算法设计与分析实验报告 统计数字问题

合集下载

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。

1、求n个元素的全排。

(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。

(30分)3、设有n=2k个运动员要进行网球循环赛。

设计一个满足要求的比赛日程表。

(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。

三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。

算法设计与分析实验报告(模版)

算法设计与分析实验报告(模版)

武汉工程大学计算机科学与工程学院《算法设计与分析》实验报告专业班级实验地点学生学号指导教师学生姓名实验时间实验项目算法基本工具和优化技巧实验类别基本性实验实验目的及要求目的与要求:练习算法基本工具和优化技巧的使用实验内容要点:1、熟悉循环和递归的应用2、熟悉数据结构在算法设计中的应用3、了解优化算法的基本技巧4、掌握优化算法的数学模型成绩评定表类别评分标准分值得分合计上机表现积极出勤、遵守纪律主动完成实验设计任务30分实验报告及时递交、填写规范内容完整、体现收获70分说明:评阅教师:日期:年月日一、狼找兔子问题:一座山周围有n个洞,顺时针编号为0,1,2.,…,n-1。

一只狼从0号洞开始,顺时针方向计数,每当经过第m个洞时,就进洞找兔子。

输入m,n,问兔子有没有幸免的机会?如果有,该藏哪里?代码设计:。

结果:。

二、有52张牌,使他们全部正面朝上,第一轮是从第2张开始,凡是2的倍数位置上的牌翻成正面朝下;第二轮从第3张牌开始,凡是3的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上;第三轮从第4张开始,凡是4的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上,以此类推,直到翻的牌超过104张为止。

统计最后有几张正面朝上,以及他们的位置号。

代码设计:。

结果:。

三、A、B、C、D、E 5人为某次竞赛的前5名,他们在名次公布前猜名次。

A说:B得第三名,C得第五名。

B说:D得第二名,E得第四名。

C说:B得第一名,E得第四名。

D说:C得第一名,B得第二名。

E说:D得第二名,A得第三名。

结果每个人都猜对了一半,实际名次是什么呢?代码设计:。

结果:。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。

算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。

本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。

二、算法分析算法分析是评估算法性能的过程。

在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。

常用的算法分析方法包括时间复杂度和空间复杂度。

1. 时间复杂度时间复杂度衡量了算法执行所需的时间。

通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。

2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。

通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。

常见的空间复杂度有O(1)、O(n)和O(n^2)等。

其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。

三、算法设计算法设计是构思和实现算法的过程。

好的算法设计能够提高算法的效率和可靠性。

常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。

1. 贪心算法贪心算法是一种简单而高效的算法设计方法。

它通过每一步选择局部最优解,最终得到全局最优解。

贪心算法的时间复杂度通常较低,但不能保证得到最优解。

2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。

它通过保存子问题的解,避免重复计算,提高算法的效率。

动态规划适用于具有重叠子问题和最优子结构的问题。

3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。

算法与分析实验报告

算法与分析实验报告

算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。

本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。

二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。

具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。

实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。

三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。

- 实现顺序搜索和二分搜索算法。

2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。

3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。

4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。

- 多次重复同样的操作,取平均值以减小误差。

5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。

四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。

- 插入排序:执行效率一般,在中等规模数据排序中表现良好。

- 快速排序:执行效率最高,适用于大规模数据排序。

2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。

- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。

实验结果表明,不同算法适用于不同规模和类型的问题。

正确选择和使用算法可以显著提高程序的执行效率和性能。

五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。

a算法求解八数码问题 实验报告

a算法求解八数码问题 实验报告

题目: a算法求解八数码问题实验报告目录1. 实验目的2. 实验设计3. 实验过程4. 实验结果5. 实验分析6. 实验总结1. 实验目的本实验旨在通过实验验证a算法在求解八数码问题时的效果,并对其进行分析和总结。

2. 实验设计a算法是一种启发式搜索算法,主要用于在图形搜索和有向图中找到最短路径。

在本实验中,我们将使用a算法来解决八数码问题,即在3x3的九宫格中,给定一个初始状态和一个目标状态,通过移动数字的方式将初始状态转变为目标状态。

具体的实验设计如下:1) 实验工具:我们将使用编程语言来实现a算法,并结合九宫格的数据结构来解决八数码问题。

2) 实验流程:我们将设计一个初始状态和一个目标状态,然后通过a 算法来求解初始状态到目标状态的最短路径。

在求解的过程中,我们将记录下每一步的状态变化和移动路径。

3. 实验过程我们在编程语言中实现了a算法,并用于求解八数码问题。

具体的实验过程如下:1) 初始状态和目标状态的设计:我们设计了一个初始状态和一个目标状态,分别为:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 42) a算法求解:我们通过a算法来求解初始状态到目标状态的最短路径,并记录下每一步的状态变化和移动路径。

3) 实验结果在实验中,我们成功求解出了初始状态到目标状态的最短路径,并记录下了每一步的状态变化和移动路径。

具体的实验结果如下:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 47 6 5求解路径:1. 上移1 2 37 8 62. 左移1 2 3 4 0 5 7 8 63. 下移1 2 3 4 8 5 7 0 64. 右移1 2 3 4 8 5 0 7 65. 上移1 2 3 0 8 5 4 7 61 2 38 0 54 7 67. 下移1 2 38 7 54 0 68. 右移1 2 38 7 54 6 0共计8步,成功从初始状态到目标状态的最短路径。

《算法设计与分析》课程实验报告 (贪心算法(一))

《算法设计与分析》课程实验报告 (贪心算法(一))

《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。

编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。

若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。

用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。

3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。

设计一个有效的贪心算法进行安排。

(这个问题实际上是著名的图着色问题。

若将每一个活动作为图的一个顶点,不相容活动间用边相连。

使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。

)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。

但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。

某天,雷达捕捉到敌国的导弹来袭。

由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。

(2)掌握通过迭代求最优的程序实现技巧。

(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。

三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。

(2)给出题1的贪心选择性质的证明。

(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。

算法分析实验一报告

算法分析实验一报告

《算法设计与分析》实验报告目录一、实验内容描述和功能分析.二、算法过程设计.三、程序调试及结果(附截图).四、源代码(附源代码).一、实验内容描述和功能分析.1.彼岸内容描述:突破蝙蝠的包围,yifenfei来到一处悬崖面前,悬崖彼岸就是前进的方向,好在现在的yifenfei已经学过御剑术,可御剑轻松飞过悬崖。

现在的问题是:悬崖中间飞着很多红,黄,蓝三种颜色的珠子,假设我们把悬崖看成一条长度为n的线段,线段上的每一单位长度空间都可能飞过红,黄,蓝三种珠子,而yifenfei 必定会在该空间上碰到一种颜色的珠子。

如果在连续3段单位空间碰到的珠子颜色都不一样,则yifenfei就会坠落。

比如经过长度为3的悬崖,碰到的珠子先后为“红黄蓝”,或者“蓝红黄”等类似情况就会坠落,而如果是“红黄红”或者“红黄黄”等情况则可以安全到达。

现在请问:yifenfei安然抵达彼岸的方法有多少种?输入:输入数据首先给出一个整数C,表示测试组数。

然后是C组数据,每组包含一个正整数n (n<40)。

输出:对应每组输入数据,请输出一个整数,表示yifenfei安然抵达彼岸的方法数。

每组输出占一行。

例如:输入:2 输出:92 2132.统计问题内容描述:在一无限大的二维平面中,我们做如下假设:1、每次只能移动一格;2、不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);3、走过的格子立即塌陷无法再走第二次;求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。

输入:首先给出一个正整数C,表示有C组测试数据接下来的C行,每行包含一个整数n (n<=20),表示要走n步。

输出:请编程输出走n步的不同方案总数;每组的输出占一行。

例如:输入:2 输出:31 723.Message Decowing内容描述:The cows are thrilled because they've just learned about encrypting messages. Theythink they will be able to use secret messages to plot meetings with cows on other farms.Cows are not known for their intelligence. Their encryption method is nothing like DES or BlowFish or any of those really good secret coding methods. No, they are using a simple substitution cipher.The cows have a decryption key and a secret message. Help them decode it. The key looks like this:yrwhsoujgcxqbativndfezmlpkWhich means that an 'a' in the secret message really means 'y'; a 'b' in the secret message really means 'r'; a 'c' decrypts to 'w'; and so on. Blanks are not encrypted; they are simply kept in place. Input text is in upper or lower case, both decrypt using the same decryption key, keeping the appropriate case, of course.输入:* Line 1: 26 lower case characters representing the decryption key* Line 2: As many as 80 characters that are the message to be decoded输出:* Line 1: A single line that is the decoded message. It should have the same length as the second line of input.例如:输入:eydbkmiqugjxlvtzpnwohracsfKifq oua zarxa suar bti yaagrj fa xtfgrj输出:Jump the fence when you seeing me coming二、算法过程设计.第一题是一个典型的递归问题,通过对开始的几项附初始值,通过循环利用通项公式依次递归调用公式便可以得到第n项的值。

《算法设计与分析》课程实验报告

《算法设计与分析》课程实验报告

《算法设计与分析》课程实验报告实验序号:实验项目名称:随机化算法一、实验题目1.N后问题问题描述:在n*n格的棋盘上放置彼此不受攻击的n个皇后,任何两个皇后不放在同一行同一列,同一斜线上,问有多少种放法。

2.主元素问题问题描述:设A是含有n个元素的数组,如果元素x在A中出现的次数大于n/2,则称x是A的主元素。

给出一个算法,判断A中是否存在主元素。

二、实验目的(1)通过N后问题的实现,体会拉斯维加斯随机算法的随机特点:运行次数随机但有界,找到的解一定为正确解。

但某次运行可能找不到解。

(2)通过实现主元素的不同算法,了解蒙特卡罗算法的随机特性:对于偏真的蒙特卡罗算法,找到为真的解一定是正确解;但非真的解以高概率给出解的正确率------即算法找到的非真解以小概率出现错误。

同时体会确定性算法与随机化算法的差异及各自的优缺点。

(3)通过跳跃表的实现,体会算法设计的运用的广泛性,算法设计的思想及技巧不拘泥独立问题的解决,而在任何需要计算机解决的问题中,都能通过算法设计的技巧(无论是确定性还是随机化算法)来灵巧地解决问题。

此实验表明,通过算法设计技巧与数据组织的有机结合,能够设计出高效的数据结构。

三、实验要求(1)N后问题分别以纯拉斯维加斯算法及拉斯维加斯算法+回溯法混合实现。

要求对同一组测试数据,完成如下任务a.输出纯拉斯维加斯算法找到解的运行次数及运行时间。

b.输出混合算法的stopVegas值及运行时间c.比较a、b的结果并分析N后问题的适用情况。

(2)主元素问题,要求对同一组测试数据,完成如下任务:a.若元素可以比较大小,请实现O(n )的确定性算法,并输出其运行时间。

b.(选做题)若元素不可以比较大小,只能比较相同否,请实现O(n) 确性算法,并输出其运行时间。

c.实现蒙特卡罗算法,并输出其运行次数及时间。

d.比较确定性算法与蒙特卡罗算法的性能,分析每种方法的优缺点。

(3)参照教材实现跳跃表(有序)及基本操作:插入一个结点,删除一个结点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析实验报告
实验名称统计数字问题评分
实验日期年月日指导教师
姓名专业班级学号
一.实验要求
1、掌握算法的计算复杂性概念。

2、掌握算法渐近复杂性的数学表述。

3、掌握用C++语言描述算法的方法。

4.实现具体的编程与上机实验,验证算法的时间复杂性函数。

二.实验内容
统计数字问题
1、问题描述
一本书的页码从自然数1 开始顺序编码直到自然数n。

书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。

例如,第6 页用数字6 表示,而不是06 或006 等。

数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)
2、编程任务
给定表示书的总页码的10 进制整数n (1≤n≤109) 。

编程计算书的全部页码中分别用到多少次数字0,1,2, (9)
三.程序算法
将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。

把这些结果统计起来即可。

四.程序代码
#include<iostream.h>
int s[10]; //记录0~9出现的次数
int a[10]; //a[i]记录n位数的规律
void sum(int n,int l,int m)
{
if(m==1)
{
int zero=1;
for(int i=0;i<=l;i++) //去除前缀0
{
s[0]-=zero;
zero*=10;
}
}
if(n<10)
{
for(int i=0;i<=n;i++)
{
s[i]+=1;
}
return;
}//位数为1位时,出现次数加1
//位数大于1时的出现次数
for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1)
{
m=1;int i;
for(i=1;i<t;i++)
m=m*10;
a[t]=t*m;
}
int zero=1;
for(int i=0;i<l;i++)
{
zero*= 10;
} //求出输入数为10的n次方
int yushu=n%zero; //求出最高位以后的数
int zuigao=n/zero; //求出最高位zuigao
for(i=0;i<zuigao;i++)
{
s[i]+=zero;
} //求出0~zuigao-1位的数的出现次数
for(i=0;i<10;i++)
{
s[i]+=zuigao*a[l];
} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数
//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数
if(yushu==0) //补上所缺的0数,并且最高位加1
{
s[zuigao]++;
s[0]+=l;
}
else
{
i=0;
while((zero/=10)>yushu)
{
i++;
}
s[0]+=i*(yushu+1);//补回因作模操作丢失的0
s[zuigao]+=(yushu+1);//补回最高位丢失的数目
sum(yushu,l-i-1,m+1);//处理余位数
}
}
void main()
{
int i,m,n,N,l;
cout<<"输入数字要查询的数字:";
cin>>N;
cout<<'\n';
n = N;
for(i=0;n>=10;i++)
{
n/=10;
} //求出N的位数n-1
l=i;
sum(N,l,1);
for(i=0; i<10;i++)
{
cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n';
}
}
五.程序调试中的问题
调试过程中总是有这样那样的问题,通过一步步的修改,最终得以实现。

六.实验结果。

相关文档
最新文档