算法分析习题解答1[1]

合集下载

算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6

算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6

第一章习题(1-1,1-2,1-3,1-6)1-1 求下列函数的渐进表达式3n2+10n = O(n2)n2/10+2n = O(2n)21+1/n = O(1)logn3 = O(logn)10log3n = O(n)知识点:如果存在正的常数C和自然数N0,使得:当N>=N0时有f(N)<=Cg(N),则称f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)).这时,可以说f(N)的阶不高于g(N)的阶。

1-2 论O(1)和O(2)的区别O(1)和O(2)差别仅在于其中的常数因子,根据渐进上界记号O的定义可知,O(1)=O(2)。

1-3 从低到高排列以下表达式(按渐进阶排列以下表达式)结果:2 logn n2/320n 4n23n n! 分析:当n>=1时,有logn< n2/3当n>=7时,有3n < n!补充:当n>=4时,有logn> n1/31-6 对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=Θ(g(n))。

知识点:f(n)的阶不高于g(n)的阶:f(n)=O(g(n));f(n)的阶不低于g(n)的阶:f(n)=Ω(g(n));f(n)与g(n) 同阶:f(n)=Θ(g(n)) (1)f(n)= logn2 ; g(n)= logn+5f(n)与g(n)同阶,故f(n)=Θ(g(n)) (2) f(n)= logn2 ; g(n)= n1/2当n>=8时,f(n)<=g(n),故f(n)=O(g(n))分析:此类题目不易直接看出阶的高低,可用几个数字代入观察结果。

如依次用n=1, 21, 22, 23, 26, 28, 210 (3) f(n)= n ; g(n)= log2nf(n)=Ω(g(n))(4) f(n)= nlogn+n; g(n)= lognf(n)=Ω(g(n))(5) f(n)= 10 ; g(n)= log10f(n)=Θ(g(n))(6) f(n)= log2n ; g(n)= lognf(n)=Ω(g(n))(7) f(n)= 2n ; g(n)= 100 n2f(n)=Ω(g(n))(8) f(n)= 2n ; g(n)= 3nf(n)=O(g(n))。

《算法设计与分析基础(第3版)》第一,二章部分习题答案

《算法设计与分析基础(第3版)》第一,二章部分习题答案

作业一学号:_____ 姓名:_____说明:1、正文用宋体小四号,1.5倍行距。

2、报告中的图片、表格中的文字均用宋体五号,单倍行距。

3、图片、表格均需要有图片编号和标题,均用宋体五号加粗。

4、参考文献用宋体、五号、单倍行距,请参照参考文献格式国家标准(GB/T 7714-2005)。

5、公式请使用公式编辑器。

P144.用伪代码写一个算法来求方程ax2+bx+c=0的实根,a,b,c 是任意实系数。

(可以假设sqrt(x)是求平方根的函数。

)算法:Equate(a,b,c)//实现二元一次方程求解实数根//输入:任意系数a,b,c//输出:方程的实数根x1,x2或无解If a≠0p←b2−4acIf p>0x1←−b+sqrt(p)2ax2←−b−sqrt(p)2areturn x1,x2else if p=0return −b2aelsereturn “no real roots”elseif b≠0return −cbelseif c≠0return “no real numbers”elsereturn “no real roots”5.写出将十进制正整数转换为二进制整数的标准算法。

a.用文字描述。

b.用伪代码描述。

a.解:输入:一个正整数n输出:正整数n相应的二进制数第一步:用n 除以2,余数赋给K[i](i=0,1,2...),商赋给n第二步:如果n=0 ,则到第三步,否则重复第一步第三步:将K[i]按照i从高到低的顺序输出b.解:算法:DecToBin(n)//实现正整数十进制转二进制//输入:一个正整数n//输出:正整数n对应的二进制数组K[0..i]i ←1while n≠0 doK[i]←n%2n←(int)n/2i ++while i≠0doprint K[i]i - -p462.请用O,Ω 和θ的非正式定义来判断下列断言是真还是假。

a. n(n+1)/2∈O(n3)b. n(n+1)/2∈O(n2)c. n(n+1)/2∈θ(n3)d. n(n+1)/2∈Ω(n)解:断言为真:a,b,d断言为假:cP535.考虑下面的算法。

算法分析(第二版)清华大学出版社 部分习题的参考答案

算法分析(第二版)清华大学出版社  部分习题的参考答案
3.主动4.常规密钥
5.中断、篡改、伪造6.公开密钥
7.链路、端到端8.管理信息库、管理信息结构、管理协议
9.公开密钥密码技术10.身份验证、加密、访问控制
二、选择题
1. C2. C3. D4. D5. D
6. C7. B8. D9. D10. C
网桥1转发表网桥2转发表网桥1网桥2站地址端口站地址端口mac11向端口2转发该帧将mac1端口1登记到转发表mac32mac31向端口1转发该帧将mac3端口2登记到转发表向端口2转发该帧将mac3端口1登记到转发表mac42从转发表中查到目的端口是1向端口1转发该帧将mac4端口2登记到转发表mac21将该帧丢弃同时将mac2端口1登记到转发表第5章一填空题1
MAC4
2
从转发表中查到目的端口是1向端口1转发该帧,将(MAC4,端口2)登记到转发表
MAC2
1
将该帧丢弃,同时将(MAC2,端口1)登记到转发表
第5章
一、填空题
1.ARP、IGMP2.128.11、3.11
3.路由、建立虚电路、路由算法4.泛射路由选择、固定路由选择和随机路由选择
5.IP数据报6.ARP
1.应用进程2.客户/服务器

6.字符代码、数字代码
7.www服务器、www浏览器8.ASCII传输模、二进制数字传输模式
9.A记录、CNAME记录、MX记录10.SMTP
二、选择题
1. D2. C3. B4. A5. B
6. C7. C8. B9. A
2.网络的拓扑结构表示网络传输介质和结点的连接形式,通常有总线型、环形、星形和树形。
3.OSI将整个网络通信的功能划分为七个层次,由低到高分别是物理层、链路层、网络层、传输层、会话层、表示层和应用层。

算法设计与分析(第2版)-王红梅-胡明-习题答案(1)

算法设计与分析(第2版)-王红梅-胡明-习题答案(1)

算法设计与分析(第2版)-王红梅-胡明-习题答案习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图 1.7是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n图1.7 七桥问题2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high){int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

算法设计与分析第二版课后习题解答

算法设计与分析第二版课后习题解答

算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求//输入:一个正整数n 2//输出:。

step1:a=1;step2:若a*a<n 转step 3,否则输出a;step3:a=a+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。

b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。

a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513, 105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1,0) = 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈1300 与2·14142/11 ≈2600 倍之间。

6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

智慧树知道网课《算法分析与设计(山东联盟)》课后章节测试满分答案1

智慧树知道网课《算法分析与设计(山东联盟)》课后章节测试满分答案1

第一章测试1【判断题】(10分)一个问题的同一实例可以有不同的表示形式A.错B.对2【判断题】(10分)同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。

A.错B.对3【判断题】(10分)问题的两个要素是输入和实例。

A.对B.错4【单选题】(10分)算法与程序的区别是()A.有穷性B.确定性C.输出D.输入5【单选题】(10分)解决问题的基本步骤是()。

(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A.(3)(1)(5)(4)(2)B.(3)(4)(1)(5)(2)C.(1)(2)(3)(4)(5)D.(3)(1)(4)(5)(2)6【单选题】(10分)下面说法关于算法与问题的说法的是()。

A.算法是一种计算方法,对问题的每个实例计算都能得到正确答案。

B.证明算法不正确,需要证明对任意实例算法都不能正确处理。

C.如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。

D.同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。

7【多选题】(10分)下面关于程序和算法的说法正确的是()。

A.算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。

B.程序总是在有穷步的运算后终止。

C.程序是算法用某种程序设计语言的具体实现。

D.算法是一个过程,计算机每次求解是针对问题的一个实例求解。

8【多选题】(10分)最大独立集问题和()问题等价。

A.最大团B.稳定匹配问题C.区间调度问题D.最小顶点覆盖9【多选题】(10分)给定两张喜欢列表,稳定匹配问题的输出是()。

A.完美匹配B.最大匹配C.稳定匹配D.没有不稳定配对10【单选题】(10分)问题变换的目的有()。

(1)复杂变简单(2)未知变已知(3)隐式变显式(4)难解变易解(5)以上都是。

A.(5)B.(1)C.(2)D.(3)E.(4)11【单选题】(10分)按照霍纳法则,计算p(x)=a n x n+a n-1x n-1+…+a1x1+a0的数量级为____。

数据结构与算法分析课后习题答案

数据结构与算法分析课后习题答案

数据结构与算法分析课后习题答案【篇一:《数据结构与算法》课后习题答案】>2.3.2 判断题2.顺序存储的线性表可以按序号随机存取。

(√)4.线性表中的元素可以是各种各样的,但同一线性表中的数据元素具有相同的特性,因此属于同一数据对象。

(√)6.在线性表的链式存储结构中,逻辑上相邻的元素在物理位置上不一定相邻。

(√)8.在线性表的顺序存储结构中,插入和删除时移动元素的个数与该元素的位置有关。

(√)9.线性表的链式存储结构是用一组任意的存储单元来存储线性表中数据元素的。

(√)2.3.3 算法设计题1.设线性表存放在向量a[arrsize]的前elenum个分量中,且递增有序。

试写一算法,将x 插入到线性表的适当位置上,以保持线性表的有序性,并且分析算法的时间复杂度。

【提示】直接用题目中所给定的数据结构(顺序存储的思想是用物理上的相邻表示逻辑上的相邻,不一定将向量和表示线性表长度的变量封装成一个结构体),因为是顺序存储,分配的存储空间是固定大小的,所以首先确定是否还有存储空间,若有,则根据原线性表中元素的有序性,来确定插入元素的插入位置,后面的元素为它让出位置,(也可以从高下标端开始一边比较,一边移位)然后插入x ,最后修改表示表长的变量。

int insert (datatype a[],int *elenum,datatype x) /*设elenum为表的最大下标*/ {if (*elenum==arrsize-1) return 0; /*表已满,无法插入*/else {i=*elenum;while (i=0 a[i]x)/*边找位置边移动*/{a[i+1]=a[i];i--;}a[i+1]=x;/*找到的位置是插入位的下一位*/ (*elenum)++;return 1;/*插入成功*/}}时间复杂度为o(n)。

2.已知一顺序表a,其元素值非递减有序排列,编写一个算法删除顺序表中多余的值相同的元素。

(陈慧南 第3版)算法设计与分析——第1章课后习题答案

(陈慧南 第3版)算法设计与分析——第1章课后习题答案
此时i1即在本次循环中先执行swapa0a1将第二个元素与第一个元素互换下面执行perma1n根据假设可知该语句产生以a1为第一个元素余下k1个元素的全排列
第一章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术
1-4 证明等式 gcd(m,n)=gcd(n mod m, m) 对每对正整数 m 和 n,m>0 都成立。
1-13 写一个递归算法和一个迭代算法计算二项式系数:
#include<stdio.h> int Coef_recursive(int n,int m);//递归算法 int Coef_iteration(int n,int m);//迭代算法 int Factorial(int n);//计算 n 的阶乘 int main() { int n,m;
1-12 试用归纳法证明程序 1-7 的排列产生器算法的正确性。
证明:主函数中,程序调用 perm(a,0,n),实现排列产生器。 ① 当 n=1 时,即数组 a 中仅包含一个元素。函数内 k=0,与(n-1)=0 相等,因此函 数内仅执行 if(k==n-1)下的 for 语句块,且只执行一次。即将 a 数组中的一个元 素输出,实现了对一个元素的全排列。因此当 n=1 时,程序是显然正确的; ② 我们假设程序对于 n=k-1 仍能够满足条件, 将 k-1 个元素的全排列产生并输出; ③ 当 n=k 时,程序执行 else 下语句块的内容。首先执行 swap(a[0],a[0]),然后执 行 Perm(a,1,n),根据假设②可知,该语句能够产生以 a[0]为第一个元素,余下 (k-1)个元素的全排列; 然后再次执行 swap(a[0],a[0]), 并进行下一次循环。 此时 i=1, 即在本次循环中, 先执行 swap(a[0],a[1]), 将第二个元素与第一个元素互换, 下面执行 Perm(a,1,n), 根据假设②可知, 该语句产生以 a[1]为第一个元素, 余下(k-1)个元素的全排列; 以此类推,该循环每一次将各个元素调到首位,通过执行语句 Perm(a,1,n)以及 基于假设②,能够实现产生 k 个元素的全排列。 因此 n=k 时,程序仍满足条件。 ④ 综上所述,该排列器产生算法是正确的,证毕。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-34、Gray码是一个长度为2n的序列。

序列中无相同元素。

每个元素都是长度为n位的串。

相邻元素恰好只有一位不同。

用分治策略设计一个算法对任意的n构造相应的Gray码。

答:设序列中元素由0、1组成。

当 n=1 时 Gray码的序列有2个元素(21=2),分别为:0,| 1
当 n=2 时 Gray码的序列有4个元素(22=4),分别为:00,10,| 11,01
当 n=3 时 Gray码的序列有8个元素(23=8),分别为:
000,100,110,010,| 011,111,101,001
当 n=4 时 Gray码的序列有16个元素(24=16),分别为:
0000,1000、1100、0100,0110,1110,1010,0010,| 0011,1011,1111,0111,0101,1101,1001,0001
从上面的列举可得如下规律:n=k时,Gray码的序列有2k个元素,分别为:n=k-1时的Gray码元素正向后加0,得前2k-1个元素,反向后加1的后2k-1个元素。

如 n=2时 Gray码序列的4个元素分别为:00,10, 11,01
当 n=3 时 Gray码序列的前4个元素(23=8),分别为:000,100,110,010
是n=2时Gray码四个元素正向后加0,即:000,100, 110,010
Gray码序列的后4个元素(23=8),分别为:011,111,101,001 是n=2时Gray码四个元素反向后加1,
n=2时Gray码四个元素:00,10, 11,01
即:011,111,101,001
可以看出,Gray码可以用分治策略,递归实现,2n的Gray码可以用2n-1的Gray码构成。

算法描述:
void Gray( type a[],int n)
{ char a[];
if (n==1) { a[0]=’0’;a[1]=’1’;}
if (n>1)
{ Gray(a[],n-1);
int k=2n-1-1; //Gray码的个数,因为数组下标从0开始
int i=k;
for (int x=k;x>=0;x--)
{char y=a[x];
a[x]=y+’0’;
a[i+1]=y+’1’; i++;
}
}
}
3-7 给定由n个英文单词组成的一段文章,……
答:设由n 个单词组成的一段文章可以表示为 A[1:n],它的“漂亮打印”方案记为B[1:n],构成该最优解的最小空格数(最优值)记为m[1][n]
(1)分析最优解的结构:
A[1:n]的最优解B[1:n],必然在第k个单词处断开,那么A[1:k]是“漂亮打印”,并且A[k+1:n]也是“漂亮打印”。

故m[1][n]最小时有m[1][n]=m[1][k]+m[k+1][n] ,m[1][k]是A[1:k]的最小值,m[k+1][n]是A[k+1:n]的最小值。

因此,原问题的最优解包含其子问题
的最优解,具有最优子结构性质。

(2)建立递归关系:
第一行,row=1,最漂亮的打印字符数∑
=
-+
1
1
1 1
j
k
j ik
最小空格数 m[1][j1]=M-(∑
=
-+
1
1
1 1
j
k
j
ik)
第二行,row=2,最漂亮的打印字符数∑
+
=
-
-
+
2
1 1
1
1
2
j
j k
j
j
ik
最小空格数m[j1+1][j2]=M-(∑
+
=
-
-
+
2
1 1
1
1
2
j
j k
j
j
ik)
那么,m[1][j2]=2M-∑
=
+ -
2
1
2 2
j
k
j ik
设:sum=i1+k2+……+in+n 为文章中字符的总长度,其中i1,i2,……in分别为n个单词的长度,n为单词之间的空格数。

M是一行可以输出的字符数
该文章可能输出的行数约为:sum/M+1 (由于最后一行除外,故可能需处理的行数为sum/M行。

第sum/M行时,row=sum/M
最小空格数m[1][jx]=sum/M*M-∑
=
+ -
jx
k
M
sum
jx
ik
1
/ (1<=x<=n)
1.当i=j时,A[i:i]=A[i],m[i][j]=0,表示一个单词,没有空格。

2.当i<j时,利用最优子结构性质计算m[i][j]
若A[i:j]的最优解在A k和A k+1处断开,i<=k<j,则
m[i][j]=min{m[i][k]+m[k+1][j]},此时,k只有j-i中可能,k是使m[i][j]
达到最小的那个位置。

从而m[i][j]可以递归地定义为:
m[i][j]= //上面两个式子
m[i][j]给出了最优值,即A[i:j]的最小空格数
若将对应于m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解
(3)计算最优值
算法:
void f(int n, int **m, int **s, int sum, int M)
{ for(int i=1;i<=n;i++) m[i][j]=0;
for(int row=1;row<=sum/M;row++)
{ i=1;
for (int r=2;r<=n;r++)
{ j=i+r-1;
m[i][j]=row*M-j+row-(i1+i2+……ik)
if (m[i][j]<0) break;
s[i][j]=j;
for (int k=i+1;k<j);k++)
{ t=m[i][k]+m[k+1][j];
if (t<m[i][j]) {m[i][j]=t;s[i][j]=k;}
}
}
};x=j-1;
}
(4)构造最优解
算法描述:void T(int *B, int **s, int x)
{ y=1;
do
b[y]=s[1][x];
x=b[y];
y=y+1;
while (x<>1)
do
printf(“%d,”,b[y]);
y--;
while (y>0)
}。

相关文档
最新文档