第三章.图像灰度直方图变换

合集下载

图像灰度变换原理

图像灰度变换原理

图像灰度变换原理
图像灰度变换原理是指通过对图像的像素点进行灰度值的变换,从而改变图像的亮度和对比度。

灰度变换可以通过增加或减少像素值来改变图像的灰度级,并根据需求来调整图像的亮度和对比度。

灰度变换可以用以下数学公式表示:
g(x, y) = T(f(x, y))
其中,f(x, y)表示输入图像的灰度级,g(x, y)表示输出图像的
灰度级,T表示灰度变换函数。

常见的灰度变换函数有线性变换、非线性变换和直方图均衡化等。

线性灰度变换函数是最简单的一种灰度变换方式,通过对输入图像的每一个像素点应用一个线性方程来实现灰度的线性变换。

线性变换可以改变图像的对比度和亮度。

常见的线性灰度变换函数有平方根变换、指数变换和对数变换等。

非线性灰度变换函数则是通过对输入图像的每一个像素点应用一个非线性方程来实现灰度的非线性变换。

非线性变换可以实现更加复杂的灰度调整,例如增强图像的细节或者减少图像的噪声。

常见的非线性灰度变换函数有伽马变换和分段线性变换等。

直方图均衡化是一种特殊的灰度变换方法,通过对输入图像的
灰度级进行重新分配,使得输出图像的灰度级分布更加均匀。

直方图均衡化可以提高图像的对比度,使得图像的细节更加清晰。

总的来说,图像灰度变换原理是通过对图像的像素点进行灰度值的变换,来改变图像的亮度和对比度。

不同的灰度变换函数可以实现不同的灰度调整效果,根据需求选择合适的灰度变换方法可以获得满足要求的图像效果。

第三章.图像灰度直方图变换

第三章.图像灰度直方图变换

第三章.图像灰度直方图变换第三章图像灰度直方图变换在数字图像处理中,灰度直方图是最简单且最有用的工具,可以说,对图像的分析与观察直到形成一个有效的处理方法,都离不开直方图。

直方图的定义:一个灰度级别在范围[0,L-1]的数字图象的直方图是一个离散函数p(rk)= nk/nn 是图象的像素总数,nk是图象中第k个灰度级的像素总数,rk 是第k个灰度级,k = 0,1,2,…,L-直方图的性质1)灰度直方图只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像素的位置信息。

2)一幅图像对应唯一的灰度直方图,反之不成立。

不同的图像可对应相同的直方图。

直方图的应用:用来判断图像量化是否恰当灰度变换一、对比度展宽的目的:是一点对一点的灰度级的影射。

设新、旧图的灰度级分别为g 和f,g和f 均在[0,255]间变化。

目的:将人所关心的部分强调出来。

对比度展宽方法:二、灰级窗:只显示指定灰度级范围内的信息。

如: α=γ=0三、灰级窗切片:只保留感兴趣的部分,其余部分置为0。

直方图均衡化算法:设f、g分别为原图象和处理后的图像。

求出原图f的灰度直方图,设为h。

h为一个256维的向量。

求出图像f的总体像素个数Nf=m*n (m,n分别为图像的长和宽)计算每个灰度级的像素个数在整个图像中所占的百分比。

hs(i)=h(i)/Nf (i=0,1, (255)3)计算图像各灰度级的累计分布hp。

4)求出新图像g的灰度值。

作业1. 在图像灰度变换处理中,请总结出线性变换,非线性变换的适应性及各自的特点?. 已知一幅图像为:∑==kkhihp ) ()(255 ,..., 2,1 =i= 2 2 7 8 9 3 2 1 2 2 7 8 8 1 1 1 2 3 8 81 2 4 3 9 8 8 1 2 2 8 2 9 10 10 6 3 6 9 2 100 100 10 7 3 9 10 10 1002552547120025520010022525551f请对其进行灰度直方图的均衡化处理。

图像灰度变换 原理

图像灰度变换 原理

图像灰度变换原理
图像灰度变换是一种图像处理的方法,通过改变图像的灰度级别来增强或调整图像的显示效果。

其原理是对图像中的每个像素点进行灰度级别的转换。

常用的灰度变换函数有线性灰度变换、非线性灰度变换和直方图均衡化。

线性灰度变换是指通过线性映射将原图像的灰度级别转换为新的灰度级别。

常见的线性灰度变换函数有平移、缩放和对比度调整。

平移是将当前灰度级别加上一个偏移量,从而改变整个图像的亮度。

缩放是将灰度级别乘上一个缩放因子,从而调整图像的对比度。

对比度调整是通过同时进行平移和缩放,改变图像的亮度和对比度。

非线性灰度变换是指通过非线性函数将原图像的灰度级别转换为新的灰度级别。

常见的非线性灰度变换函数有幂律变换和对数变换。

幂律变换是通过对原图像的每个像素点进行幂次运算,从而调整图像的亮度和对比度。

对数变换是将原图像的灰度级别取对数,从而改变图像的亮度和对比度。

直方图均衡化是一种将原图像的灰度级别映射到均匀分布的灰度级别上的方法。

其原理是通过计算原图像的灰度直方图,并根据直方图进行灰度级别的重新分布。

这样可以增强图像的对比度和细节,并改善图像的视觉效果。

通过灰度变换,可以调整图像的亮度、对比度、色彩等特性,从而改善图像的视觉效果、增强图像的细节和信息。

在图像处
理和计算机视觉领域,灰度变换是一种常用的图像增强和预处理方法。

灰度直方图

灰度直方图

第三章灰度直方图目录1.灰度直方图2.直方图均衡化3.直方图规范化4.色彩直方图作业1.灰度直方图灰度直方图(histogram)是灰度级的函数,是图象的最基本的统计特征。

它表示图象中具有每种灰度级的象素的个数,反映图象中每种灰度出现的频率。

如下图所示,横坐标:灰度-r纵坐标:为某一灰度值ri的像素个数ni,或是灰度出现的概率P(r)从概率的观点来理解,灰度出现的频率可看作其出现的概率,这样直方图就对应于概率密度函数pdf(probability density function),而概率分布函数就是直方图的累积和,即概率密度函数的积分,如下图所示:灰度直方图的计算是很简单的,依据定义,若图象具有L (通常L=256,即8位灰度级)级灰度,则大小为MxN的灰度图象f(x,y)的灰度直方图hist[0…L-1]可用如下计算获得:1.初始化hist[k]=0 ; k=0,…,L-12.统计hist[k] ; x, y =0,…,M-1, 0,…,N-13.如果需要标准化,则hist[k]/=M*N例:直方图算法实现例: 通过直方图求图像中的灰度的最大、最小和中值。

例:通过直方图求图像的亮度和对比度。

注2:图像的亮度和对比度图像的亮度(brightness ):即图像矩阵的平均值,其值越小越暗。

Brightness=图像的对比度(contrast ):即图像矩阵的均方差(标准差),对比度越大,图像中黑白反差越明显。

Contrast=1100(,)MN y x g x y M N −−==×∑∑11200((,))M N y x M Ng x y brightness −−==×−∑∑1)unsigned long hist[256]; unsigned char *pCur;for(int i=0;i<256;i++)hist[i]=0;int ImgSize=width*height;for(i=0,pCur=pImg;i<ImgSize;i++) hist[*(pCur++)]++;2)for (g=255;g>=0;g--)if (hist[g])break;maxGray=g;for (g=0;g<256;g++)I f (hist[g])break;minGray=g;for(g=sum=0;g<256;g++) {sum+=hist[g];if (sum>=ImgSize/2)break;}medGray=g;3)for(g=sum=0;g<256;g++)sum+=g*hist[g];brightness=1.0*sum/ImgSize;for(g=sum=0;g<256;g++)sum+= (g-brightness)* (g-brightness)*hist[g]; contrast=sqrt(sum/ImgSize);直方图具有很多的优点,直方图能反映图象的概貌,比如图像中有几类目标,目标和背景的分布如何;通过直方图可以直接计算图像中的最大亮度、最小亮度、平均亮度、对比度以及中间亮度等。

图像增强—灰度变换及直方图均衡化试验目的试验原理及知识点

图像增强—灰度变换及直方图均衡化试验目的试验原理及知识点

图像增强—灰度变换及直方图均衡化一、实验目的1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。

2、掌握直接灰度变换的图像增强方法。

3、掌握灰度直方图的概念及其计算方法;4、掌握直方图均衡化的计算过程;二、实验原理及知识点1、图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强可以在空间域中执行,也可以在变换域中执行。

2、空间域指的是图像平面本身,在空间域内处理图像是直接对图像的像素进行处理。

空间域处理方法分为两种:灰度级变换、空间滤波。

空间域技术直接对像素进行操作,其表达式为g(x,y)=T[f(x,y)]其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定邻域内。

定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域。

此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的邻域。

T应用于每个位置(x,y),以便在该位置得到输出图像g。

在计算(x,y)处的g值时,只使用该领域的像素。

2、灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f在该点处的亮度决定,T也变为一个灰度变换函数。

由于灰度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式:s=T(r)其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。

灰度拉伸又叫对比度拉伸是最基本的一种灰度变换,使用简单的分段线性变换函数,可以提高灰度的动态范围,适用于低对比度图像的处理,增强对比度。

3、直方图是多种空间城处理技术的基础。

直方图操作能有效地用于图像增强。

除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。

灰度图像直方图均衡化变换函数算法.docx

灰度图像直方图均衡化变换函数算法.docx

灰度图像直方图均衡化变换函数算法方案一:1) 灰度图像直方图均衡化算法步骤:1、列出原始图像和变换后图像的灰度级I: j = 0, 1, -L-1,其中L是灰度级的个数;2、统计原始图像个灰度级的像素个数Ni;3、计算原始图像直方图:p(i)=Ni/N,N为原始图像像素总数;4、计算累计直方图P j =》p(k), k二0, l・・・j;5、利用灰度变换函数计算变换后的灰度值,并四舍五入:j=INT[(L-l)Pj+0. 5];6、确定灰度变换关系i->j,据此将原图像的灰度值f(m, n) = i修正为g(m, n)=j;7、统计变换后各灰度级的像素个数Nj;8、计算变换后图像的直方图p(j)二Nj/N;2) m文件I=imread('football.jpg 1 );1=1(:, :,1);[m z n]=size (I);num=m*n;pre_mat=zeros(1,256);aft_mat=zeros(1,256);for i=l:mfor j=l:npre_mat(I(i z j)+1)= pre_mat(I(i z j)+1)+1;endendaft_mat (I) =aft_mat (I) /num;for k=2:256s (k) =pre_mat (k) /num;aft_mat (k) =aft_mat (k-l) + s (k);endM=zeros(叫n);aft_mat=aft_mat*255;for i=l:mfor j=l:nM(i z j)=aft_mat(I (i,j)+1);endendJ=uint8(M)subplot (3,2f l)imshow(I);1.原始图像T;subplot (3,2,2) imhist(I);title(*2.原始图像直方图'); subplot(3,2^3) imshow(J);title (! 3.均衡化图像'); subplot (3,2,4) imhist(J);title 「4 •均衡化图像直方图*);A=histeq(I); subplot(3,2^5) imshow(A);title(*5.系统均衡化图像T ; subplot (3,2,6) imhist(A);title 「6・系统均衡化图像直方图1)经实际验证:该方案对黑白图片均衡化处理有较好的效果。

《灰度直方图变换》PPT课件

《灰度直方图变换》PPT课件

pr(r) T(r) ps(s)
2
1.8 1.2
1.6
1.4
1
1.2 0.8
1 0.6
0.8
0.6
0.4
0.4
0.2 0.2
0
0
0.5
1
r
0 0 0.5 1 r
1.2 1
0.8 0.6 0.4 0.2
0 0 0.5 1 s
➢ 离散图像直方图均衡化 对于离散的数字图像,用频率来代替概率,则变换函
数T(rk)的离散形式可表示为:
v4=1/64
12321212
v5=5/64
31231221
v6=8/64
i
v7=5/64
直方图的性质
①灰度直方图只能反映图像的灰度分布情况,而不能反 映图像像素的位置,即丢失了像素的位置信息。
②一幅图像对应唯一的灰度直方图,反之不成立。不同 的图像可对应相同的直方图。下图给出了一个不同的 图像具有相同直方图的例子。
5 5/7 245 0.06 0.95 1
6 6/7 122 0.03 0.98 1
7 1 81 0.02 1 1 1 448 0.11
k rk nk Pr(rk) 0 0 790 0.19 1 1/7 1023 0.25 2 2/7 850 0.21 3 3/7 656 0.16 4 4/7 329 0.08 5 5/7 245 0.06 6 6/7 122 0.03 7 1 81 0.02
ns=zeros(1,8); for i=0:7
idx=find(Tr>=(2*i-1)/14&Tr<(2*i+1)/14); m0=nk(idx); ns(i+1)=sum(m0(:)); end sums=sum(ns(:)); Ps=ns/sums; subplot(133) stem(rk,Ps) xlabel('s_k') ylabel('P_s(s_k)') title('均匀化后的直方图')

图像灰度变换、二值化、直方图

图像灰度变换、二值化、直方图

图像灰度变换、⼆值化、直⽅图1、灰度变换1)灰度图的线性变换Gnew = Fa * Gold + Fb。

Fa为斜线的斜率,Fb为y轴上的截距。

Fa>1 输出图像的对⽐度变⼤,否则变⼩。

Fa=1 Fb≠0时,图像的灰度上移或下移,效果为图像变亮或变暗。

Fa=-1,Fb=255时,发⽣图像反转。

注意:线性变换会出现亮度饱和⽽丢失细节。

2)对数变换t=c * log(1+s)c为变换尺度,s为源灰度,t为变换后的灰度。

对数变换⾃变量低时曲线斜率⾼,⾃变量⼤时斜率⼩。

所以会放⼤图像较暗的部分,压缩较亮的部分。

3)伽马变换y=(x+esp)γ,x与y的范围是[0,1], esp为补偿系数,γ为伽马系数。

当伽马系数⼤于1时,图像⾼灰度区域得到增强。

当伽马系数⼩于1时,图像低灰度区域得到增强。

当伽马系数等于1时,图像线性变换。

4)图像取反⽅法1:直接取反imgPath = 'E:\opencv_pic\src_pic\pic2.bmp';img1 = imread(imgPath); % 前景图img0 = 255-img1; % 取反景图subplot(1,2,1),imshow(img1),title('原始图像');subplot(1,2,2),imshow(img0),title('取反图像');⽅法2:伽马变换Matlab:imadjust(f, [low_in, high_in], [low_out, high_out], gamma)[low_in, high_in]范围内的数据映射到 [low_out, high_out],低于low的映射到low_out, ⾼于high的映射到high_out. imgPath = 'E:\opencv_pic\src_pic\pic2.bmp';img1 = imread(imgPath); % 前景图img0 = imadjust(img1, [0,1], [1,0]);subplot(1,2,1),imshow(img1),title('原始图像');subplot(1,2,2),imshow(img0),title('取反图像');2、⼆值化1)rgb2gray⼀般保存的灰度图是24位的灰度,如果改为8bit灰度图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章图像灰度直方图变换在数字图像处理中,灰度直方图是最简单且最有用的工具,可以说,对图像的分析与观察直到形成一个有效的处理方法,都离不开直方图。

直方图的定义:一个灰度级别在范围[0,L-1]的数字图象的直方图是一个离散函数p(rk)= nk/nn 是图象的像素总数,nk是图象中第k个灰度级的像素总数,rk 是第k个灰度级,k = 0,1,2,…,L-直方图的性质1)灰度直方图只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像素的位置信息。

2)一幅图像对应唯一的灰度直方图,反之不成立。

不同的图像可对应相同的直方图。

直方图的应用:用来判断图像量化是否恰当灰度变换一、对比度展宽的目的:是一点对一点的灰度级的影射。

设新、旧图的灰度级分别为g 和f,g和f 均在[0,255]间变化。

目的:将人所关心的部分强调出来。

对比度展宽方法:二、灰级窗:只显示指定灰度级范围内的信息。

如: α=γ=0三、灰级窗切片:只保留感兴趣的部分,其余部分置为0。

直方图均衡化算法:设f、g分别为原图象和处理后的图像。

求出原图f的灰度直方图,设为h。

h为一个256维的向量。

求出图像f的总体像素个数Nf=m*n (m,n分别为图像的长和宽)计算每个灰度级的像素个数在整个图像中所占的百分比。

hs(i)=h(i)/Nf (i=0,1, (255)3)计算图像各灰度级的累计分布hp。

4)求出新图像g的灰度值。

作业1. 在图像灰度变换处理中,请总结出线性变换,非线性变换的适应性及各自的特点?. 已知一幅图像为:∑==ikkhihp)()(255,...,2,1=i⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=22789321227881112388712439881228291010636921001001073910101002552547120025520010022525551f请对其进行灰度直方图的均衡化处理。

空间域图像平滑任何一幅原始图像,在其获取和传输等过程中,会受到各种噪声的干扰,使图像恶化,质量下降,图像模糊,特征淹没,对图像分析不利.为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪.它可以在空间域和频率域中进行.本节介绍空间域的几种平滑法。

局部平滑法是一种直接在空间域上进行平滑处理的技术。

假设图像是由许多灰度恒定的小块组成,相邻像素间存在很高的空间相关性,而噪声则是统计独立的。

因此,可用像素邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。

局部平滑法设图像中的噪声是随机不相关的加性噪声,窗口内各点噪声是独立同分布的,经过上述平滑后,信号与噪声的方差比可望提高M 倍. 这种算法简单,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别 在边缘和细节处。

而且邻域越大,在去噪能力增强的同时模糊程度越严重。

局部平滑法设图像中的噪声是随机不相关的加性噪声,窗口内各点噪声是独立同分布的,经过上述平滑后,信号与噪声的方差比可望提高M 倍这种算法简单,但它的主要缺点是在降低噪声的同时使图像产生 模糊,特别 在边缘和细节处。

而且邻域越大,在去噪能力增强的同时模糊程度越严重。

灰度最相近的K 个邻点平均法该算法的出发点是:在n ×n 的窗口内,属于同一集合体的像素,它们的灰度值将高度相关。

因此,可用窗口内与中心像素的灰度最接近的K 个邻像素的平均灰度来代替窗口中心像素的灰度值。

这就是灰度最相近的K 个邻点平均法。

较小的K 值使噪声方差下降较小,但保持细节效果较好;而较大的K 值平滑噪声较好,但会使图像边缘模糊。

实验证明,对于3×3的窗口,取K=6为宜。

灰度最相近的K 个邻点平均法 例:3*3模板,k=5有选择保边缘平滑法该方法对图像上任一像素(x,y)的5×5邻域,采用9个掩模(模板),其中包括一个3×3正方形、4个五边形和4个六边形。

计算各个掩模的均值和方差,对方差进行排序,最小方差所对应的掩模区的灰度均值就是像素(x,y) 的输出值。

有选择保边缘平滑法该方法以方差作为各个区域灰度均匀性的测度。

若区域含有尖锐的边缘,它的灰度方差必定很大,而不含边缘或灰度均匀的区域,它的方差就小,那么最小方差所对应的区域就是灰度最均匀区域。

因此有选择保边缘平滑法既能够消除噪声,又不破坏区域边界的细节。

空间低通滤波法邻域平均法可看作一个掩模作用于图像f(x,y)的低通空间滤波,掩模就是一个滤波器,它的响应为H(r,s),于是滤波输出的数字图像g(x,y)用离散卷积表示为:空间低通滤波法常用的掩模有空间低通滤波法模板系数以中心点为中心对称分布; 所有的模板系数都是正数;距中心较远的模板系数的值较小或保持不变; 但不管什么样的掩模,必须保证全部权系数之 和为单位值,这样可保证输出图像灰度值在许 可范围内,不会产生“溢出”现象。

一般取1,目的是保持平均灰度值不变。

中值滤波中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,因此它是一种非线性的图像平滑法。

中值滤波例:原图像为: 2 2 6 2 1 2 4 4 4 2 4处理后为: 2 2 2 2 2 2 4 4 4 4 4(1,2,2,2,6) (1,2,2,2,6) (1,2,2,4,6) (2,4,4)它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。

但它对点、线等细节较多的图像却不太合适。

从以往的经验看,方形或圆形窗口适宜于外轮廓线较长的物体图像,而十字形窗口对有尖顶角状的图像效果好。

图像空间域锐化在图像的识别中常需要突出边缘和轮廓信息。

图像锐化就是增强图像的边缘 或轮廓。

图像平滑通过积分过程使得图像边缘模糊,那么图像锐化通过微分而使图像边缘突出、清晰。

梯度锐化法图像锐化法最常用的是梯度法.对于图像f(x ,y),在(x ,y)处的梯度定义为梯度是一个矢量,其大小和方向为对于离散图像处理而言,常用到梯度的大小,因此把梯度的大小习惯称为 “梯度”。

并且一阶偏导数采用一阶差分近似表示,即 :fx’ =f(x +1 ,y)-f(x ,y) fy’=f(x ,y +1)-f(x ,y)为简化梯度的计算,经常使用grad(x ,y)=Max(| fx ′|,| fy ′| ) 或 grad (x ,y )=| fx ′|+| f y ′|一旦梯度算出后,就可根据不同的需要生成不同的梯度增强图像。

第一种输出形式: g(x,y)=grad(x,y)此法的缺点是增强的图像仅显示灰度变化比较徒的边缘轮廓,而灰度变化比>较平缓或均匀的区域则呈黑色。

第二种输出形式:式中T 是一个非负的阈值。

适当选取T ,可使明显的边缘轮廓得到突出,又不会破坏原来灰度变化比较平缓的背景.第三种输出形式:它将明显边缘用一固定的灰度级LG 来表现。

第四种输出形式:此方法将背景用一个固定的灰度级 LB 来表现,便于研究边缘灰度的变化。

第五种输出形式:这种方法将明显边缘和背景分别用灰度级LG 和LB 表示,生成二值图像,便于研究边缘所在位置。

高通滤波法高通滤波法就是用高通滤波算子和图像卷积来增强边缘。

常用的算子有:H1 H2高通滤波法模板系数以中心点为中心对称分布;中心的模板系数是正数;中心周围的模板系数一般是负数或0; 模板系数之和大于0。

掩模匹配法用8个方向的模板,顺序地对同一图像窗口,做掩模运算,得NUMi 。

将排序,最大的即是窗口中心像素的锐化输出,r 所对应的模板的方向就是些窗口中心像素的方向。

处理质量问题以人的主观为主。

模板运算的边界问题提供2种简单方法:1,忽略;2,在图像四周复制图像边界数据模板运算的取值动态范围问题1,像素值超过有效范围,比例缩放,或舍入; 2,将负的结果像素值置为0;3,取负的结果像素值的绝对值作为像素的新值。

4,将所有的像素的值都加上一个常数,使所有的负的像素值都大于等于0;1. 已知图像为:请对其进行边界保持的中值和均值滤波,并判断哪一点噪声点 图像增强方法对数变换这里a,b,c 是为了调整曲线的位置和形状而引入的参数。

当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。

指数变换这里参数a,b,c 用来调整曲线的位置和形状。

这种变换能对图像的高灰度区给予较大的拉伸。

试解释为什么离散直方图均衡化技术一般不适用于平坦的直方图。

讨论用一个3*3的低通空间滤波器反复对一幅数字图像处理的结果,可以不考虑边界的影响。

彩色增强技术 人眼的视觉特性 :1、分辨的灰度级介于十几到二十几级之间 ;2、彩色分辨能力可达到灰度分辨能力的百倍以上。

彩色增强技术是利用人眼的视觉特性,将灰度图像变成彩色图像或改变彩色图像已有彩色的分布,改善图像的可分辨性。

彩色增强方法可分为伪彩色增强和假彩色增强两类。

伪彩色增强伪彩色增强是把黑白图像的各个不同灰度级按 照线性或非线性的映射函数变换成不同的彩色, 得到一幅彩色图像的技术。

使原图像细节更易 辨认,目标更容易识别。

伪彩色增强的方法主要有密度分割法、灰度级 一彩色变换和频率域伪彩色增强三种。

1、密度分割法密度分割法是把黑白图像的灰度级从 0(黑)到 M0(白)分成 N 个区间Ii(i=1,2,…,N),给每个区间Ii 指定一种彩色Ci ,这样,便可以把一幅灰度图像变成一幅伪彩色图像。

该方法比较简单、直观。

缺点是变换出的彩色数目有限 2、空间域灰度级一彩色变换根据色度学原理,将原图像f(x,y)的灰度范围分段,经过红、绿、蓝三种不 同变换TR(·)、TG(·)和TB(·),变成三基色分量IR(x,y)、IG(x,y)、IB(x,y),然后用它们分别去控制彩色显示器的红、绿、蓝电子枪,便可以在彩色显示器的屏幕上合成一幅彩色图像。

3、频率域伪彩色增强频率域伪彩色增强的方法是: 1)、把黑白图像经傅立叶变换到频率域,在频率域内用三个不同传递特性的滤波器分离成三个独立分量;2)、然后对它们进行逆傅立叶变换,便得到三幅代表不同频率分量的单色图像, 接着对这三幅图像作进一步的处理(如直方图均衡化)3)、最后将它们作为三基色分量分别加到彩色显示器的红、绿、蓝显示通道,得到一幅彩色图像。

假彩色增强假彩色增强是对一幅自然彩色图像或同一景物的多光谱图像,通过映射函数变换成新的三基色分量,彩色合成使感兴趣目标呈现出与原图像中不同的、奇异的彩色。

假彩色增强目的:使感兴趣的目标呈现奇异的彩色或置于奇特的彩色环境中,从而更引人注目使景物呈现出与人眼色觉相匹配的颜色,以提高对目标的分辨力。

假彩色增强多光谱图像的假彩色增强可表示为可见光与非可见光波段结合起来,通过假彩色处理,就能获得更丰富的信息,便于对地物识别对于自然景色图像,通用的线性假彩色映射可表示为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=02793222506111278016210010739101012547120020010025551f假彩色增强则原图像中绿色物体会呈红色,蓝色物体会呈绿色,红色物体则呈兰色。

相关文档
最新文档