7/3.6.将x - 9 = 4x + 27改为正确的格式:-3x = -36,x = 12.这个方程的解为x = 12.7.删除这个段落,因为没有提供足够的信息来解决问题。
8.将x = 3/2(x + 16)改为正确的格式:x = 24/(4 - 3),x = 24.这个方程的解为x = 24.9.将2x + 6 = 1改为正确的格式:2x = -5,x = -5/2.这个方程的解为x = -5/2.10.将10x - 3 = 9改为正确的格式:10x = 12,x = 6/5.这个方程的解为x = 6/5.11.将5x - 2 = 7x + 8改为正确的格式:-2x = 10,x = -5.这个方程的解为x = -5.12.将1/3x - 3 = 3x + 5/22改为正确的格式:11/66x = 31/66,x = 31/11.这个方程的解为x = 31/11.13.将4x - 2 = 3 - x改为正确的格式:5x = 5,x = 1.这个方程的解为x = 1.14.将-7x + 2 = 2x - 4改为正确的格式:-9x = -6,x = 2/3.这个方程的解为x = 2/3.15.将-x = -2/5(x + 1)改为正确的格式:-3x = -2,x = 2/3.这个方程的解为x = 2/3.16.将2x - (1/3)x = -1/3 + 2改为正确的格式:5/3x = 5/3,x = 1.这个方程的解为x = 1.17.将4(x + 0.5) + x = 7改为正确的格式:5x = 4.这个方程没有解,因为左边的表达式是一个正数,而右边是一个正数。
人教版初一七年级上册数学 课时练《 解一元一次方程(二)—去括号与去分母》03(含答案)

人教版七年级上册数学《3.3解一元一次方程(二)—去括号与去分母》课时练一、单选题1.关于x 的方程(a +1)x =a ﹣1有解,则a 的值为()A .a ≠0B .a ≠1C .a ≠﹣1D .a ≠±12.方程()3235x x --=去括号变形正确的是()A .3235x x --=B .3265x x --=C .3235x x -+=D .3265x x -+=3.下列方程变形中,正确的是()A .方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1C .方程23x =32,未知数系数化为1,得x =1D .方程10.2x -﹣0.5x=1化成3x =64.在解方程123123x x -+-=时,去分母正确的是()A .3(1)2(23)1x x --+=B .3(1)2(23)1x x -++=C .3(1)2(23)6x x --+=D .3(1)2(23)6x x --+=5.已知有理数x 滴足:31752233x xx -+-³-,若32x x --+的最小值为a ,最大值为b ,则a b -=()A .3-B .4-C .5-D .6-6.若方程()2160x --=与关于x 的方程313a x-=的解互为相反数,则a 的值为().A .13-B .13C .73D .1-7.将方程0.50.2 1.550.90.20.5x x--+=变形正确的是()A .521550925x x --+=B .521550.925x x--+=C .52155925x x--+=D .520.93102x x -+=-8.解方程21132x x a-+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是()A .3x =-B .2x =-C .13x =D .13x =-9.将方程211132x x -+-=去分母得到()221316x x --+=,错在()A .分母的最小公倍数找错B .去分母时漏乘项C .去分母时分子部分没有加括号D .去分母时各项所乘的数不同10.若关于x 的方程2123kx k kx ++=+的解为非正整数,那么符合条件的所有的整数k 之和为()A .32B .29C .28D .2711.把方程102.07.015.03.0=--xx 分母化为整数,正确的是()A .11570132xx --=B .101570132x x --=C .10157132xx --=D .10 1.57132xx --=12.小强在解方程时,不小心把一个数字用墨水污染成了x +2=1-2x -·,他翻阅了答案知道这个方程的解为x =1,于是他判断●应该是()A .5B .3C .-3D .-513.若1x =是方程36m x x -+=的解,则关于y 的方程()()3225m y m y --=-的解是()A .10y =-B .3y =C .43y =D .4y =14.小明解一道一元一次方程的步骤如下0.10.20.20.510.60.3x x x +--=+解:2251 (63)x x x +--=+①()()622256.......x x x -+=-+②624106..............x x x --=-+③46106 2...............x x x ---=--+④1114............................x -=-⑤14 (11)x =⑥以上6个步骤中,其依据是等式的性质有()A .①②④B .②④⑥C .③⑤⑥D .①②④⑥二、填空题15.解一元一次方程3141136x x --=-时,为达到去分母目的,第一步应该在方程的两边同乘以各分母的最小公倍数________.16.关于x 的方程4(1)3(1)2x k +--=的解是1=-x k ,则k 的值是_________.17.若52x +与27-+x 的值互为相反数,则2x -=_______.18.定义一种新运算:a *b =12a ﹣13b .若(x +3)*(2x ﹣1)=1,则根据定义的运算求出x 的值为_____.19.已知关于x 的一元一次方程点320212021xx a +=+①与关于y 的一元一次方程()3232021322021y y a --=--②,若方程①的解为2021x =,则方程②的解为______.三、解答题20.解下列方程:(1)113424x -=(2)75348x -=(3)215168x x -+=(4)192726x x --=(5)11(32)152x x --=(6)2151136x x +--=(7)1(214)427x x+=-(8)329(200)(300)300101025x x +--=´21.用方程解答下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y .22.若方程126x -+13x +=1-214x +与关于x 的方程x +63x a -=6a -3x 的解相同,求a 的值.23.小明同学在解方程21133x x a-+=-去分母时,方程右边的1-没有乘3,因而求得方程的解为3x=,试求a的值,并正确地解方程.24.规定符号(a,b)表示a、b两个数中较小的一个,规定符号[a,b]表示两个数中较大的一个.例如(3,1)=1,[3,1]=3.(1)计算:(-2,3)+[23-,(2,34-)];(2)若(m,m-2)+3[-m,-m-1]=-5,求m的值.参考答案1.C 2.D 3.D 4.D 5.B 6.A7.D 8.A 9.C 10.B11.B 12.A13.B14.B15.617.-518.519.y =-673解:∵关于x 的一元一次方程320212021xx a +=+①的解为x =2021,∴关于y 的一元一次方程()3232021322021y y a --=--②中-(3y -2)=2021,解得:y =-673,故答案为:y =-673.20.(1)5x =;(2)1314x =;(3)1x =-;(4)203x =-;(5)2512x =;(6)3x =-;(7)78x =;(8)216x =解:(1)移项,得131442x =+,合并同类项,得1544x =,系数化为1,得5x =;(2)去分母,得2(75)3x -=,去括号,得14103x -=,移项,得14310x =+,合并同类项,得1413x =,系数化为1,得1314x =;(3)去分母,得4(21)3(51)x x -=+,去括号,得84153x x -=+,移项,得81543x x -=+,合并同类项,得77x -=,系数化为1,得1x =-;(4)去分母,得34292x x -=-,移项,得39242x x -=-+,合并同类项,得640x -=,系数化为1,得203x =-;(5)去括号,得13152x x -+=,移项,得13152x x +=+,合并同类项,得6552x =,系数化为1,得2512x =;(6)去分母,得2(21)(51)6x x +--=,去括号,得42516x x +-+=,移项,得45621x x -=--,合并同类项,得3x -=,系数化为1,得3x =-;(7)去括号,得22427x x +=-,移项,得22427x x +=-,合并同类项,得1627x =,系数化为1,得78x =;(8)去括号,得3260601081010x x +-+=,移项,得3210860601010x x +=+-,合并同类项,得11082x =,系数化为1,得216x =.21.(1)23x =;(2)45y =-.解:(1)根据题意列方程为:()()1.24 3.614x x +=-去括号得:1.2 4.8 3.650.4x x +=-,移项、合并同类项得: 2.455.2x -=-系数化为1得:23x =.(2)根据题意列方程为:3 1.5124y y +-=去分母得:2(3 1.5)1y y +=-去括号得:631y y +=-,移项、合并同类项得:54y =-系数化为1得:45y =-.22.6解:121211634x x x -+++=-,2(12)4(1)123(21)x x x -++=-+,24441263x x x -++=--,63x =,12x =,把12x =代入6336x a ax x -+=-,得:1332362a a -+=-,3629a a +-=-,318a -=-,6a =,∴a 的值为6.23.3a =,1x =解:把3x =代入方程()211x x a -=+-,得()6131a -=+-,解得3a =.把3a =代入21133x x a-+=-,得213133x x -+=-.去分母,得2133x x -=+-,移项,得2331x x -=-+,合并同类项,得1x =.24.(1)83-;(2)m =32.解:(1)(2,34-)=34-,(-2,3)=-2,[23-,(2,34-)]=[23-,34-]=23-,则(-2,3)+[23-,(2,34-)]=-2+(23-)=83-;(2)根据题意得:m-2+3×(-m)=-5,解得m=3 2.。
(完整版)初一数学上册一元一次方程100道

精心整理一百道题3X+5X=4814X-8X=126*5+2X=4420X-50=5028+6X=8832-22X=1024-3X=310X*(5+1)=6099X=100-X80y-90=7078y+2y=16088-x=809-4x=120x=4065y-30=10051y-y=10085y+1=-8645x-50=4010*+6=26*=224:8*=1*=3%8*+23=39*=2004*+9=21*=36:2*=3*=15%*-3=2*=1006×+8=68×=108:6×=1/3×=4.x-3/0.5-x+4/0.2=1.6x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2(x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5(x=4/5)4.x/0.7-(0.17-0.2x)/0.03=1(x=14/17)14.59+x-25.31=0 x=10.72②x-48.32+78.51=80x=49.81③820-16x=45.5×8④(x-x=5x=2x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*12x=5*610x=15x=106x=710x=1010=x+110=2x+1 10=3x+111=4x+131=12x+34 31=9x+1 31=9x+212=4x+1 12=2x+1 12=3x+1 12=5x+23 1=6x+12312=12x+3412=9x+112=9x+23X+5X=4814X-8X=126*5+2X=4420X-50=5028+6X=8832-22X=1024-3X=310X*(5+1)=6099X=100-XX+3=18X-6=1256-2X=2080y-90=7078y+2y=16088-x=809-4x=120x=4065y-30=10051y-y=10085y+1=-8645x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.456____78•则需9A.10AC11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3B.a=,b=-3C.a≠,b=-3D.a=,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10%B.减少10%C.不增也不减D.减少1%15b=(A.16ACD1714A.18A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-120.解方程:(x-1)-(3x+2)=-(x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个23.千米,(1(224票价5元4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1 2.-3得3.4.6.525解得7.18 8.4[解得二、9 10.B 当x≥0当x<011.D x=b+3 a=,12.B方程)程得22100((x+1解得23A站所以A (2解得距离为G•24103×>x3.2【知能点分类训练】知能点1合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8;(2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x=两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2-两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4B3A.2B4(1)(3)5(1)6(1)78知能点9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12(113.-15=0的解.14(1(215.为两2千米/(1(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答:案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B[点拨:方程x=,两边同除以,得x=)3.B[点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(15.(1并,得(2)得(3)y=-(4)6.(1项,得(2得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3[点拨:解方程3x+4=0,得x=-,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19[点拨:∵3y+4=4a,y-5=a是同解方为盘A盘B原有盐(克)5045现有盐(克)50-x45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B 内.11.解:(1)设爸爸追上小明时,用了x(2)12.(1[x=-](2)[解得13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)E—A+3×A(或)+3E—A4.20%+(1-20%)(320-x)=320×40%5.2(x-2)+2=x+16.2(x-2)-3(4x-1)=9(1-x)7.11x+64-2x=100-9x8.15-(8-5x)=7x+(4-3x)9.3(x-7)-2[9-4(2-x)]=2210.3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2) (5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2)。
初一数学上册一元一次方程100道

一百道题3X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X*(5+1)=60 99X=100-X X+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=1 23y-23=23 4x-20=0 80y+20=10053x-90=16 2x+9x=11 12y-12=2480+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=9080y-90=70 78y+2y=160 88-x=809-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=4010*+6=26 *=2 24:8*=1 *=3 %8*+23=39 *=200 4*+9=21 *=3 6:2*=3 *=1 5%*-3=2 *=100 6×+8=68 ×=10 8:6×=1/3 ×=4 .x-3/+4/= x=+8/3-/=2 (x=1/5)3.(4-6x)/ (x=4/5)(x=14/17)+=0x=②+=80x=③820-16x=×8x=④(x-6)×7=2xx=⑤3x+x=18 x=⑥+=x=5⑦=x=2⑧=x=2x=3+5 x=2*33x=x+1 x=2x-2 x=32+3 2x=1+4 2x=x+1 3x=3=x 4x=4x=56+4x=3*42x=5*610x=15x=106x=710x=1010=x+110=2x+1 10=3x+111=4x+1 11=2x+1 11=3x+1 11=5x+23 11=6x+123 11=7x+2 11=12x+34 11=9x+1 11=9x+221=4x+1 21=2x+1 21=3x+1 21=5x+23 21=6x+123 21=7x+2 21=12x+34 21=9x+131=4x+131=2x+131=3x+131=5x+2331=6x+12331=7x+231=12x+3431=9x+131=9x+212=4x+112=2x+112=3x+112=5x+231=6x+12312=7x+212=12x+3412=9x+112=9x+23X+5X=48 14X-8X=12 6*5+2X=4420X-50=50 28+6X=88 32-22X=1024-3X=3 10X*(5+1)=60 99X=100-X X+3=18 X-6=12 56-2X=204y+2=6 x+32=76 3x+6=1816+8x=40 2x-8=8 4x-3*9=298x-3x=105 x-6*5=42 x+5=72x+3=10 12x-9x=9 6x+18=4856x-50x=30 5x=15 78-5x=2832y-29=3 5x+5=15 89x-9=80100-20x=20 55x-25x=60 76y-75=1 23y-23=23 4x-20=0 80y+20=100 53x-90=16 2x+9x=11 12y-12=24 80+5x=100 7x-8=6 65x+35=10019y+y=40 25-5x=15 79y+y=8042x+28x=140 3x-1=8 90y-90=90 80y-90=70 78y+2y=160 88-x=80 9-4x=1 20x=40 65y-30=10051y-y=100 85y+1=-86 45x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式 x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解 D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分 B.15分 C.20分 D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减 D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组 B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡()A.3个 B.4个 C.5个 D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为 =≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱(2)两班各有多少名学生(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程 x-1=- ,得x= )4. x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则 =5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x( + )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为 200(2-3y)=∴=500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得 5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得 =A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为×1281=≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得+(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程 =2去分母,得x-12=10;②由方程 x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C. D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)5.解下列方程.(1)6x=3x-7 (2)5=7+2x 3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重千克,•桶中原有油多少千克10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间(2)追上小明时距离学校有多远【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2 (2)当x取何值时,y1比y2小513.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A 处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答: 案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程 x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为()千克,由已知条件知,余下的色拉油的毛重为千克,因为余下的色拉油的毛重是一个定值,所以可列方程=.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克) 50 45现有盐(克) 50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=,经检验,符合题意.答:应从盘A内拿出盐克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ] 13.解:∵ x=-2,∴x=-4.∵方程 x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴ -15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得+1+x+1=2(3-2×)解得x=,即CE的长为千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C —D—A),则所用时间为(•+1+++1)+3×=(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(+1++×2+1)+3×=(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E —C—1. 7(2x-1)-3(4x-1)=4(3x+2)-12. (5y+1)+ (1-y)= (9y+1)+ (1-3y)3 .[ (- 2)-4 ]=x+24. 20%+(1-20%)(320-x)=320×40%5. 2(x-2)+2=x+16. 2(x-2)-3(4x-1)=9(1-x)7. 11x+64-2x=100-9x8. 15-(8-5x)=7x+(4-3x)9. 3(x-7)-2[9-4(2-x)]=2210. 3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b4xy-2y+3x-xy (3x-5y)-(6x+7y)+(9x-2y) 2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2) (5x-4y-3xy)-(8x-y+2xy) a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] (2k-1)x2-(2k+1)x+32(x-2)-3x-22y-3y+1-6y3b-6c+4c-3a+4b2a-5b+4c-7a+5a+5b-4c4a+6c+7a-6a+7b-3c-6b5b+2c-7b+4z-3z 3b+3c-6a+8b-7c-2a3c-7b+5z-7b+4a-6n+8b-3v+9n-7v。
七年级数学上册一元一次方程专项练习题

一.选择题(共10小题)1.下列是一元一次方程的是()A.x+3=B.x2+3x=1C.x+y=5D.7x+1=32.下列等式变形正确的是()A.由x﹣1=5,得x=4B.由4x=2,得x=2C.由ax=bx,得a=b D.由﹣3x=6,得x=﹣23.在解方程3x+5=﹣2x﹣1的过程中,移项正确的是()A.3x﹣2x=﹣1+5B.﹣3x﹣2x=5﹣1C.﹣3x﹣2x=﹣5﹣1D.3x+2x=﹣1﹣54.若和3﹣2x互为相反数,则x的值为()A.﹣3B.3C.1D.﹣15.已知A=2x+1,B=5x﹣4,若A比B小1,则x的值为()A.2B.﹣2C.3D.﹣36.在如图所示的三阶幻方中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为()A.20B.21C.30D.317.小强同学想根据方程7x+6=8x﹣6编一道应用题:“几个人共同种一批树苗,_____,求参与种树的人数.”若设参与种树的有x人,那么横线部分的条件应描述为()A.若每人种7棵,则缺6棵树苗;若每人种8棵,则剩下6棵树苗未种B.若每人种7棵,则缺6棵树苗;若每人种8棵,则缺6棵树苗C.若每人种7棵,则剩下6棵树苗未种;若每人种8棵,则剩下6棵树苗未种D.若每人种7棵,则剩下6棵树苗未种;若每人种8棵,则缺6棵树苗8.下边是2020年1月份的日历表,平移表中带阴影的方框,则方框中三个数的和可能是()A.57B.84C.89D.939.2022年卡塔尔世界杯于北京时间11月21日0时正式开幕.某足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场10.某商品原先的利润率为30%,为了促销,现降价30元销售,此时利润率下降为15%,那么该商品的进价是()A.130B.150C.200D.300二.填空题(共6小题)11.关于x的一元一次方程ax﹣5=3的解是2,则a的值为4.12.某钢厂预计今年的钢产量比去年增加15%,可达到230万吨.去年的钢产量是多少?如果设去年产量为x万吨,那么可列方程为,方程的解是x=.13.我们定义一种新的运算:x*y=x+y﹣xy,其中等号右边的运算为正常的加减乘除运算,例如3*2=3+2﹣3×2=﹣1.在上述运算法则下,若2*x=﹣5,则x=.14.幻方是中国古代的一种谜题,又称九宫图,即在正方形网格中填上9个整数,使每行、每列及对角线上的数字之和都相等.图中给出了幻方的部分数字,则x=.15.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为,则所有满足条件的x的值为.16.如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为17,当点N移动到点A时,点M所对应的数为5,则点A在数轴上表示的数为.三.解答题(共5小题)17.解下列方程:(1)x+2=12﹣4x;(2).18.一艘船从甲码头顺流而行,用了3小时到达乙码头,该船从乙码头返回甲码头逆流而行,用了5小时,已知水流速度是3千米/小时,求船在静水中的速度.18.我校举行七年级数学运算闯关赛,要求每班选派五位选手参赛,每位选手需要计)算30道题目,只有答对25道题目以上才能获奖.如果以答对25道题为基准,用正数表示超过基准的题数.下面是七年级某班五名同学的答题情况统计表:答题情况统计表张明李丽王杰刘浩徐春4﹣352﹣1(1)该班五位同学中,答对题数最多的同学比答对题数最少的同学多答对几题?(2)若每答对一道题目得4分(不写或写错得0分),求该班五位同学的总分.19.列一元一次方程解应用题:数学老师为了表扬计算擂台赛满分的同学,决定从网店给同学们买一些练习本作为奖品,该网店按表中所示的方式卖本:(1)当老师买多少本时,分两次购买(每次购买数量不超过20本)与一次性购买所花费用相同?20本及以下20本以上单价4元/本超过20本的部分打8折邮费一次5元一次14元(2)临近双十一,对于购买20本以上的顾客,商家给出了更大优惠:所有练习本都按照8折出售.当老师想买20个本时,怎么购买更合理?20.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】数轴上点A表示的数为﹣4,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向终点B匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,Q到达A点后,再立即以同样的速度返回B点,当点P到达终点后,P.Q两点都停止运动,设运动时间为t秒(t>0).【综合运用】(1)填空:A,B两点间的距离AB=,线段AB的中点表示的数为.(2)当t为何值时,P,Q两点间距离为3.(3)若点M为AQ的中点,点N为BP的中点,在运动过程中,的值是否会发生变化?若变化,请说明理由,若不变,请求出相应的数值.21.如图,数轴上点A表示的数为﹣4,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).(1)A,B两点间的距离等于,线段AB的中点表示的数为;(2)用含t的代数式表示:t秒后.点P表示的数为,点Q表示的数为;(3)求当t为何值时,PQ=AB?(4)若点M为PQ的中点,当点M到原点距离为9时,t=.22.如图,已知数轴上点A表示的数为a,B表示的数为b,且a、b满足(a﹣10)2+|b+6|=0.动点P从点A出发,以每秒8个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点A表示的数是,点B表示的数是,点P表示的数是(用含t的式子表示)(2)当点P在点B的左侧运动时,M、N分别是P A、PB的中点,求PM﹣PN的值;(3)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,点P运动多少秒时P、Q两点相距4个单位长度?。