基础押题卷三(题目)
2022年国家司法考试(试卷三)押题练习试题 含答案

2022年国家司法考试(试卷三)押题练习试题含答案考试须知:1、考试时间:180分钟,本卷满分为150分。
2、请首先按要求在试卷的指定位置填写您的姓名、准考证号等信息。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
姓名:______考号:______一、单选题(本大题共50题,每题1分,共50分)1、经审理,一审法院判决被告王某支付原告刘某欠款本息共计22万元,王某不服提起上诉。
二审中,双方当事人达成和解协议,约定:王某在3个月内向刘某分期偿付20万元,刘某放弃利息请求。
案件经王某申请撤回上诉而终结。
约定的期限届满后,王某只支付了15万元。
刘某欲寻求法律救济。
下列哪一说法是正确的?()A、只能向一审法院重新起诉B、只能向一审法院申请执行一审判决C、可向一审法院申请执行和解协议D、可向二审法院提出上诉2、某电视演员因一儿童电视剧而出名,某公司未经该演员许可将印有其表演形象的宣传海报大量用于玩具、书包、文具等儿童产品的包装和装潢上。
对该公司的行为应如何定性?()A、侵犯了制片者的发表权B、侵犯了该演员的表演者权C、侵犯了该演员的肖像权D、侵犯了该演员的复制权3、甲与乙签订协议,约定甲将其房屋赠与乙,乙承担甲生养死葬的义务。
后乙拒绝扶养甲,并将房屋擅自用作经营活动,甲遂诉至法院要求乙返还房屋。
下列哪一选项是正确的?()A、该协议是附条件的赠与合同B、该协议在甲死亡后发生法律效力C、法院应判决乙向甲返还房屋D、法院应判决乙取得房屋所有权4、关于民事诉讼二审程序的表述,下列哪一选项是错误的?()A、二审案件的审理,遇有二审程序没有规定的情形,应当适用一审普通程序的相关规定B、二审案件的审理,以开庭审理为原则C、二审案件调解的结果变更了一审判决内容的,应当在调解书中写明“撤销原判”D、二审案件的审理,应当由法官组成的合议庭进行审理5、佳普公司在其制造和出售的打印机和打印机墨盒产品上注册了“佳普”商标。
2023年高考押题预测卷03【全国甲卷】语文试题卷含答案解析

2023年高考押题预测卷03【全国甲卷】语文(考试时间:150分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(36分)(一)现代文阅读I(本题共3小题,9分)1. 阅读下面的文字,完成下面小题。
材料一:从夏商直到春秋时期,文学传播以口头传播为主。
那时虽然有了甲骨、金石、竹木简及帛丝等文字载体,但是由于受到各种限制,它们在文学传播方式中还不能居于主导地位。
《汉书》中有“孔子纯取周诗,上采殷,下取鲁,凡三百五篇,遭秦而全者,以其讽诵,不全在竹名故也”。
也就是说,《诗经》虽然在秦代被焚毁,但是汉代还能完整保留下来,就是因为人们口口相传,不完全是依靠竹帛的记录。
西汉以后,直至唐代,随着统治者对文学典籍的重视,特别是造纸技术的不断提高,萌芽于先秦时期的抄写才真正成为文学传播的主要方式。
魏晋时期甚至出现了“佣书”,即专职抄写员。
“佣书”的出现大大加快了文字的传播速度。
当时著名诗人谢灵运的作品为世人追捧,出现过“每有一诗到都下,贵贱莫不竞写,宿昔之间,士庶皆遍”的场面。
至于雕版印刷,有史可考的说法是源自唐初。
进入五代时期,雕版印刷得到了统治者的鼓励。
到了宋代,雕版印刷技术取得了空前的发展,清人编著的《书林清话》记载:“书籍自唐时镂版以来,至天水一朝,号为极盛。
而其间分三类:曰官刻本,曰私宅本,曰坊行本。
”描述了宋代雕版印刷呈现的特征——官府、私人和民间集体共同参与,刻书地域分布广泛,书籍种类和数量众多。
《宋史•邢禺传》载:景德二年(1005年)夏,宋真宗到国子监视察,问及书籍刊刻情况,邢禺回答说:“国初不及四千,今十余万,经传正义皆备。
2022年下半年司法考试(试卷三)押题练习试卷A卷 附解析

2022年下半年司法考试(试卷三)押题练习试卷A卷附解析考试须知:1、考试时间:180分钟,本卷满分为150分。
2、请首先按要求在试卷的指定位置填写您的姓名、准考证号等信息。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
姓名:______考号:______一、单选题(本大题共50题,每题1分,共50分)1、张某诉季某人身损害赔偿一案判决生效后,张某以法院剥夺其辩论权为由申请再审,在法院审查张某再审申请期间,检察院对该案提出抗诉。
关于法院的处理方式,下列哪一选项是正确的?()A、法院继续对当事人的再审申请进行审查,并裁定是否再审B、法院应当审查检察院的抗诉是否成立,并裁定是否再审C、法院应当审查检察院的抗诉是否成立,如不成立,再继续审查当事人的再审申请D、法院直接裁定再审2、甲的一头牛走失,乙牵回关入自家牛棚,准备次日寻找失主。
当晚牛棚被台风刮倒,将牛压死。
乙将牛肉和牛皮出售,各得款500元和100元。
请人屠宰及销售,支出100元。
下列哪一种说法是正确的?()A、甲有权要求乙返还一头同样的牛B、甲有权要求乙返还500元C、甲有权要求乙返还600元D、甲有权要求乙按该牛的市价赔偿1000元3、甲公司和乙公司在前者印制的标准格式《货运代理合同》上盖章。
《货运代理合同》第四条约定:“乙公司法定代表人对乙公司支付货运代理费承担连带责任。
”乙公司法定代表人李红在合同尾部签字。
后双方发生纠纷,甲公司起诉乙公司,并要求此时乙公司的法定代表人李蓝承担连带责任。
关于李蓝拒绝承担连带责任的抗辩事由,下列哪一表述能够成立?()A、第四条为无效格式条款B、乙公司法定代表人未在第四条处签字C、乙公司法定代表人的签字仅代表乙公司的行为D、李蓝并未在合同上签字4、根据《银行业监督管理法》,国务院银行业监督管理机构有权对银行业金融机构的信用危机依法进行处置。
关于处置规则,下列哪一说法是错误的?()A、该信用危机必须已经发生B、该信用危机必须达到严重影响存款人和其他客户合法权益的程度C、国务院银行业监督管理机构可以依法对该银行业金融机构实行接管D、国务院银行业监督管理机构也可以促成其机构重组5、可以向人民法院提出对金融机构进行重整或者破产清算的申请的是()A、国务院金融监督管理机构B、国有资产监督管理机构C、地方人民政府D、地方人民代表大会6、具有破产原因的债务人得以被宣告破产的资格是()A、破产条件B、破产原因C、破产能力D、破产管辖7、某商场在促销活动期间贴出醒目告示:"本商场家电一律试用20天,满意者付款。
2023年高考全国乙卷文科数学押题预测卷三带解析

2023年高考押题预测卷03文科数学注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内与复数2i1iz=+所对应的点关于实轴对称的点为A,则A对应的复数为()A.1i+B.1i-C.1i--D.1i-+2.03x<<是12x-<成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图1所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是()A.乙的逻辑推理能力优于甲的逻辑推理能力B.甲的数学建模能力指标值优于乙的直观想象能力指标值C.乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D.甲的数学运算能力指标值优于甲的直观想象能力指标值4.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为()A.12B.2C.4D.45.已知函数()2log,1 1,1 1x xf xxx ≥⎧⎪=⎨<⎪-⎩,则不等式()1f x≤的解集为()A.(],2-∞B.(](],01,2-∞ C.[]0,2D.(][],01,2-∞ 6.将函数()()sin0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移π6个单位长度后,所得图象关于y 轴对称,且1π2f ω⎛⎫=- ⎪⎝⎭,则当ω取最小值时,函数()f x 的解析式为()A.()sin 2π6f x x ⎛⎫=+ ⎪⎝⎭B.()sin 2π6f x x ⎛⎫=- ⎪⎝⎭C.()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭D.()sin 4π6f x x ⎛⎫=- ⎪⎝⎭7.数学名著《九章算术》中有如下问题:“今有刍甍(méng),下广三丈,袤(mào)四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”.现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为(单位:立方丈)()A .5.5B.5C.6D.6.58.实数x ,y 满足不等式组()20200x y x y y y m -⎧≤+≥-≤⎪⎨⎪⎩,若3z x y =+的最大值为5,则正数m 的值为()A.2B.12C.10D.1109.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a ,使得2116m n a a a ⋅=,则19m n+的最小值为()A.32B.114C.83D.10310.如图,圆柱的轴截面为正方形ABCD ,E 为弧 BC的中点,则异面直线AE 与BC 所成角的余弦值为()A .33B.55C.306D.6611.若椭圆2212516x y +=和双曲线22145x y -=的共同焦点为1F ,2F ,P 是两曲线的一个交点,则12PF PF ⋅的值为()A.212B.84C.3D.2112.数列{}n a 满足:对任意的n ∈*N 且3n ≥,总存在i ,j ∈*N ,使得n i ja a a =+(),,i j i n j n ≠<<,则称数列{}n a是“T 数列”.现有以下四个数列:①{}2n ;②{}2n ;③{}3n;④112n -⎧⎫⎛-⎪⎪ ⎨⎬⎝⎭⎪⎪⎩⎭.其中是“T 数列”的有()A.0个B.1个C.2个D.3个第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知α锐角,且cos π322α⎛⎫-= ⎪⎝⎭,则tan α=______.14.已知函数()22sin tan ,,0e xx x x f x x -⎧-<⎪=⎨≥⎪⎩,则25π4f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭_____.15.在边长为2的等边三角形ABC 中,2BC BD = ,则向量BA 在AD上的投影为______.16.若直线1y x =+是曲线()()1ln f x x a x a x=+-∈R 的切线,则a 的值是_____.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,3sin 2sin A B =,tan C =(1)求cos 2C ;(2)若1AC BC -=,求ABC △的周长.18.(12分)互联网+时代的今天,移动互联快速发展,智能手机()Smartphone 技术不断成熟,价格却不断下降,成为了生活中必不可少的工具中学生是对新事物和新潮流反应最快的一个群体之一逐渐地,越来越多的中学生开始在学校里使用手机手机特别是智能手机在让我们的生活更便捷的同时会带来些问题,同学们为了解手机在中学生中的使用情况,对本校高二年级100名同学使用手机的情况进行调查.针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如图4的饼图、(注:图中()1,2,7i i =(单位:小时)代表分组为()1,i i -的情况)(1)求饼图中a 的值;(2)假设同一组中的每个数据可用给定区间的中点值代替,试估计样本中的100名学生每天平均使用手机的平均时间在第几组?(只需写出结论)(3)从该校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于3.5小时的概率,若能,请算出这个概率;若不能,请说明理由.19.(12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 的中点.(1)求证:1AB ⊥平面1A BD ;(2)求三棱锥11B A B D -的体积.20.(12分)已知F 为抛物线()2:20C y px p =>的焦点,过F 的动直线交抛物线C 于A ,B 两点.当直线与x 轴垂直时,4AB =.(1)求抛物线C 的方程;(2)设直线AB 的斜率为1且与抛物线的准线l 相交于点M ,抛物线C 上存在点P 使得直线PA ,PM ,PB 的斜率成等差数列,求点P 的坐标.21.(12分)已知函数()()ln xf x kx k x=-∈R .(1)当0k =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()0f x <恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】点P 是曲线()22124C x y -+=:上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90︒得到点Q ,设点Q 的轨迹为曲线2C .(1)求曲线1C ,2C 的极坐标方程;(2)射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,设定点()2,0M ,求MAB △的面积.23.(10分)【选修4-5:不等式选讲】已知函数()()10f x ax a =->.(1)若不等式()2f x ≤的解集为A ,且()2,2A ⊆-,求实数a 的取值范围;(2)若不等式()1232f x f x aa ⎛⎫++> ⎪⎝⎭对一切实数x 恒成立,求实数a 的取值范围.2023年高考押题预测卷03(解析版)文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内与复数2i1iz =+所对应的点关于实轴对称的点为A ,则A 对应的复数为()A.1i+B.1i -C.1i --D.1i-+【解析】 复数()()()2i 1i 2i 1i 1i 1i 1i z -===+++-,∴复数的共轭复数是1i -,就是复数2i1iz =+所对应的点关于实轴对称的点为A 对应的复数,故选B.2.03x <<是12x -<成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】解12x -<得到13x -<<,假设03x <<,一定有13x -<<,反之不一定,故03x <<是12x -<成立的充分不必要条件.故答案为A.3.比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图1所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是()A.乙的逻辑推理能力优于甲的逻辑推理能力B.甲的数学建模能力指标值优于乙的直观想象能力指标值C.乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D.甲的数学运算能力指标值优于甲的直观想象能力指标值【解析】对于选项A,甲的逻辑推理能力指标值为4,优于乙的逻辑推理能力指标值为3,所以该命题是假命题;对于选项B,甲的数学建模能力指标值为3,乙的直观想象能力指标值为5,所以乙的直观想象能力指标值优于甲的数学建模能力指标值,所以该命题是假命题;对于选项C,甲的六维能力指标值的平均值为()12343453466+++++=,乙的六维能力指标值的平均值为()154354346+++++=,因为2346<,所以选项C 正确;对于选项D,甲的数学运算能力指标值为4,甲的直观想象能力指标值为5,所以甲的数学运算能力指标值不优于甲的直观想象能力指标值,故该命题是假命题.故选C.4.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为()B .12B.2C.4D.4【解析】由题意,椭圆的两个焦点与短轴的一个端点构成一个正三角形,即2c a =,所以离心率12c e a ==,故选A.5.已知函数()2log ,11,11x x f x x x≥⎧⎪=⎨<⎪-⎩,则不等式()1f x ≤的解集为()A.(],2-∞B.(](],01,2-∞ C.[]0,2D.(][],01,2-∞ 【解析】当1x ≥时,()1f x ≤,即为2log 1x ≤,解得12x ≤≤;当1x <时,()1f x ≤,即为111x≤-,解得0x ≤,综上可得,原不等式的解集为][(,01,2⎤-∞⎦ ,故选D.6.将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移π6个单位长度后,所得图象关于y 轴对称,且1π2f ω⎛⎫=- ⎪⎝⎭,则当ω取最小值时,函数()f x 的解析式为()A.()sin 2π6f x x ⎛⎫=+ ⎪⎝⎭B.()sin 2π6f x x ⎛⎫=- ⎪⎝⎭C.()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭D.()sin 4π6f x x ⎛⎫=- ⎪⎝⎭【解析】将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移π6个单位长度后,可得πsin 6y x ωωϕ⎛⎫=-+ ⎪⎝⎭的图象,∵所得图象关于y 轴对称,∴πππ62k ωϕ-+=+,k ∈Z .∵()1sin πsin 2πf ϕϕω⎛⎫=-=+=- ⎪⎝⎭,即1sin 2ϕ=,则当ω取最小值时,π6ϕ=,∴ππ63πk ω-=+,取1k =-,可得4ω=,∴函数()f x 的解析式为()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭,故选C.7.数学名著《九章算术》中有如下问题:“今有刍甍(méng),下广三丈,袤(mào)四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”.现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为(单位:立方丈)()B .5.5B.5C.6D.6.5【解析】根据三视图知,该几何体是三棱柱,截去两个三棱锥,如图所示:结合图中数据,计算该几何体的体积为111231423115232V V V =⨯⨯⨯-⨯⨯⨯⨯⨯==-三棱柱三棱锥(立方丈).8.实数x ,y 满足不等式组()20200x y x y y y m -⎧≤+≥-≤⎪⎨⎪⎩,若3z x y =+的最大值为5,则正数m 的值为()A.2B.12C.10D.110【解析】先由2020x y x y -≤+≥⎧⎨⎩画可行域,发现0y ≥,所以()0y y m -≤可得到y m ≤,且m 为正数.画出可行域为AOB △(含边界)区域.3z x y =+,转化为3y x z =-+,是斜率为3-的一簇平行线,z 表示在y 轴的截距,由图可知在A 点时截距最大,解2y x y m ==⎧⎨⎩,得2m x y m==⎧⎪⎨⎪⎩,即,2m A m ⎛⎫ ⎪⎝⎭,此时max 352m z m =+=,解得2m =,故选A 项.9.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a ,使得2116m n a a a ⋅=,则19m n+的最小值为()A.32B.114C.83D.103【解析】设正项等比数列{}n a 的公比为q ,且0q >,由7652a a a =+,得6662q a a a q=+,化简得220q q --=,解得2q =或1q =-(舍去),因为2116m n a a a =,所以()()11211116m n a q a q a --=,则216m n q +-=,解得6m n +=,所以()19119191810106663n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当9n m m n =时取等号,此时96n m m n m n =+=⎧⎪⎨⎪⎩,解得3292m n ⎧⎪⎪⎨==⎪⎪⎩,因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>,验证可得,当2m =,4n =时,19m n +取最小值为114,故选B.10.如图,圆柱的轴截面为正方形ABCD ,E 为弧 BC的中点,则异面直线AE 与BC 所成角的余弦值为()【解析】取BC 的中点H ,连接EH ,AH ,90EHA ∠=︒,设2AB =,则1BH HE ==,AH =AE =,连接ED,ED =因为BC AD ∥,所以异面直线AE 与BC 所成角即为EAD ∠,在EAD △中,cos 6EAD ∠=,故选D.11.若椭圆2212516x y +=和双曲线22145x y -=的共同焦点为1F ,2F ,P 是两曲线的一个交点,则12PF PF ⋅的值为()A.212B.84C.3D.21【解析】依据题意作出椭圆与双曲线的图像如下:由椭圆方程2212516x y +=,可得2125a =,15a =,由椭圆定义可得121210PF PF a +== (1),由双曲线方程22145x y -=,可得224a =,22a =,由双曲线定义可得12224PF PF a -== (2)联立方程(1)(2),解得17PF =,23PF =,所以123721PF PF ⋅=⨯=,故选D.12.数列{}n a 满足:对任意的n ∈*N 且3n ≥,总存在i ,j ∈*N ,使得n i ja a a =+(),,i j i n j n ≠<<,则称数列{}n a是“T 数列”.现有以下四个数列:①{}2n ;②{}2n ;③{}3n;④112n -⎧⎫⎛-⎪⎪ ⎨⎬⎝⎭⎪⎪⎩⎭.其中是“T 数列”的有()A.0个B.1个C.2个D.3个【解析】令2n a n =,则()113n n a a a n -=+≥,所以数列{}2n 是“T 数列”;令2n a n =,则11a =,24a =,39a =,所以312a a a ≠+,所以数列{}2n 不是“T 数列”;令3n n a =,则13a =,29a =,327a =,所以312a a a ≠+,所以数列{}3n 不是“T 数列”;令112n n a -⎛-= ⎝⎭,则()123121113222n n n n n n a a a n -----⎛⎫⎛⎛-==+=+≥ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以数列112n -⎧⎫⎛⎫⎪⎪⎪⎨⎬⎪⎝⎭⎪⎪⎩⎭是“T 数列”.综上,“T 数列”的个数为2,本题选择C 选项.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知α锐角,且cos π2α⎛⎫-= ⎪⎝⎭tan α=______.【解析】由cos π2α⎛⎫-= ⎪⎝⎭sin 2α=,α 是锐角,60α∴=︒,则tan α=,故答案为15.已知函数()22sin tan ,,0e xx x x f x x -⎧-<⎪=⎨≥⎪⎩,则25π4f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭_____.【解析】因为225π25π25π13sin tan 144422f ⎛⎫⎛⎫⎛⎫-=---=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3232331ee 2ef -⨯-⎛⎫=== ⎪⎝⎭.故答案为31e .15.在边长为2的等边三角形ABC 中,2BC BD = ,则向量BA 在AD上的投影为______.【解析】2BC BD = ,D ∴为BC 的中点,()12AD AB AC ∴=+,111222cos1203222BA AD AB BA AC BA ∴⋅=⋅+⋅=-+⨯⨯⨯︒=-,AD = 则向量BA 在AD上的投影为BA AD AD⋅==,故答案为16.若直线1y x =+是曲线()()1ln f x x a x a x=+-∈R 的切线,则a 的值是_____.【解析】设切点的横坐标为0x ,()20220111111a x ax f x x a x x x a x --'=--==⇒=-⇒-=,则有()00000001ln 1ln 10f x x a x x x x x =+-=+⇒-+=,令()()1ln 1101h x x x h x x x'=-+⇒=-=⇒=,则()h x 在()0,1上单调递增,在()1,+∞上单调递减,又因为()10h =,所以011x a =⇒=-,故答案为1-.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,3sin 2sin A B =,tan C =(1)求cos 2C ;(2)若1AC BC -=,求ABC △的周长.【解析】(1)∵tan C =1cos 6C =,∴2117cos 221618C ⎛⎫=⨯-=- ⎪⎝⎭.(2)设ABC △的内角A ,B ,C 的对边分别为a ,b ,c .∵3sin 2sin A B =,∴32a b =,∵1AC BC b a -=-=,∴2a =,3b =.由余弦定理可得2222cos 13211c a b ab C =+-=-=,则c ,ABC △的周长为5+18.(12分)互联网+时代的今天,移动互联快速发展,智能手机()Smartphone 技术不断成熟,价格却不断下降,成为了生活中必不可少的工具中学生是对新事物和新潮流反应最快的一个群体之一逐渐地,越来越多的中学生开始在学校里使用手机手机特别是智能手机在让我们的生活更便捷的同时会带来些问题,同学们为了解手机在中学生中的使用情况,对本校高二年级100名同学使用手机的情况进行调查.针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如图4的饼图、(注:图中()1,2,7i i =(单位:小时)代表分组为()1,i i -的情况)(1)求饼图中a 的值;(2)假设同一组中的每个数据可用给定区间的中点值代替,试估计样本中的100名学生每天平均使用手机的平均时间在第几组?(只需写出结论)(3)从该校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于3.5小时的概率,若能,请算出这个概率;若不能,请说明理由.【解析】(1)由饼图得100%6%9%27%12%14%3%29%------=.(2)假设同一组中的每个数据可用给定区间的中点值代替,估计样本中的100名学生每天平均使用手机的平均时间在第4组.(3)∵样本是从高二年级抽取的,根据抽取的样本只能估计该校高二年级学生每天使用手机进行娱乐活动的平均时间,不能估计全校学生情况,∴若抽取的同学是高二年级的学生,则可以估计这名同学每天平均使用手机小于3.5小时的概率大约为0.48,若抽到高一、高三的同学则不能估计.19.(12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 的中点.(1)求证:1AB ⊥平面1A BD ;(2)求三棱锥11B A B D -的体积.【解析】(1)证明:由正三棱柱111ABC A B C -的所有棱长都相等可知,11AB A B ⊥,如图,取BC 的中点E ,连接1B E ,则1BCD B BE ≅Rt Rt △△,1BB E CBD ∴∠=∠,1190CBD CDB BB E BEB ∴∠+∠=∠+∠=︒,1BD B E ∴⊥,由平面ABC ⊥平面11BCC B ,平面ABC 平面11BCC B BC =,且AE BC ⊥得,AE ⊥平面11BCC B ,AE BD ∴⊥,1B E ⊂ 平面1AEB ,AE ⊂平面1AEB ,1AE B E E = ,BD ∴⊥平面1AEB ,1BD AB ∴⊥,1A B ⊂ 平面1A BD ,BD ⊂平面1A BD ,1A B BD B = ,1AB ∴⊥平面1A BD ,(2)连接1B D ,由1AA ∥平面11BCC B ,所以点1A 到平面11BCC B 的距离,等于AE ===,1111122222BDB BCC B S S ==⨯⨯=△正方形,11111112333B A B D A BDB BDB V V S AE --∴==⨯=⨯⨯△,故三棱锥11B A B D -20.(12分)已知F 为抛物线()2:20C y px p =>的焦点,过F 的动直线交抛物线C 于A ,B 两点.当直线与x 轴垂直时,4AB =.(1)求抛物线C 的方程;(2)设直线AB 的斜率为1且与抛物线的准线l 相交于点M ,抛物线C 上存在点P 使得直线PA ,PM ,PB 的斜率成等差数列,求点P 的坐标.【解析】(1)因为,02p F ⎛⎫ ⎪⎝⎭,在抛物线方程22y px =中,令2p x =,可得y p =±.于是当直线与x 轴垂直时,24AB p ==,解得2p =.所以抛物线的方程为24y x =.(2)因为抛物线24y x =的准线方程为1x =-,所以()1,2M --.设直线AB 的方程为1y x =-,联立241y xy x ==-⎧⎨⎩消去x ,得2440y y --=.设()11,A x y ,()22,B x y ,则124y y +=,124y y =-.若点()00,P x y 满足条件,则2PM PA PB k k k =+,即0010200102221y y y y y x x x x x +--⋅=++--,因为点P ,A ,B 均在抛物线上,所以2004y x =,2114y x =,2224y x =.代入化简可得()()00122200120122224y y y y y y y y y y y +++=++++,将124y y +=,124y y =-代入,解得02y =±.将02y =±代入抛物线方程,可得01x =.于是点()1,2P ±为满足题意的点.21.(12分)已知函数()()ln xf x kx k x=-∈R .(1)当0k =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()0f x <恒成立,求k 的取值范围.【解析】(1)当0k =时,()ln x f x x =,则()21ln xf x x -'=,∴()10f =,()11f '=,∴曲线()y f x =在点()()1,1f 处的切线方程为1y x =-.(2)若()0f x <对()0,x ∈+∞恒成立,即2ln xk x >对0x >恒成立,设()2ln x g x x =,可得()312ln xg x x -'=,由()0g x '=,可得x =当0x <时,()0g x '>,()g x 单调递增;当x >时,()0g x '<,()g x 单调递减.∴()g x 在x =处取得极大值,且为最大值12e ,∴k 的取值范围为1,2e ⎛⎫+∞ ⎪⎝⎭.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】点P 是曲线()22124C x y -+=:上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90︒得到点Q ,设点Q 的轨迹为曲线2C .(1)求曲线1C ,2C 的极坐标方程;(2)射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,设定点()2,0M ,求MAB △的面积.【解析】(1)曲线1C 的圆心为()2,0,半径为2,把互化公式代入可得:曲线1C 的极坐标方程为4cos ρθ=.设(),Q ρθ,则,2πP ρθ⎛⎫- ⎪⎝⎭,则有4cos 4sin π2ρθθ⎛⎫=-= ⎪⎝⎭.所以曲线2C 的极坐标方程为4sin ρθ=.(2)M 到射线π3θ=的距离为2sin 3πd ==,)4sin cos ππ2133B A AB ρρ⎛⎫=-=-= ⎪⎝⎭,则132S AB d =⨯=23.(10分)【选修4-5:不等式选讲】已知函数()()10f x ax a =->.(1)若不等式()2f x ≤的解集为A ,且()2,2A ⊆-,求实数a 的取值范围;(2)若不等式()1232f x f x aa ⎛⎫++> ⎪⎝⎭对一切实数x 恒成立,求实数a 的取值范围.【解析】(1)12ax -≤,212ax -≤-≤,13x a a -≤≤,13,A a a ⎡⎤=-⎢⎥⎣⎦.()2,2A ⊆- ,1232aa⎧->-⎪⎪∴⎨⎪<⎪⎩,32a >,a ∴的取值范围3,2⎛⎫+∞ ⎪⎝⎭.(2)由题意3112ax x -++>恒成立,设()11h x ax x =-++,()()()()()1,1112,111,a x x h x a x x a a x x a ⎧⎪-+<-⎪⎪⎛⎫=-+-≤<⎨ ⎪⎝⎭⎪⎪⎛⎫+≥⎪ ⎪⎝⎭⎩,①01a <≤时,由函数单调性()()min 11h x h a =-=+,312a +>,112a ∴<≤,②1a >时,()min 11a h x h a a +⎛⎫== ⎪⎝⎭,132a a +>,12a ∴<<,综上所述,a 的取值范围1,22⎛⎫⎪⎝⎭.。
2020年全国高考物理考前冲刺押题卷(3)(解析版)

2020年全国高考物理考前冲刺押题卷(三)(考试时间:90分钟 试卷满分:110分)第Ⅰ卷一、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分。
1.下列说法不正确的是( )A .238 92U 经过一次α衰变后变为234 90ThB .由核反应方程137 55Cs →13756Ba +X ,可以判断X 为电子C .核反应方程42He +14 7N →17 8O +11H 为轻核聚变 D .若16 g 铋210经过15天时间,还剩2 g 未衰变,则铋210的半衰期为5天2.如图所示,水平直杆OP 右端固定于竖直墙上的O 点,长为L =2 m 的轻绳一端固定于直杆P 点,另一端固定于墙上O 点正下方的Q 点,OP 长为d =1.2 m ,重为8 N 的钩码由光滑挂钩挂在轻绳上处于静止状态,则轻绳的弹力大小为( )A .10 NB .8 NC .6 ND .5 N3.如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H4所用的时间为t 1,第四个H 4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<54.如图所示,MN 是流速稳定的河流,河宽一定,小船在静水中的速度大小一定,现小船从A 点渡河,第一次船头沿AB 方向与河岸上游夹角为α,到达对岸;第二次船头沿AC 方向与河岸下游夹角为β,到达对岸,若两次航行的时间相等,则( )A .α=βB .α<βC .α>βD .无法比较α与β的大小5.如图所示,一颗卫星绕地球做椭圆运动,运动周期为T ,图中虚线为卫星的运行轨迹,A 、B 、C 、D 是轨迹上的四个位置,其中A 距离地球最近,C 距离地球最远.B 和D 点是ABC 和ADC 的中点,下列说法正确的是( )A .卫星在C 点的速度最大B .卫星在C 点的加速度最大C .卫星从A 经D 到C 点的运动时间为T /2 D .卫星从B 经A 到D 点的运动时间为T /26.有5个完全相同的灯泡连接在理想变压器的原、副线圈中,如图所示.若将该线路与交流电源接通,且开关S 接在位置1时,5个灯泡发光亮度相同;若将开关S 接在位置2时,灯泡均未烧坏.则下列可能的是( )A .该变压器是降压变压器,原、副线圈匝数比为4∶1B .该变压器是升压变压器,原、副线圈匝数比为1∶4C .副线圈中的灯泡仍能发光,只是更亮些D .副线圈中的灯泡仍能发光,只是亮度变暗7.如图所示,a 、b 两点位于以负点电荷-Q (Q >0)为球心的球面上,c 点在球面外,则( )A .a 点场强的大小比b 点大B .b 点场强的大小比c 点小C .a 点电势与b 点电势相同D .b 点电势比c 点低8.如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个矩形导线框abcd ,其上、下两边均与磁场边界平行,已知矩形导线框长为2l ,宽为l ,磁场上、下边界的间距为3l .若线框从某一高度处自由下落,从cd 边进入磁场时开始,直至cd 边到达磁场下边界为止,不计空气阻力,下列说法正确的是( )A .线框在进入磁场的过程中感应电流的方向为adcbaB .线框下落的速度大小可能始终减小C .线框下落的速度大小可能先减小后增加D .线框下落过程中线框的重力势能全部转化为内能第Ⅱ卷二、非选择题:本卷包括必考题和选考题两部分。
基础押题卷三(题目)

基础押题卷三(题目)单选题1.下列说法错误的是()。
A基金管理人依法向中国证监会办理基金备案手续,基金合同生效B基金募集期限届满,不能满足法律规定的条件,无法办理基金备案手续,基金合同不生效C基金募集失败,基金管理人不需要承担因募集行为而产生的债务和费用,由投资人自己承担D投资人交纳认购的基金份额的款项时,基金合同成立2.根据市场条件的不同,通常有三种指数复制方法,即完全复制、抽样复制和优化复制。
三种复制方法跟踪误差大小的顺序为()。
A完全复制<抽样复制<优化复制B完全复制>抽样复制>优化复制C优化复制<完全复制<抽样复制D优化复制>完全复制>抽样复制3.关于保证金交易业务,下列表述正确的是()。
A保证金交易能够减少资金占用,降低投资杠杆和风险B卖空交易表明投资者认为股票价格会下跌C融券没有资金成本D融券业务会放大投资收益和损失,融资业务不会4.关于全额结算,以下表述错误的是()。
A全额结算的结算成本较低B全额结算的结算机构不对结算完成进行担保C全额结算也就是逐笔结算D全额结算有助于降低结算本金风险5.下列属于我国债券市场的场外交易场所的是()。
A融资融券市场B上海证券交易所C深圳证券交易所D银行间市场6.某投资者信用账户中有现金40万元保证金,该投资者选定证券A进行融券卖出,证券A的最近成交价为每股8元,该投资者融券卖出10万股。
第二天,该股票价格上升到每股10元,不考虑利息和费用,该投资者需要追加()保证金才能维持130%的担保比例。
A10万元B50万元C5万元D不需要追加7.证券投资基金财务报表包括()。
I.资产负债表II.利润表III.净值变动表IV.现金流量表AI、IIBI、II、IIICII、III、IVDII、IV8.当一个行业技术已经成熟,产品的市场基本形成并不断扩大,公司利润开始逐步上升,股价逐步上涨时,表明该行业处于生命周期的()。
A成长期B成熟期C初创期D衰退期9.()是指包含对通货膨胀补偿的利率。
2023届新高考金榜押题卷猜题卷数学试题含解析(第3套)

2023届新高考数学金榜押题卷(3)【满分:150分】一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{2,1,0,1,2,3}U =--,集合{1,2}A =-,{}2|430B x x x =-+=,则()U A B =ð( ) A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-2.若复数z 满足()42i (3i)z +=-=( )==+=b4.设某芯片制造厂有甲、乙两条生产线均生产5nm 规格的芯片,现有20块该规格的芯片,其中甲、乙生产的芯片分别为12块,8块,且乙生产该芯片的次品率为120,现从这20块芯片中任取一块芯片,若取得芯片的次品率为0.08,则甲厂生产该芯片的次品率为( )A.15B.110C.115D.1205.圆锥的母线长为4,侧面积是底面积的倍,过圆锥的两条母线作圆锥的截面,则该截面面积的最大值是( ) A.8B. C.D.6.已知的图象关于点(1,0)对称,且对任意x ∈R ,都有(1)(3)f x f x -=-成立,当[1,0)∈-时,,则(2021)f =(). A.-8B.-2C.0D.27.《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著.《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了43(1)y f x =-2()2f x x =完整的体系.其中卷第五《商功》中记载了如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”其意思为“现在有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,无宽,上棱长2丈,高1丈,问它的体积是多少?”(1丈为10尺).该问题中涉及的几何体如图所示,在多面体中,//EF 平面的中点G 在底面ABCD 上的射影为矩形的中心,4,3,2,1O AB BC EF OG ====,则异面直线与CF 所成角的余弦值为( )A.C.8.已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122AF F S =V ,则椭圆C 的方程为( )A.22162x y += B.22184x y += C.22182x y +=D.2212016x y += 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.若,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( ) A.222a b ab +≥B.a b +≥1b +>2a b≥10.已知函数()sin(2)f x x ωϕ=+(ω为正整数,π||2ϕ<)的最小正周期3π3π,42T ⎛⎫∈ ⎪⎝⎭,将函数()f x 的图象向右平移π6个单位长度后所得图象关于原点对称,则下列关于函数()f x 的说法正确的是( ) A.6π-是函数()f x 的一个零点 B.函数()f x 的图象关于直线5π12x =-对称 C.方程1()2f x =在[0,π]上有三个解 ABCDEF,ABCD EF ABCDBDD.函数()f x 在ππ,62⎛⎫⎪⎝⎭上单调递减11.已知函数32()(,,)f x x ax bx c a b c =+++∈R ,则下列说法正确的是( ) A.若实数1x ,2x 是()f x 的两个不同的极值点,且满足1212x x x x +=,则0a >或6a <-B.函数()f x 的图象过坐标原点的充要条件是0c =C.若函数()f x 在R 上单调,则23b a ≤D.若函数()f x 的图象关于点(1,(1))f 中心对称,则3a =-12.正四面体PABC 中,点,M N 分别满足1,2PM PA PN PB λ==uuu ruu r uuur uu r,其中[0,1]λ∈,则下列说法正确的有( ) A.当12λ=时,//MN 平面ABC B.不存在λ使得MN PC ⊥C.异面直线BM 与PCD.若正四面体的棱长为三、填空题:本题共4小题,每小题5分,共20分.13.已知数列{}n a 的前n 项和为n S ,且2n n a n S -=,则2023a =________.14.()82112x x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为_________.(用数字作答)15.已知双曲线2222:1(0,x y C a b a b-=>>交于A ,B 两点,M 是线段AB 的中点,O 为坐标原点.若点M 的横坐标为1,则OM 16.已知函数e ()xf x x=,,当21x x >时,不等式恒成立,则实数a 的取值范围为____________.四、解答题:本题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.(0,)x ∈+∞()()112221f x ax f x ax x x --<17.(10分)已知数列{}n a 的前n 项和为. (1)若12S =,,证明:12n n S a +=-;(2)在(1)的条件下,若,数列{}n b 的前n 项和为,求证12311112nT T T T ++++<. 18.(12分)已知菱形ABCD 的边长为2,,E 是边BC 上一点,线段DE 交AC 于点F .(1)若CDE △,求DE 的长. (2)4DF =,求.19.(12分)某工厂统计了某产品的原材料投人x (万元)与利润y (万元)间的几组数据如下: (1)根据经验可知原材料投人x (万元)与利润y (万元)间具有线性相关关系,求利润y (万元)关于原材料投人x (万元)的线性回归方程.(2)当原材料投人为100万元时,预估该产品的利润为多少万元?附:ˆb=y bx =-.20.(12分)如图,PO 是三棱锥P ABC -的高,,AB AC ⊥,E 是PB 的中点.n S 122n n S S +=+2log n n b a =n T 60DAB ∠=︒sin DFC ∠PA PB =(1)求证:平面PAC ;(2)若30ABO CBO ∠=∠=︒,,5PA =,求二面角正余弦值. 21.(12分)已知O 是平面直角坐标系的原点,F 是抛物线2:2(0)C x py p =>的焦点,过点F 的直线交抛物线于A ,B 两点,且OAB △的重心G 在曲线29620x y -+=上.(1)求抛物线C 的方程;(2)记曲线29620x y -+=与y 轴的交点为D ,且直线AB 与x 轴相交于点E ,弦AB 的中点为M ,求四边形DEMG 面积的最小值.22.(12分)已知函数e (1)()ea axx f x -=(其中e 为自然对数的底数,a ∈R ). (1)当1a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)若,方程()10f x a +-=有两个不同的实数根,求证:22122e x x +>.//OE 3PO =C AE B --0a >12,x x答案以及解析1.答案:D解析:集合,所以{1,1,2,3}A B =-,所以.故选D. 2.答案:D解析:由()()()()286i 42i (3i)3216i 24i 12142i 42i42i 20z ------====-++-=3.答案:B解析:由222||27+=++⋅=a b a b a b ,解得,所以4.答案:B解析:设1A ,2A 分别表示取得的这块芯片是由甲厂、乙厂生产的,B 表示取得的芯片为次品,甲厂生产该芯片的次品率为p , 则()1123205P A ==,()225P A =,()1P B A p =∣,()2120P B A =∣, 则由全概率公式得:()()()()()11223210.085520P B P A P B A P A P B A p =+=⨯+⨯=∣∣,解得110p =,故选:B. 5.答案:A解析:本题考查圆锥的侧面积、底面积、截面面积的求解.设圆锥底面半径为r ,母线为l ,轴截面顶角为(0π)θθ<<,则24ππ3rl r =,得43l r =,所以3πsinsin 244r l θ==>=,因为为锐角,所以π24θ>,即,则θ为纯角,所以当圆锥两条母线互相垂直时,截面面积最大,最大值为22114822l =⨯=.故选A.6.答案:B解析:因为的图象关于点(1,0)对称,所以函数的图象关于点(0,0)对称,即函数为奇函数,所以()()f x f x -=-,{1,3}B =(){2,0}U A B =-ð1⋅=a b cos<,>⋅==a b a b a b 2θπ2θ>(1)y f x =-()f x ()f x又对任意,都有(1)(3)f x f x-=-成立,所以,所以(4)(2)[()]()f x f x f x f x+=-+=--=,即函数是周期为4的周期函数,因为当[1,0)x∈-时,,所以2(2021)(1)(1)2(1)2f f f==--=-⨯-=-,故选B.7.答案:D解析:本题考查数学文化、异面直线所成角.如图,分别取的中点,,P Q R,连接,则,////ER CF QR BD,所以(或其补角)为异面直线BD与所成角.1522QR BD===.由题意知四边形为等腰梯形,则由等腰梯形的性质知EQFQ==ER CF==,所以在EQRV中,由余弦定理,得222cos2ER QR EQQREER QR+-∠==⋅D.8.答案:A解析:因为点A在椭圆上,所以122AF AF a+=,把该等式两边同时平方,得222121224AF AF AF AF a++=.又12AF AF⊥,所以222124AF AF c+=,则222122444AF AF a c b=-=,即,所以12212122AF FS AF AF b===△.因为x∈R(2)()()f x f x f x+=-=-()f x2()2f x x=,,AD BC CD,,,,,EP PQ QF QR RE EQ QRE∠CFPQFE2122AF AF b=是直角三角形,1290F AF ∠=︒,且O 为的中点,所以121||2OA F F c ==.不妨设点A 在第一象限,则230AOF ∠=︒,所以1,2A c ⎫⎪⎪⎝⎭,所以122121112222AF F S F F c c =⋅==△,即24c =,故2226a b c =+=,所以椭圆C 的方程为22162x y +=,故选A. 9.答案:AD解析:对于A ,因为220,0,0a b ab ≥≥>,所以222a b ab +≥,因此A 项正确;对于B ,取1a b ==-,此时22a b +=-<=,因此B 项不正确;对于C ,取1a b ==-,122b +=-<=,因此C 项不正确;对于D ,因为0,0ba >>,,因此D 正确. 10.答案:ABD解析:由题意得,2π3π3π,242T ω⎛⎫=∈ ⎪⎝⎭,解得23<43ω<,又ω为正整数,所以1ω=,所以()sin(2)f x x ϕ=+.函数()f x 的图象向右平移π6个单位长度后所得图象对应的函数()sin 2sin 23π6ππ6g x f x x x ϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由题意,函数()g x 的图象关于原点对称,故ππ()3k k ϕ-=∈Z ,即π()3πk k ϕ=+∈Z .又π||2ϕ<,所以0k =,π3ϕ=,所以()s 23πin f x x ⎛⎫=+ ⎪⎝⎭.A 选项πππsin 2sin 00663f ⎡⎤⎛⎫⎛⎫-=⨯-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确;B 选项:5π5πsin 2sin 1121ππ232f ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以B 正确;C 选项:令3π2t x =+,因为[0,π]x ∈,所以7π,33πt ⎡⎤∈⎢⎥⎣⎦,,显然1sin 2t =在π7π,33⎡⎤⎢⎥⎣⎦12AF F △12F F ab >2a b +≥=内只有5π6,13π6两个解,故C 错误; D 选项:当,62ππx ⎛⎫∈ ⎪⎝⎭时,2π4π3π2,,3332π2πx ⎛⎫⎛⎫+∈⊆ ⎪ ⎪⎝⎭⎝⎭,,故函数()f x 在ππ,62⎛⎫⎪⎝⎭上单调递减,D 正确. 11.答案:ABD解析:A 选项2()32f x x ax b '=++,由题意知实数1x ,2x 是方程2320x ax b ++=的两个不等实根,所以24120a b ∆=->,且1223a x x +=-,123bx x =,由1212x x xx +=,得2b a =-,所以260a a +>,解得0a >或6a <-,所以A 正确.B 选项:若函数()f x 的图象过坐标原点,则(0)0f c ==,故充分性成立;反之,若0c =,则(0)0f c ==,故函数()f x 的图象过坐标原点,必要性成立.故B 正确. C 选项:若函数()f x 在R 上单调,则2()320f x x ax b '=++≥恒成立,所以24120a b -≤,即23b a ≥,故C 不正确.D 选项:因为函数()f x 的图象关于点(1,(1))f 中心对称,所以(1)(1)2(1)f x f x f ++-=,即3(1)x ++232(1)(1)(1)(1)(1)2(1)a x b x c x a x b x c a b c +++++-+-+-+=+++,整理得2(3)0a x +=,所以3a =-,所以D 正确. 12.答案:AD解析:对于A ,如图1,当12λ=时,点,M N 分别是,PA PB 的中点,//MN AB .又AB ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC ,故选项A 正确;对于B ,如图2,将正四面体PABC 放在正方体内,由正方体的结构特征可知AB PC ⊥,所以当,M N 分别是,PA PB 的中点时,MN PC ⊥,即存在λ使得MN PC ⊥,故选项B 错误;对于C ,如图1,取AC 的中点E ,连接,,ME BM BE ,则//PC ME ,异面直线BM与PC 所成角即为BME ∠.在BME △中,设1ME =,则BE BM ==由余弦定理得cos BME∠==C错误;对于D,如图2,把正四面体放入正方体中,由正四面体的棱长为2,所以正方体的外接球的直径为,故选项D正确,故选AD.13.答案:202321-解析:因为2n na n S-=,所以当1n=时,由11121a S a==-,得11a=;当2n≥时,()11221n n n n na S S a n a n--=-=--+-,化简得121n na a-=+,即()1121n na a-+=+,所以数列{}1na+是以2为首项,2为公比的等比数列,所以12nna+=,所以21nna=-,所以2023202321a=-.14.答案:182解析:因为()88822111122x x x x xx x x⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎝+⋅⎭⎭=,其中81xx⎛⎫+⎪⎝⎭展开式的通项为8821881C Crr r r rrT x xx--+⎛⎫==⎪⎝⎭,令4r=得81xx⎛⎫+⎪⎝⎭的常数项为48C70=,令822r-=-,即5r=得81xx⎛⎫+⎪⎝⎭展开式中2x-的系数为58C56=.34π3=所以()82112x x x ⎛⎫++ ⎪⎝⎭的常数项为70256182+⨯=.故答案为:182. 15.答案:)+∞解析:由题知24,a c e a =⎧⎪⎨==⎪⎩解得2222,2,,ab bc a =⎧⎪=⎨⎪=-⎩所以双曲线22:144x y C -=.设直线l 的方程为y kx m =+,联立22,1,44y kx m x y =+⎧⎪⎨-=⎪⎩消去y 并整理得()2221240k x kmx m ----=,所以()()222Δ(2)4140km k m =----->,所以22440m k -+>,16.答案:e ,2⎛⎤-∞ ⎥⎝⎦解析:由题可知,当21x x >时,不等式()()22111222x f x ax x f x ax -<-恒成立,设22()()e x g x xf x ax ax =-=-,则()g x 在(0,)x ∈+∞上是增函数,则()e 20x g x ax '=-≥在(0,)+∞上恒成立,即e 2x a x ≤在(0,)+∞上恒成立.令e ()x m x x =,则2(1)e ()x x m x x -'=,当(0,1)x ∈时,()0m x '<,()m x 单调递减,当(1,)x ∈+∞时,()0m x '>,()m x 单调递增.所以min 2()(1)e a m x m ≤==,所以e2a ≤. 17.答案:(1)见解析 (2)见解析解析:(1)因为12S =,122n n S S +=+, 所以()1222n n S S ++=+,124S +=,所以数列{}2n S +是以4为首项,2为公比的等比数列, 所以122n n S ++=,122n n S +∴=-,当2n ≥时,122n n S -=-,12n n n n S S a --==, 当1n =时,112a S ==满足上式, 所以2n n a =,所以12n n S a +=-成立. (2)由(1)知2n n a =,2log n n b a n ==,所以(1)2n n n T +=, 则12112(1)1n T n n n n ⎛⎫==⨯- ⎪++⎝⎭, 所以1231111n T T T T ++++=11111111212122233411n n n ⎛⎫⎛⎫⨯-+-+-++-=⨯-< ⎪⎪++⎝⎭⎝⎭, 所以12311112nT T T T ++++<成立. 18.答案:解析:(1)依题意,得60BCD DAB∠=∠=︒. 因为CDE △的面积1sin 2S CD CE BCD=⋅⋅∠=所以122CE ⨯=1CE =. 在CDE △中,由余弦定理得DE ===(2)方法一:连接BD .依题意,得30,60ACD BDC ∠=︒∠=︒, 设CDE θ∠=,则060θ︒<<︒,在CDF △中,由正弦定理得sin sin CF DFACD θ=∠,4DF =,所以sin 2CF DF θ==,所以cos θ()1sin sin 30+2DFC θ∠=︒==方法二:连接BD .依题意,得30ACD ∠=︒,60BDC ∠=︒, 设CDE θ∠=,则0060︒<<︒,设4CF x =4DF =,则DF =,在CDF △中,由余弦定理,得2222cos DF CD CF CD CF ACD =+-⋅∠,即227416x x =+-,解得x =x =.又因为12CF AC ≤=x ≤,所以所以9DF=, 在中,由正弦定理得sin sin CD DFDFC ACD=∠∠, 所以. 19.答案:(1)221040y x =- (2)1160万元()18284858688855=⨯++++=,()1770800830850900830,5y =⨯++++= 所以()()()51521ˆii i ii xx y y bxx ==--=-∑∑()()()()2222360130012037022(3)(1)013-⨯-+-⨯-++⨯+⨯==-+-+++所以83022851040a y bx =-=-⨯=-, 所以线性回归方程为221040y x =-.x =CDF △sin DFC ∠=(2)当100y=⨯-=(万元),x=时,2210010401160即当原材料投人为100万元时,预估该产品的利润为1160万元20.答案:(1)证明见解析(2)1113解析:(1)如图,取AB的中点D,连接DP,DO,DE.因为AP PB⊥.=,所以PD AB因为PO为三棱锥P ABC-的高,所以PO⊥平面ABC,因为AB⊂平面ABC,所以PO AB⊥.又,=,所以AB⊥平面POD.PO PD⊂平面POD,且PO PD P因为OD⊂平面POD,所以AB OD⊥,又AB ACOD AC,因为OD⊂/平面PAC,AC⊂平面PAC,所以//OD平⊥,所以//面PAC.因为D,E分别为BA,BP的中点,所以//DE PA,因为DE⊂/平面PAC,PA⊂平面PAC,所以//DE平面PAC.又,=,OD DE⊂平面ODE,OD DE D所以平面//ODE平面PAC.又OE⊂平面ODE,所以//OE平面PAC.(2)连接OA,因为PO⊥平面ABC,,OA OB⊂平面ABC,所以PO OA⊥,⊥,PO OB所以4=.OA OB易得在AOB △中,30OAB ABO ∠=∠=︒,所以1sin30422OD OA =︒=⨯=,322cos3024432AB AD OA ==︒=⨯⨯=, 又60ABC ABO CBO ∠=∠+∠=︒,所以在Rt ABC △中,tan 6043312AC AB =︒=⨯=.以A 为坐标原点,AB ,AC 所在直线分别为x ,y 轴,以过A 且垂直于平面ABC的直线为z 轴建立空间直角坐标系,如图所示,则(0,0,0)A ,(43,0,0)B ,(0,12,0)C ,(23,2,3)P ,333,1,2E ⎛⎫ ⎪⎝⎭,设平面AEC 的法向量为(,,)x y z =n ,则00AE AC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即33302120x y z y ⎧++=⎪⎨⎪=⎩, 令23z =,则(1,0,23)=-n .设平面AEB 的法向量为()111,,x y z =m ,则00AE AB ⎧⋅=⎪⎨⋅=⎪⎩m m ,即111133302430x y z x ⎧++=⎪⎨⎪=⎩,令12z =,则(0,3,2)=-m . 所以43|cos ,|||||13⋅〈〉==⋅n m n m n m .设二面角C AE B --的大小为θ,则24311sin 11313θ⎛⎫=-= ⎪ ⎪⎝⎭.21.答案:(1)22x y =0,2p F ⎛⎫⎪⎝⎭,显然直线AB 的斜率存在,设:AB y kx =+22x py =联立,消去y 得2220x pkx p --=,设()11,A x y ,()22,B x y ,()00,G x y ,则212122,x x pk x x p +==-,所以()212122y y k x x p pk p +=++=+,所以022,32,3pk x pk p y ⎧=⎪⎪⎨+⎪=⎪⎩且20032x y =22341293p k =⋅+即222221pk p p k +=+,整理得()2211pk p p -=-对任意的k 恒成立,故1p =,所求抛物线C 的方程为22x y =.(2)由题知10,2F ⎛⎫ ⎪⎝⎭,10,3D ⎛⎫ ⎪⎝⎭,1,02E k ⎛⎫- ⎪⎝⎭,0k ≠,M x k =,G x =23=.又弦AB 的中点为M ,△=OG OM ==//ME .点D 到直线AB 的距离1d =DG =1122k k k ⎫⎛⎫--+⎪ ⎪⎪⎝⎭⎭所以四边形DEMG 的面积25111132123212k k S k k k ⎛⎫⎛⎫=++=+≥⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭==22.答案:(1)1ey = (2)见解析解析:(1)当1a =时,e(1)()e xx f x -=, 则121(),(2)e ex x f x f --==', 因此()'20f =,故曲线()y f x =在点(2,(2))f 处的切线方程为1ey =. (2)由题意知方程e 0ax x a --=有两个不同的实数根12,x x . 对于函数e (0),e (1)ax ax y x a a y ax --=>=-'-,令e (1)0ax y ax -=->',解得1x a <,令e (1)0ax y ax -=-<',解得1x a >,则函数e ax y x a -=-在区间1,a ⎛⎫-∞ ⎪⎝⎭上单调递增,在区间1,a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以11e 0a a -->,得21ea <.又当0x <时,e 0ax x a --<,所以方程e 0ax x a --=的两个不同的实数根12,x x 均大于0.当0x >时,方程e 0ax x a --=即方程ln ln e e x ax a -=,则原问题等价于ln ln x ax a -=有两个不同的正实数根12,x x . 令()ln ln (0)g x x ax a x =-->, 则1()(0)g x a x x->'=,所以()g x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,不妨设12x x <,则1210x x a<<<.令21()(),0,G x g x g x x a a⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭, 则22()2201(2)G x a a x ax a =->-'=-,因此()G x 在10,a ⎛⎫⎪⎝⎭上单调递增, 从而当10,x a ⎛⎫∈ ⎪⎝⎭时,()0G x <,所以()()1212g x g x g x a⎛⎫=<- ⎪⎝⎭, 因为2121,,x x aa⎛⎫-∈+∞ ⎪⎝⎭,函数()g x 在1,a⎛⎫+∞ ⎪⎝⎭上单调递减,所以212x x a >-,即122x x a+>, 则()2122212222e 2x x x x a ++>>>, 故原命题得证.。
广东省初中毕业生学业考试押题卷三

阅读
Listen attentively
上面写着:请不要随地乱扔此袋; 如果把它放 进垃圾箱,回炉后它产生的能源可以使一只60 瓦特的灯泡照明10 分钟。在包装袋的另一侧, 又这样写道:在我们的商店里,这个袋子为您 提供包装服务;最后,您可以把它放到垃圾袋 里,让它转化成其他能源。
王命相者趋射之,狙执⑥死。
王顾谓其友颜不疑曰:“之狙也,伐其巧,恃 其便以敖予,以至此殛⑦也。戒之哉!嗟乎,无 以汝色骄人哉!”“颜不疑归而师董梧以助其色 去乐辞显三年而国人称之。
《庄子·徐无鬼》
阅读
Listen attentively
注释:①狙(jū):猕猴。②恂然:恐惧的样 子。③蓁:荆棘,草木丛。④委蛇(wēi yí):弯 曲身体。⑤攫搔(jué zào):从容转身,手舞足蹈 的样子。⑥执:立刻。⑦殛:杀戮、杀死。
A(本文不是“事物说明文”。)
阅读
Listen attentively
14.为了解决塑料制品给环境造成的严重污染问 题,法国人做了哪些方面的努力?(4分)
①和国际合作,一直试图研制和完善 各种可生物降解塑料;②通过各种途径 号召人们重复多次使用同一塑料袋;③ 新闻媒体也经常刊载和播出一些有关 塑料的基本常识,告诫人们随地乱扔 塑料袋的各种危害和塑料回收的重要 意义;④在塑料包装袋上,醒目地写着 告诫性的语言。
⑥一个普通塑料袋产生的能源可以供一只 60瓦特的灯泡照明10 分钟!这不能不说是一个惊 人的数字。看见这句话,
阅读
Listen attentively
恐怕没人再把它随地乱扔。如果再知道塑料垃 圾已经占到全法国家庭垃圾体积的30%,恐怕 谁也不会再把还能继续使用的塑料袋轻易随便 丢弃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础押题卷三(题目)基础押题卷三(题目)单选题1自20世纪80年代初以来,西方国家掀起了一场以()为主要目标的金融自由化运动。
A金融机构的去杠杆化B放松金融管制C金融监管的改革D金融创新22007年以来,主要发源于美国的()危机广泛影响了全球金融机构和市场。
A优质按揭贷款和相关证券化产品B次级按揭贷款和相关证券化产品C银行信用危机D实体企业信贷3在美国,对信用评分较高但信用记录较弱的个人提供的住房抵押的贷款是[ ]。
A次级贷款BAlt-A贷款C住房权益贷款D机构担保贷款4目前我国常见的股票行业分类的依据主要是公司()的来源比重。
A收入或税收B收入或利润C成本或利润D收入或成本5有价证券是()的一种形式。
A真实资本B虚拟资本C非实物资本D实物资本6与金融现货交易相比,金融期货交易的主要目的是[ ]。
A筹集资金B风险管理C资金清算D投资获利7我国《证券法》规定,向不特定对象发行的证券()超过人民币5000万元的,应当由承销团承销。
A募集金额B募集股数C净资产D票面总值8下列项目中不属于我国发行的普通国债的是()。
A记账式国债B凭证式国债C储蓄国债D长期建设国债9一般情况下,变动收益证券比固定收益证券()。
A利率风险大B利率风险小C信用风险小D信用风险大102002年12月31日,中央登记公司开始发布中国债券指数系列,下列说法错误的是()。
A该指数系列以2002年12月31日为基日B基期指数为100C该债券体系覆盖了交易所市场和银行间市场发行额在50亿元人民币以上、待偿期限在一年以上的债券D样本指数价格选取日终全价11按照债券形态分类,无记名国债属于()。
A实物债券B凭证式债券C记账式债券D电子式债券12下列有关股票基金表述中,不正确的是()。
A股票基金的投资目标侧重于追求资本利得和长期资本增值B股票基金的优点是资本的成长潜力较大。
C按投资目标不同,股票基金可以分为成长型基金和价值型基金D股票基金是最重要的基金品种12下列有关股票基金表述中,不正确的是()。
A股票基金的投资目标侧重于追求资本利得和长期资本增值B股票基金的优点是资本的成长潜力较大。
C按投资目标不同,股票基金可以分为成长型基金和价值型基金D股票基金是最重要的基金品种14我国商业银行债券不包括()。
A小微企业专项金融债券B商业银行委托信托公司发行的信托产品C商业银行次级债券D商业银行混合资本债券15与封闭式基金相比,( )是开放式基金所特有的风险。
A市场风险B技术风险C巨额赎回风险D管理能力风险16中国证券登记结算公司仅为( )开立结算帐户,专用于证券交易成交后的清算交收,具有结算履约担保作用。
A投资者B证券公司C保险公司D证券投资基金17我国募集设立的第一支ETF是( )。
A深圳50ETFB上证50ETFC深圳100ETFD上证100ETF18普通股票是标准的股票,通过发行普通股票所筹集的资金成为股份公司( )的基础。
A所有者权益B资产C注册资本D净资本19在票面上不规定利率,发行时按某一折扣率,以低于票面金额的价格发行,发行价与票面金额之差额相当于预先支付的利息,到期按票面额偿还本金的债券是()。
A附息债券B息票累积债券C贴现债券D凭证式债券20债券卖出价或偿还额小于买入价的情形被称为( )。
A资本利得B资本损益C资本损失D资本消耗21无论是哪一种金融衍生工具,都会影响交易者在未来一段时间内或未来某时点上的现金流,这体现了金融衍生工具的()特征。
A跨期性B杠杆性C联动性D不确定性或高风险性22证券交易所制定的限制或者禁止特定证券投资者的证券交易行为的制度属于()。
A信息披露B市场准入C客户识别D市场监管23下列关于债券的表述不正确的有[ ]。
A债券和股票两者的收益率相互影响B公司破产时,债券清除顺序在股票之前C债券持有者可参与发行公司重大事项的事议和表决D在二级市场上,由于债券利率固定,期限固定,市场价格也相对稳定23下列关于债券的表述不正确的有[ ]。
A债券和股票两者的收益率相互影响B公司破产时,债券清除顺序在股票之前C债券持有者可参与发行公司重大事项的事议和表决D在二级市场上,由于债券利率固定,期限固定,市场价格也相对稳定25公司型基金反映的经济关系是()。
A所有权关系B债券债务关系C信托关系D委托代理关系26证券市场本质上是[ ] 直接交换的场所。
A资本证券B有价证券C价格D价值27金融中介机构进行资产负债管理时,金融衍生工具业务一般属于()。
A资产业务B负债业务C中间业务D表外业务28上市公司应当在每一会计年度第3个月、第9个月结束后的( )内编制完成季度报告并披露。
A1个月B2个月C3个月D4个月29在我国,根据《证券投资基金运作管理办法》的规定,()以上的基金资产投资于股票的,为股票基金。
A50%B60%C70%D80%30在各种基金中,一般来讲管理费率最低的是()。
A股票型基金B债券型基金C货币市场基金D混合型基金31以下关于经济周期循环的说法错误的是()。
A经济周期循环对股票市场的影响非常显著B股票价格水平通常是经济周期变动的先导性指标C股票价格的变动性往往与实际经济的繁荣或衰退同步运行D经济景气变动从根本上决定了股票价格的长期变动趋势32按照基础工具分类,远期外汇合约属于()。
A股权类产品衍生工具B货币衍生工具C利率衍生工具D信用衍生工具33债券的价格变动风险随着期限的增加而()。
A降低B增加C不变D无法确定34沪深300股指期货合约的最低交易保证金是合约价值的[ ]。
A12%B5%C10%D8%35按照债券形态分类,无记名国债属于()。
A记账式债券B实物债券C凭证式债券D电子式债券36我国现行法规规定,证券经营机构挪用客户所委托的证券或者客户账户上的资金,属于()。
A内幕交易行为B操纵市场行为C欺诈客户行为D虚假陈述行为37银行间债券市场发行的记账式国债,主要面向()投资者。
A个人投资者B银行机构投资者C银行和非银行金融机构等机构投资者D非银行金融机构投资者38下列不属于证券市场显著特征的选项是()。
A证券市场是价值直接交换的场所B证券市场是财产权利直接交换的场所C证券市场是价值实现增值的场所D证券市场是风险直接交换的场所39无面额股票是指在股票的票面上不记载股票面额,只注明它在公司总股本中所占()的股票。
A数量B资金C比例D份数40期货IB业务起源于()。
A英国B德国C意大利D美国41中证100指数定位于()。
A小盘指数B中盘指数C大中盘指数D大盘指数42根据《银行间债券市场非金融企业中期票据业务指引》,中期票据待偿还余额不得超过企业净资产的( )。
A20%B30%C35%D40%43证券公司的()或其他风险控制指标不符合规定的,国务院证券监督管理机构应当责其限期改正。
A净资产B净资本C利润率D净收益44以下关于股票合并的说法错误的是()。
A股票合并是指将若干股票合并成1股B股票合并改变了公司的实收资本和每位股东所持股东权益占公司全部股东权益的比重C股票合并后,股东所持市值不发生变化D股票合并常见于低价股452007年以来发生的全球性金融危机当中,导致大量金融机构陷入危机的最重要一类衍生金融产品是()。
AADRBCDOsCCDSDABS46证券公司应当采取措施切实保障董事的(),为董事履行职责提供必要条件。
A知情权B管理权C收益权D经营权47按照《证券法》的规定,向不特定对象发行的证券票面总值超过人民币()元的,应当由承销团承销。
A5000万B1亿C2亿D5亿48根据合格境内机构投资者(QDII)制度,可以申请开展QDII业务的机构是()。
A商业银行、基金公司、保险公司、证券公司B商业银行、社保基金、保险公司、证券公司C商业银行、基金公司、社保基金、证券公司D人民银行、基金公司、保险公司、证券公司49以下不属于影响股票价格的行业因素的是()。
A行业可持续性B行业或产业竞争机构C抗外部冲击能力D管理层质量50下列关于证券市场法律法规的表述中,正确的是()。
A《证券法》属于行政法规B《证券公司监督管理条例》和《证券公司风险处置条例》属于部门规章C《证券投资基金法》属于法律D《证券投资基金法》属于自律性规章51《关于推进资本市场改革开放和稳定发展的若干意见》(即“国九条”)明确提出了对证券公司规范发展的要求,下列有关表述中错误的是()。
A证券公司要完善治理机构,规范其股东行为,强化董事会和经理人员的诚信责任B严谨挪用客户资产,切实维护投资者合法权益C证券公司要完善内控机制,加强对分支机构的集中统一管理D完善以净资产为核心的风险监控指标体系,督促证券公司实施稳健的财务政策52股票是一种()。
A设权证券B真实资本C有价证券D物权证券53()的预扣税一般可以豁免,投资者的利息收入也可以免缴所得税。
A扬基债券B武士债券C亚洲债券D欧洲债券54双重交易机制是()的重要特征,投资者可以在一级市场交易,也可以在二级市场交易。
ALOFBETFC期货D期权55股权类产品的衍生工具不包括()。
A股票期货B股票指数期货C股票期权D货币期货56证券市场的资本配置功能是指通过()引导资本流动从而实现资本合理配置的功能。
A证券收益B筹资能力C预期报酬率D证券价格57在有担保的存托凭证中,必须完全符合美国会计准则的是( )。
A一级有担保存托凭证B二级有担保存托凭证C三级有担保存托凭证D144A私募存托凭证58根据我国政府对WTO的承诺,我国加入WTO后3年内,允许外国证券公司设立合营公司,外资比例不超过( )。
A1/3B49%C33%D30%59在有担保的存托凭证中,必须完全符合美国会计准则的是()。
A一级有担保存托凭证B二级有担保存托凭证C三级有担保存托凭证D144A私募存托凭证60我国《证券法》规定,向不特定对象发行证券或向特定对象发行证券累计超过()人的,为公开发行,必须经国务院证券监督管理机构或者国务院授权部门核准。
A500B100C200D300多选题61基金份额持有人与基金管理人之间的关系是[ ]A委托人与受益人的关系B委托人,受益人与受托人的关系C受益人与所有人的关系D所有者与经营者的关系62有面额股票是指在股票票面上记载一定金额的股票。
这一记载的金额也称为()。
A票面金额B股票价值C票面价值D股票面值63股票的账面价值又称()。
A股票面值B股票净值C股票内在价值D每股净资产64我国《证券法》规定,公司债券上市交易,应当符合下列条件()。
A公司债券的期限为一年以上B公司债券实际发行额不少于人民币五千万元C公司股本总额不少于人民币三千万元D公司申请债券上市时仍符合法定的公司债券发行条件65基金份额持有人的义务包括( )等。
A承担基金亏损或终止的有限责任B在封闭式基金存续期间,可以要求赎回基金份额C遵守基金契约D缴纳基金认购款项及规定的费用66存托凭证一般可以代表外国()。