生物统计学答案 第四章 抽样分布
生物统计习题及答案

第一章填空1.变量按其性质可以分为(连续型)变量和(非连续/离散型)变量。
2.样本统计数是总体(总体参数)的估计值。
3.生物统计学是研究生命过程中以样本来推断(总体)的一门学科。
4.生物统计学的基本内容包括(实验设计)和(统计推断)两大部分。
5.生物统计学的发展过程经历了(古典统计学)、(近代统计学)和(现代统计学)3个阶段。
6.生物学研究中,一般将样本容量(大于30)称为大样本。
7.试验误差可以分为(随机误差)和(系统误差)两类。
判断1.对于有限总体不必用统计推断方法。
(错) 2.资料的精确性高,其准确性也一定高。
(错)3.在试验设计中,随机误差只能减小,而不能完全消除。
(对) 4.统计学上的试验误差,通常指随机误差。
(对)第二章填空1.资料按生物的性状特征可分为(数量性状)变量和(质量性状)变量。
2. 直方图适合于表示(非连续型/离散型)资料的次数分布。
3.变量的分布具有两个明显基本特征,即(集中性)和(离散性)。
4.反映变量集中性的特征数是(平均数),反映变量离散性的特征数是(标准差)。
5.样本标准差的计算公式s=()。
判断题1. 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
(错)2. 条形图和多边形图均适合于表示计数资料的次数分布。
(错)3. 离均差平方和为最小。
(对)4. 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
(对)5. 变异系数是样本变量的绝对变异量。
(对)单项选择1. 下列变量中属于非连续性变量的是(C).A. 身高B.体重C.血型D.血压2. 对某鱼塘不同年龄鱼的尾数进行统计分析,可做成(A)图来表示.A. 条形B.直方C.多边形D.折线 3. 关于平均数,下列说法正确的是(B).A. 正态分布的算术平均数和几何平均数相等.B. 正态分布的算术平均数和中位数相等.C. 正态分布的中位数和几何平均数相等.D. 正态分布的算术平均数、中位数、几何平均数均相等。
生物统计学答案 第四章 抽样分布

第四章 抽样分布4.1 第四章的习题读者可以照常练习。
在这里,利用SAS 软件包中的“正态分布随机数函数”做一抽样试验,进行一个类似的演示。
假定总体平均数 μ =8,标准差 σ =2,用下式:Y =8+2×正态分布随机数,获得一个服从N (8,22)分布的正态总体。
从该正态总体中随机抽取含量为100的样本,共抽取10 000个样本。
计算每一样本的s s y 和2,,然后计算样本平均数、样本方差和样本标准差的平均数(s s y ,,2)以及它们的标准差(s s y s s s ,,2)。
用上述结果与s s y 和2,分布的特征数[分别见(4.1),(4.2)式;(4.14),(4.15)式以及(4.18),(4.19)式] 比较。
看一看抽样的结果是否能够很好地估计总体参数。
抽样试验还可以进一步深入,计算每一样本的t 。
然后计算t 的平均数和标准差,用计算的结果与t 分布的特征数比较,[见(4.8),(4.9) 式]。
看一看抽样的结果与总体参数的一致性是否很好。
为了与问题的要求一致,抽样分两部分进行,下面先讨论样本平均数、样本方差和样本标准差的分布。
SAS 程序如下:options nodate;data value;n=100;m=10000;df=n-1;do i=1 to m;retain seed 3053177;do j=1 to n;y=8+2*normal(seed);output;end;end;data disv;set value;sqy=y*y;by i;if first.i then sumy=0;sumy+y;if first.i then sumsqy=0;sumsqy+sqy;my=sumy/n;vacey=(sumsqy-my*sumy)/df;stdy=sqrt(vacey);if last.i then output;run;proc means mean var std;var my stdy vacey;title 'Sampling Distribution: Mu=8 sigma=2';run;程序运行的结果见下表:Sampling Distribution: Mu=8 sigma=2Variable Mean Variance Std Dev-------------------------------------------------- MY 8.0005218 0.0394867 0.1987126STDY 1.9949780 0.0204989 0.1431743VACEY 4.0004341 0.3294953 0.5740169--------------------------------------------------下面将相应的参数值,列成一个对应的表格,以便能够在抽样的结果与总体参数间做一个很清楚地比较。
生物统计学习题集答案

.. 生物统计学习题集参考答案第一章概论一、填空1 变量按其性质可以分为 连续 变量和 非连续 变量。
2 样本统计数是总体 参数 的估计量。
3 生物统计学是研究生命过程中以样本来推断 总体 的一门学科。
4 生物统计学的基本内容包括_试验设置、统计分析_两大部分。
5 统计学的发展过程经历了 古典记录统计学、 近代描述统计学现代推断统计学 3个阶段。
6 生物学研究中,一般将样本容量 n大于等于 30称为大样本。
7 试验误差可以分为__随机误差 、系统误差 两类。
二、判断(-)1 对于有限总体不必用统计推断方法。
(-)2 资料的精确性高,其准确性也一定高。
(+) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
(+)4 统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的若干个体所构成的集合称为样本。
总体:具有相同的个体所构成的集合称为总体。
连续变量:是指在变量范围内可抽出某一范围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
精确性:也称精确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章 试验资料的整理与特征数的计算一、填空1 1 资料按生物的性状特征可分为资料按生物的性状特征可分为资料按生物的性状特征可分为_________数量性状资料数量性状资料数量性状资料__变量和变量和______变量性变量性状资料状资料__变量。
2 2 直方图适合于表示直方图适合于表示直方图适合于表示______计量计量计量 、、 连续变量连续变量__资料的次数分布。
3 3 变量的分布具有两个明显基本特征,即变量的分布具有两个明显基本特征,即变量的分布具有两个明显基本特征,即__集中性集中性__和____离散性离散性离散性__。
4 4 反映变量集中性的特征数是反映变量集中性的特征数是反映变量集中性的特征数是______平均数平均数平均数______,反映变量离散性的特征,反映变量离散性的特征数是数是______变异数(标准差)变异数(标准差)变异数(标准差)__。
生物统计习题及答案

第一章填空1.变量按其性质可以分为(连续型)变量和(非连续/离散型)变量。
2.样本统计数是总体(总体参数)的估计值。
3.生物统计学是研究生命过程中以样本来推断(总体)的一门学科。
4.生物统计学的基本内容包括(实验设计)和(统计推断)两大部分。
5.生物统计学的发展过程经历了(古典统计学)、(近代统计学)和(现代统计学)3个阶段。
6 .生物学研究中,—般将样本容量(大于30 )称为大样本。
7 .试验误差可以分为(随机误差)和(系统误差)两类。
判断1.对于有限总体不必用统计推断方法。
(错)2.资料的精确性高,其准确性也一定高。
(错)3•在试验设计中,随机误差只能减小,而不能完全消除。
(对)4.统计学上的试验误差,通常指随机误差。
(对)第二章填空1.资料按生物的性状特征可分为(数量性状)变量和(质量性状)变量。
2.直方图适合于表示(非连续型/离散型)资料的次数分布。
3•变量的分布具有两个明显基本特征,即(集中性)和(离散性)。
4.反映变量集中性的特征数是(平均数),反映变量离散性的特征数是(标准差)。
5 .样本标准差的计算公式s=()。
判断题1•计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
(错)2.条形图和多边形图均适合于表示计数资料的次数分布。
(错)3.离均差平方和为最小。
(对)4.资料中出现最多的那个观测值或最多一组的中点值,称为众数。
(对)5.变异系数是样本变量的绝对变异量。
(对)单项选择1.下列变量中属于非连续性变量的是(C).A.身高B・体重C・血型D・血压2•对某鱼塘不同年龄鱼的尾数进行统计分析,可做成(A)图来表示.A.条形B・直方C.多边形D・折线3.关于平均数,下列说法正确的是(B).A.正态分布的算术平均数和几何平均数相等.B.正态分布的算术平均数和中位数相等.C.正态分布的中位数和几何平均数相等.D.正态分布的算术平均数、中位数、几何平均数均相等。
4.如果对各观测值加上一个常数「其标准差(D )。
生物统计学 第4章 抽样分布

df1 df2
df1 df2 2
F
,F
0
0, F 0
F分布的平均数和方差分别为:
F
df2 , df df2 2
2
2 F
2df22 (df1 df2 2) df1(df2 2)2 (df2 4)
,
df
2
4
线性内插法求F值
求F12,17,0.05 1. 先查F12,15,0.05 =2.475, F12,20,0.05 =2.278 2. 公式: F12,17,0.05 = F12,15,0.05 +(F12,20,0.05 F12,15,0.05 )/(20-15)×(17-15) 3. 结果:=2.3962
( df 1) 2
(1
t2
df 1
) 2 ,
t
df ( )( df ) df
2
式中df=n-1
t分布的特征数:
t 0 (df 1)
t
df df 2
(df 2)
1:t 0 (df 3)
2:t
6 df 4
(df 4)
P(t≥tα)= P(t≤-tα)=α
P(| t | t )
当用σi2去出si2之后, si2 就被标准化了,标准化
的样本方差之比称为F:
s12
2
1
F df1,df2
2
s2
2 2
F分布是由一对自由度df1和df2确定的,F分布的 密度函数为:
f df1 ,df2
df1 df2
df1
2
df1 df2
2
df1 df2 2 2
1
df1 1
,2
0
生物医学研究的统计学方法 课后答案(思考与联系)

第1章绪论思考与练习参考答案一、最佳选择题1. 研究中的基本单位是指( D)。
A.样本 B. 全部对象C.影响因素D. 个体E. 总体2. 从总体中抽取样本的目的是( B )。
A.研究样本统计量 B. 由样本统计量推断总体参数C.研究典型案例 D. 研究总体统计量E. 计算统计指标3. 参数是指( B )。
A.参与个体数 B. 描述总体特征的统计指标C.描述样本特征的统计指标 D. 样本的总和 E. 参与变量数4. 下列资料属名义变量的是(E)。
A.白细胞计数B.住院天数C.门急诊就诊人数D.患者的病情分级 E. ABO血型5.关于随机误差下列不正确的是(C)。
A.受测量精密度限制B.无方向性 C. 也称为偏倚D.不可避免 E. 增加样本含量可降低其大小二、名称解释(答案略)1. 变量与随机变量2. 同质与变异3. 总体与样本4. 参数与统计量5. 误差6. 随机事件7. 频率与概率三、思考题1. 生物统计学与其他统计学有什么区别和联系?答:统计学可细分为数理统计学、经济统计学、生物统计学、卫生统计学、医学统计学等,都是关于数据的学问,是从数据中提取信息、知识的一门科学与艺术。
而生物统计学是统计学原理与方法应用于生物学、医学的一门科学,与医学统计学和卫生统计学很相似,其不同之处在于医学统计学侧重于介绍医学研究中的统计学原理与方法,而卫生统计学更侧重于介绍社会、人群健康研究中的统计学原理与方法。
2. 某年级甲班、乙班各有男生50人。
从两个班各抽取10人测量身高,并求其平均身高。
如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什么?答:不能。
因为,从甲、乙两班分别抽取的10人,测量其身高,得到的分别是甲、乙两班的一个样本。
样本的平均身高只是甲、乙两班所有同学平均身高的一个点估计值。
即使是按随机化原则进行抽样,由于存在抽样误差,样本均数与总体均数一般很难恰好相等。
因此,不能仅凭两个样本均数高低就作出两总体均数熟高熟低的判断,而应通过统计分析,进行统计推断,才能作出判断。
生物统计学智慧树知到课后章节答案2023年下海南大学

生物统计学智慧树知到课后章节答案2023年下海南大学海南大学绪论单元测试1.生物统计学是数理统计的原理和方法在生物科学研究中的应用,属于理论数学。
()答案:错2.生物统计学的创始人是()。
答案:高尔登(F.Galton)3.生物学领域研究多属于实验科学,实验科学的研究方法主要有哪两类()。
答案:科学试验研究法;抽样调查法4.科学研究的基本过程包括三个环节:()答案:假说;试验或抽样调查;结论5.生物统计学十九世纪末发展起来的一门学科。
()答案:对6.试验设计概念正确的有()。
答案:按照预定目标制订适当的实验方案,以利于对实验结果进行有效的统计分析的数学原理和实施方法。
;指合理安排和实施试验取得正确、可靠、充分的数据资料的理论与方法。
7.试验设计有广义、狭义之分,生物统计学指的是广义的试验设计。
()答案:错8.试验设计的目的()。
答案:对总体作出可靠、正确的推断;避免系统误差;无偏估计处理效应;降低试验误差9.描述生物统计学的作用,正确的是()。
答案:提供试验设计的原则及方法;提供由样本推断总体的方法;;提供整理和描述数据资料的科学方法;;有助于阅读及撰写科技文献。
10.能否合理地进行试验设计,关系到科研工作的成败。
()答案:对第一章测试1.因素的水平是指()答案:因素质的不同状态;因素量的级别2.试验处理是指 ( )答案:因子间水平的组合;因子的水平;实施在试验单元上的具体措施3.一个试验中可以选用()作为试验指标。
答案:多个性状;经济性状;单个性状4.试验设计三原则包括:答案:重复原则;随机性原则;局部控制原则5.如果涉及试验因素多,难以确定因素或各因素的最佳起水平范围时,一般可采用先做单因素试验,后做精细选取因素和水平的试验。
答案:对6.在试验设计和统计分析方法中,控制误差指的是()。
答案:减小误差 ;无偏估计误差7.如果田间试验无法在一天内完成,以下那种做法是正确的()答案:同一区组必须在一天完成8.随机区组设计需要将全部处理抽签几次?()答案:有多少区组就抽签多少次9.局部控制原则指:同一重复区内的不同小区间环境条件最大程度地保持一致。
生物统计学习题集答案

生物统计学习题集参考答案第一章概论一、填空1变量按其性质可以分为连续变量和非连续变量。
2样本统计数是总体参数的估计量。
3生物统计学是研究生命过程中以样本来推断总体的一门学科。
4生物统计学的基本内容包括_试验设置、统计分析—两大部分。
5统计学的发展过程经历了古典记录统计学、近代描述统计学现代推断统计学3个阶段。
6生物学研究中,一般将样本容量丄大于等于_30称为大样本。
7试验误差可以分为一随机误差、系统误差两类。
二、判断(-)1对于有限总体不必用统计推断方法。
(-)2资料的精确性高,其准确性也一定高。
(+) 3在试验设计中,随机误差只能减少,而不可能完全消除。
(+)4统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的若干个体所构成的集合称为样本。
总体:具有相同的个体所构成的集合称为总体。
连续变量:是指在变量范围内可抽出某一范围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
精确性:也称精确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章试验资料的整理与特征数的计算一、填空1资料按生物的性状特征可分为—量性状资料_变量和—变量性状资料_变量。
2直方图适合于表示_计量、连续变量一资料的次数分布。
3变量的分布具有两个明显基本特征,即集中性和离散性。
4反映变量集中性的特征数是平均数,反映变量离散性的特征数是_变异数(标准差)_。
5 样本标准差的计算公式s= "刀(X-X横杆)平方/(n-1) 。
二、判断(-)1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
(-)2 条形图和多边形图均适合于表示计数资料的次数分布。
(+) 3离均差平方和为最小。
(+)4资料中出现最多的那个观测值或最多一组的中点值,称为众数。
(-)5变异系数是样本变量的绝对变异量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 抽样分布
4.1 第四章的习题读者可以照常练习。
在这里,利用SAS 软件包中的“正态分布随机数函数”做一抽样试验,进行一个类似的演示。
假定总体平均数 μ =8,标准差 σ =2,用下式:Y =8+2×正态分布随机数,获得一个服从N (8,22)分布的正态总体。
从该正态总体中随机抽取含量为100的样本,共抽取10 000个样本。
计算每一样本的s s y 和2,,然后计算样本平均数、样本方差和样本标准差的平均数(s s y ,,2)以及它们的标准差(s s y s s s ,,2)。
用上述结果与s s y 和2
,分布的特征数[分别见(4.1),(4.2)式;(4.14),(4.15)式以及(4.18),(4.19)式] 比较。
看一看抽样的结果是否能够很好地估计总体参数。
抽样试验还可以进一步深入,计算每一样本的t 。
然后计算t 的平均数和标准差,用计算的结果与t 分布的特征数比较,[见(4.8),(4.9) 式]。
看一看抽样的结果与总体参数的一致性是否很好。
为了与问题的要求一致,抽样分两部分进行,下面先讨论样本平均数、样本方差和样本标准差的分布。
SAS 程序如下:
options nodate;
data value;
n=100;
m=10000;
df=n-1;
do i=1 to m;
retain seed 3053177;
do j=1 to n;
y=8+2*normal(seed);
output;
end;
end;
data disv;
set value;
sqy=y*y;
by i;
if first.i then sumy=0;
sumy+y;
if first.i then sumsqy=0;
sumsqy+sqy;
my=sumy/n;
vacey=(sumsqy-my*sumy)/df;
stdy=sqrt(vacey);
if last.i then output;
run;
proc means mean var std;
var my stdy vacey;
title 'Sampling Distribution: Mu=8 sigma=2';
run;
程序运行的结果见下表:
Sampling Distribution: Mu=8 sigma=2
Variable Mean Variance Std Dev
-------------------------------------------------- MY 8.0005218 0.0394867 0.1987126
STDY 1.9949780 0.0204989 0.1431743
VACEY 4.0004341 0.3294953 0.5740169
--------------------------------------------------
下面将相应的参数值,列成一个对应的表格,以便能够在抽样的结果与总体参数间做一个很清楚地比较。
变量μσ2σ
Y8.000 0 0.040 0 0.200 0
S 1.995 0 0.020 2 0.142 0
2
从表中可以看出,样本统计量的抽样结果与总体参数基本上是一致的。
当样本含量继续增加,这种一致性会来得更好。
以下是问题的第二部分,这部分的程序与第一部分没有多大区别,完全可以与第一部分合并一起完成,读者可以尝试自己完成这项工作。
options nodate;
data value;
n=100;
m=10000;
df=n-1;
do i=1 to m;
retain seed 3053177;
do j=1 to n;
y=8+2*normal(seed);
output;
end;
end;
data disv;
set value;
sqy=y*y;
by i;
if first.i then sumy=0;
sumy+y;
if first.i then sumsqy=0;
sumsqy+sqy;
my=sumy/n;
vacey=(sumsqy-my*sumy)/df;
stdy=sqrt(vacey);
t=(my-8)*sqrt(n)/stdy;
if last.i then output;
run;
proc means mean std;
var t;
title 'Sampling Distribution: Mu=8 sigma=2';
run;
程序运行的结果见下表:
Sampling Distribution: Mu=8 sigma=2
Analysis Variable : T
Mean Std Dev
0.0021783 1.0050935
--------------------------
t分布的特征数:μt=0.000 0,σt=1.010 2。
抽样的结果与总体参数的一致性也是很好的。