空冷岛简介
电厂空冷岛的工作原理(一)

电厂空冷岛的工作原理(一)空冷岛的概念空冷岛是指热电站中用于冷却蒸汽的一种独立的冷却系统,它采用水循环冷却的方式代替了传统的冷却塔。
空冷岛系统包括散热器、泵站、水平回转器、热水器和冷却风扇等设备。
与传统冷却塔的对比传统冷却塔会造成水沉淀、污染环境等问题,并需要地面大面积的占用空间,而空冷岛则不需要使用水,避免了这些问题,也减少了水资源的消耗;同时空冷岛只需要占用较小的面积,可以更加灵活地进行设计和设置。
空冷岛的工作原理空冷岛系统的工作原理基本上是将热度从液态转化到气态,然后利用风扇将热气排出,从而实现冷却目的。
散热器散热器是空冷岛系统中最核心的部分,它的作用是将液态的蒸汽通过管道送进散热器,然后让热量转移到散热器上,并散发到空气中。
冷却风扇冷却风扇是另一个重要的部件,它的作用是将热气从散热器中排出,从而实现冷却目的。
冷却风扇可以使用自然风力和机械风力两种方式。
其他辅助部件除了散热器和冷却风扇之外,空冷岛系统还包括泵站、水平回转器、热水器等辅助部件。
泵站用于将液态蒸汽送入散热器,水平回转器可以将风扇具有方向性地控制,热水器则用于在低温环境下保持散热器的工作状态。
优点和应用空冷岛系统相较于传统冷却塔有以下优点:•不需要使用水资源,避免水资源浪费和环境污染•占用面积小,更加灵活•降低了运行成本和维护成本。
目前空冷岛系统广泛应用于核电站、火电站、热力站等能源产业中,也被一些新型数据中心采用。
由于其独特的优点和适应性,预计未来空冷岛系统还会得到更广泛的应用。
空冷岛系统的效率空冷岛系统的效率取决于多个因素,如风速、温度差、气压、相对湿度等。
一般来说,空冷岛系统与传统冷却塔相比,散热能力略有下降,但是能够节省大量水资源,也减少了环境污染。
空冷岛系统的发展趋势随着现代热电站和数据中心的不断发展,空冷岛系统的优点越来越受到重视,其应用领域也越来越广泛。
空冷岛系统的未来发展趋势如下:•提高散热效率,进一步减少资源消耗和运行成本•采用更加先进的材料和技术,提高系统的安全性和可靠性•结合其他新型绿色技术,形成更为完善的能源系统。
空冷岛系统及夏季运行分析

喷淋增湿装置原理
喷淋增湿装置将水成毫米级的雾状水珠喷入后,使得 空气的湿度增加,可使空气的温度降至接近其对应的 湿球温度。一般喷水后入口空气相对湿度大于90%, 这样空气温度将降低2~5℃;在内蒙气候的夏季炎热 干燥,空气温度的变化经常能达到5~7℃,这样机组 运行背压将下降。并且空冷单元内风机气流强大的旋 流作用将大部分细小水雾带到空冷凝汽器表面,水的 汽化潜热增大了传热系数来使得机组运行背压进一步 降低。
真空严密性对空冷岛传热的影响
蒸汽冷凝传热中,不凝结气体的存在将严重恶化其传 热过程。有研究发现,蒸汽中仅0.5%的空气使其传热 系数能降低50%。由于空冷凝汽器系统十分庞大,托 电一台空冷凝汽器及其相关管道的容积约为11800m3, 是湿冷机组的6~7倍,而真空严密性标准200Pa/min是 湿冷机组400Pa/min的一半。
投产至今,同各地空冷机组一样托电也遇到了一些共 性问题需要继续研究和探索。如夏季高温条件下机组 因汽轮机背压过高带不满负荷问题,凝汽器翅片管/管 束的积灰问题,冬季低温运行时由于凝汽器传热面积 过大带来的管束防冻问题等等。特别是夏季高温对空 冷机组经济性影响很大,在夏季降低汽轮机背压达到 节能降耗的目标是目前十分迫切的问题。
空冷岛夏季运行分析
吴迪
空冷系统介绍
空冷动画
ACC flash.exe
空冷机组共性问题
当前,在我国富煤贫水的西部地区投产的大容量直接 空冷技术的火电机组越来越多。空冷机组在节水和环 保方面优势明显。较湿冷机组节水率可以达到80%~ 85%。废水基本可以实现零排放,减少了对当地的水 污染。
空冷机组夏季运行情况
托克托电厂四台空冷机组在夏季因背压高普遍存在限 负荷运行现象,存在由于大风等引起背压突变机组RB 甚至跳闸的可能。
空冷岛

空冷系统分类:
空气冷却系统采用工艺流程的不同,而又将空气 冷却系统分成三种 : 1、直接空气冷却系统简称 ACC 系统。 (AirCooledCondenser) 2、采用喷射式(混合式)凝汽器的空冷系统又 称海勒式(HL)间接冷却系统。 3、采用表面式凝汽器的间接空冷系统。又称哈 蒙式间接空冷系统
热风回流
减少热风再循环的措施有:
(1)在空冷平台周围设置挡风墙。 (2)在不同的空冷凝汽器单元之间设置分隔墙 (3)降低空冷平台下面进风口的空气流速,减少负 压区。 (4)采用喷雾加湿系统。其主要原理是高气温时段 在空冷凝汽器迎风面喷雾除盐水,一部分与翅片管 束进行热交换,水雾在管束表面升温后蒸发,利用 汽化潜热吸收了热量;另一部分雾化后的小水滴与 环境空气直接换热,降低了环境温度,增大了传热 温差,强化了传热效果。
排气管道、蒸汽分配管及歧管 管径 变化
真空度低,会造成如下情况:
1、真空漏入空气,增加凝结水含氧量,在排气装置除氧及除氧 器除氧过程中就会消耗更多的能量,增加煤耗。凝结水中的 含氧量也越多,从而加速了相关管道、设备的腐蚀速度。 2、当蒸汽在冷凝过程中出现不凝结气体,凝结水液膜热阻将不 再是主要的传热热阻。此时管内换热表面被一层气膜覆盖, 气膜具有更高的传热热阻。此外,随着不凝结气体和蒸汽的 混合汽体的过冷和不凝结气体比例的增大,凝汽器逆流单元 的传热热阻增大。 3、不凝气体的焓值较低,当气温下降到一定极限时,极易造成 空气冷 凝器管束内冻结现象的发生。 4、漏真空后,空气进入凝汽器产生气阻,导致汽轮机背压升高, (汽轮机排气背压设计为15kPa(TMCR/THA工况))汽轮机有 相对应背压裕量,超过这个裕量(低压缸排气温度升高,腐 蚀汽轮机末级叶片,造成低压缸缸体变形)造成机组降负荷, 严重时机组跳闸。
空冷岛的工作原理ppt

THANKS
感谢观看
先进风扇技术
大风量风扇
采用大风量、低噪音的风 扇,确保空气流通畅通, 降低设备温度。
风扇调速技术
根据设备温度变化,自动 调节风扇转速,实现节能 降噪。
风向控制技术
通过改变风扇叶片形状或 安装导流板等措施,控制 风向,使散热更加均匀有 效。
智能化控制系统
温度监测
故障诊断与报警
实时监测设备温度,为控制系统提供 准确的数据支持。
散热器
负责将热量从冷却介质 中传递给空气,降低冷
却介质温度。
风扇
提供空气流动动力,使 空气流过散热器进行热
交换。
冷却介质循环泵
驱动冷却介质在系统中 循环流动,保证散热效
果。
控制系统
监测并控制冷却系统运 行状态,确保系统安全
、高效运行。
空气流动路径与热交换过程
空气流动路径
风扇吸入环境空气,引导空气流过散热器,最后排出热空气 。
在缺水地区的火电厂中,直接空冷系统可将汽轮机排汽通过空冷 凝汽器直接冷凝成水,具有显著的节水效果。
间接空冷系统
采用表面式凝汽器间接冷却汽轮机的排汽,通过冷却水系统将热量 传递给空气,实现热交换。
混合式空冷系统
结合直接空冷和间接空冷的优点,具有更高的冷却效率和灵活性。
化工行业应用案例
合成氨装置
空冷器用于合成氨装置中的气体冷却,提高合成效率和产品质量 。
当设备出现故障或异常时,控制系统 能够及时诊断并发出报警信号,便于 维护人员及时处理。
自动控制
根据温度监测结果,自动调节散热器 风扇转速和风向,确保设备在最佳状 态下运行。
2023
PART 04
性能评价与指标体系
2024空冷岛的工作原理ppt参考课件

空冷岛的工作原理ppt 参考课件•空冷岛基本概念及作用•空冷岛组成结构介绍•工作原理详解•性能评价与选型建议目•运行维护与故障排除方法•发展趋势与前景展望录CHAPTER空冷岛基本概念及作用空冷岛定义与分类定义分类发电厂中应用场景适用于水资源匮乏地区在水资源紧张或缺乏的地区,采用空冷技术可以大大节约水资源,降低发电成本。
适用于高温、干燥环境在高温、干燥的环境下,空冷岛的散热效果更好,可以确保汽轮机的正常运行。
适用于大容量机组随着机组容量的增大,对冷却系统的要求也越来越高。
空冷岛作为一种高效的冷却方式,可以满足大容量机组的冷却需求。
节能减排意义节约水资源01减少环境污染02提高能源利用效率03CHAPTER空冷岛组成结构介绍散热器类型材质选择布局方式030201散热器部分风机部分风机类型驱动方式布局方式支架和连接部件连接方式支架类型部件之间采用螺栓连接、焊接等连接方式,确保连接牢固可靠。
防腐处理仪表配置配置温度表、压力表、流量计等仪表,实时监测空冷岛运行状态。
控制系统空冷岛控制系统包括温度控制、风速控制、水位控制等,实现自动化运行和监控。
数据采集与传输采用传感器和数据采集系统,实现远程实时监控和数据传输。
控制系统及仪表CHAPTER工作原理详解空气循环过程描述环境空气被吸入空冷岛01空气在空冷岛内循环02降温后的空气排出空冷岛03热量传递方式分析对流换热辐射换热传导换热关键参数影响因素探讨环境温度环境温度的高低直接影响空冷岛的散热效果,环境温度越高,散热效果越差。
风速与风向风速和风向的变化会影响空气在空冷岛内的流动和散热效果,合理布置进排风口和考虑当地风向条件是提高散热效果的关键。
散热器材质与结构散热器的材质和结构直接影响其传热性能和使用寿命,选用合适的材质和结构形式是提高空冷岛性能的重要措施。
热流体参数热流体的温度、流量和成分等参数对空冷岛的散热效果也有重要影响,需要合理控制这些参数以保证空冷岛的正常运行。
空冷岛的工作原理

其他辅助设备
除了散热器、风机和控制系统外,空冷岛还包括一些辅助设备,如水泵、水箱、管道、阀门等。这些设 备的作用是保证空冷岛的正常运行和维护。
水泵负责将冷却水从水箱中抽出并送往散热器,水箱则用于储存冷却水。管道和阀门则用于连接各个设备 并控制冷却水的流向和流量。这些辅助设备共同构成了空冷岛的完整系统,确保其高效、稳定地运行。
设备因素
空冷岛的设计参数、设备配置、制造工艺等直接影响其性能表现。
运行管理
操作维护水平、设备保养状况、运行策略等对空冷岛性能有重要影响。
优化设计策略探讨
改进冷却技术
采用先进的冷却技术,如喷雾冷 却、复合冷却等,提高冷却效率。
优化设备配置
根据实际需求,合理配置空冷岛 设备,避免资源浪费和性能不足。
强化运行管理
风机
风机是空冷岛的动力设备,其作用是驱动空气流动,使空气经 过散热器并带走热量。风机通常采用轴流式或离心式结构,具 有较大的风量和较低的噪音。
在空冷岛中,风机通常布置在散热器的上方或侧方,通过风道 与散热器相连。当风机启动时,产生强大的气流,使空气经过 散热器并带走热量,从而实现冷却效果。
控制系统
技术创新方向预测
高效能热交换器技术
01
研发更高效的热交换器,提高冷却效率,降低能耗。
智能化控制技术
02
应用先进的控制算法和传感器技术,实现空冷岛的智能化运行
和远程监控。
环保型冷却技术
03
发展低噪音、低污染、低能耗的冷却技术,满足日益严格的环
保要求。
行业应用拓展可能性探讨
01
02
03
电力行业
空冷岛可用于火电厂、核 电站等电力设施的冷却系 统,提高发电效率。
空冷岛培训课件

。
特点
冷却效果稳定,受环境温度影响 较小,但结构复杂,投资成本较
高。
混合空冷系统
定义
混合空冷系统结合了直接空冷系统和间接空冷系统的特点 ,既利用自然通风的空气进行热交换,又通过表面式凝汽 器和循环水系统进行冷却。
运行。
调试与运行
单机调试
对空冷岛的各个单机设备进行 调试,确保设备运行正常。
联动调试
按照设计要求对空冷岛的各个 设备进行联动调试,确保设备 之间的协调运行。
性能测试
对空冷岛进行性能测试,包括 冷却效率、能耗等指标的测试 ,确保空冷岛性能达到设计要 求。
运行管理
建立空冷岛的运行管理制度, 明确运行操作规程和维护保养 要求,确保空冷岛的安全、稳
03
空冷岛的安装与调试
安装前的准备
01
02
03
04
技术准备
熟悉空冷岛的原理、结构、性 能参数等,确保安装人员具备
相应的技术知识和技能。
物资准备
根据安装计划,提前采购所需 的设备、材料和工具,确保安
装工作的顺利进行。
场地准备
确保安装现场具备足够的空间 和安全条件,满足设备运输和
安装的需求。
人员准备
组建专业的安装团队,明确人 员分工和职责,确保安装工作
的协计要求进行基础 施工,确保基础稳固、
水平。
设备组装
按照设备说明书和图纸 进行组装,确保设备安
装正确、牢固。
管路连接
根据设计要求进行管路 连接,确保管路密封、
无泄漏。
电气安装
按照电气设计要求进行 电缆连接、配电柜安装 等,确保电气系统正常
空冷岛的工作原理ppt课件

加强环保措施
采用先进的环保技术和设备,减少空 冷岛运行过程中的环境污染。
推动智能化发展
利用人工智能、大数据等技术,实现 空冷岛的智能化运行和维护,提高运 行效率和降低维护成本。
加强国际合作
加强与国际先进企业和科研机构的合 作,共同推动空冷岛技术的发展和创 新。
空气质量流量
反映空冷岛处理空气量的参数,与冷却效率密切相关。
压力损失
空冷岛对空气流动产生的阻力,影响风机的能耗和冷却效果。
评价方法
采用综合性能指数,综合考虑冷却效率、空气质量流量和压 力损失等因素,对空冷岛性能进行全面评价。
影响因素分析
环境因素
环境温度、湿度和风速等 气象条件对空冷岛性能有 显著影响。
自动化技术
空冷岛的自动化技术包括自动启停、 自动调节和远程监控等功能,以提 高空冷岛的智能化水平和降低运行 成本。
控制策略
针对空冷岛的运行特点,可以采用 PID控制、模糊控制等控制策略,以 实现空冷岛的高效稳定运行。04空冷岛性能评价来自优化性能评价指标及方法
冷却效率
衡量空冷岛冷却效果的重要指标,通过比较进出口空气温度 差来计算。
泵等,确保正常运行。
保持空冷岛内部清洁,定期清 理散热器表面的灰尘和杂物,
防止堵塞影响散热效果。
定期对空冷岛进行维护保养, 包括更换润滑油、清洗过滤器 等,以延长设备使用寿命。
注意空冷岛的运行环境,避免 长时间暴露在高温、潮湿或腐 蚀性环境中,以免影响设备性
能。
常见故障类型及原因分析
风机故障
可能由于电机损坏、轴承磨损或 叶片变形等原因导致,表现为噪 音大、振动强烈或无法启动等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空冷严密性试验
给所有的安装焊缝和法兰连接涂肥皂。 为 进行泄漏试验 必须在管道的各个点放置盲 进行泄漏试验, 板,例如在汽轮机的前面 ,在安全阀的前面, 在防爆膜的前面 在泵的前面等。 在防爆膜的前面, 在排 气管道安装完成后必须进行空冷凝汽器严密性 试验根据设备厂家图纸设计要求及中华人民共 和国电力行业标准《火力发电厂空冷塔及空冷 凝汽器试验方法》DL/T 552-95中规定的标准 552 95中规定的标准 进行验收。
2、采用空冷,厂址选择不受限 2 采用空冷 厂址选择不受限 制 3、由于空冷器空气侧压力降为 100‾200Pa 左右,所以运行 左右 所以运行 费用低。 4、空气腐蚀性低,不需要采取 任何清垢的措施 5、空冷系统的维护费用一般为 水冷却系统的 20‾30%
4、水的运行费用高,循环泵的 4 水的运行费用高 循环泵的 压头高 5、在水冷器中,某些生物能附 着在换热器表面上 需要停下 着在换热器表面上,需要停下 设备清除,增加了维护费用
国内电站空冷系统供应商现状: 国内电站空冷系统供应商现状
1、美国 美国SPX(斯必克)公司在中国空冷市场上的占有 率约35%,在天津、张家口分别设有两个独资管束生产 中 2、德国GEA(基伊埃)公司德国GEA公司系空冷技术 的创始人,其技术 直处于世界领先地位,在世界空冷 的创始人,其技术一直处于世界领先地位,在世界空冷 市场上的占有率超过60%,在中国空冷市场上的占有率 约35%。 3、首航艾启威冷却技术有限公司。首航艾启威冷却技 术(北京)有限公司是由北京首航波纹管制造有限公司和 瑞士IHW联合设计集团共同投资的中外合资企业。 联合设计集团共同投资的中外合资企业 4、北京龙源冷却技术有限公司、哈尔滨空调股份有限 公司等。 公司等
电厂配有两台排汽冷凝汽轮机。将每台汽轮 排汽管道连接到 套单 空冷冷凝 机排汽管道连接到一套单独的空冷冷凝器 (ACC)装置
每套空冷冷凝器装置主要包括下列项目 每套空冷冷凝器装置主要包括下列项目:
主排汽管道与蒸汽分配管包括:主管道和分流器、到每个
凝汽器列的蒸汽分配管、 6个冷凝器列(每个冷凝器列有5个带翅片管换热器冷凝 器单元;每列有3个纯顺流和2个混合顺流和逆流单元;)5 套通风系统(用于每个单元) 包括风机、变速箱和电气驱 套通风系统(用于每个单元), 包括风机 变速箱和电气驱 动; 冷凝水收集系统 抽真空系统包括:包括3x100%水环真空泵; 高压水清洗系统包括:1 x 100%喷水泵、每个凝汽器列侧 的清洗装置 清洗喷嘴单元 就地控制器 的清洗装置、清洗喷嘴单元、就地控制器 提升钢平台包括:周围挡风墙、楼梯塔入口、电梯入口 钢筋混凝土基础和平台支柱
空冷岛查漏主要有三个方法
一、是运行中采用氦质谱检漏仪圈定范围,然后用风冷系统漏 仪确定具 点 有 定效果 泄监测仪确定具体的泄漏点,有一定效果; 二、是运行中采取单列隔离办法,判定隔离列是否存在泄漏, 这种方法一方面会影响负荷,另一方面如果泄漏点较小还不 便于判断 因此采用较少 便于判断,因此采用较少; 三、是利用机组停机机会进行空冷岛各排单独打压查漏,这个 方法是目前效果最好的办法。 但目前还存在排汽管道部分查漏困难的问题,排汽管道从 0m一直到47m,垂直落差大,下方又是变压器和高压母线, 一旦存在泄漏,查找的确困难。
空冷系统分类:
空气冷却系统采用工艺流程的不同,而又将空气 冷却系统分成三种 : 1、直接空气冷却系统简称 ACC 系统。 (AirCooledCondenser) 2、采用喷射式(混合式)凝汽器的空冷系统又 称海勒式(HL)间接冷却系统。 称海勒式(HL)间接冷却系统 3、采用表面式凝汽器的间接空冷系统。又称哈 蒙式间接空冷系统
干球温度——普通温度计所测得的空气温度。(设计 干球温度 16.3 干球温度: 16 3℃,夏季满发干球温度:38.3 :38 3℃ ) 湿球温度——温度计感温球上包着一层经常湿润的棉 纱,置于风速5.0 m/s的气流中,所测得的空气温度。
空冷机组冷源的极限温度为大气干球温度, 湿冷机组冷源的极限温度为湿球温度,冷源温度 高直接影响汽机的排汽温度及背压,因此空冷电 站热效率低、煤耗高,但节水显著,两者运行费 用基本相抵消
选用单排管且夹角60°的原因:
1、经济性显著优越(硬件费用低,风机耗电量少) 2、技术方案更好(占地面积小,容易清洗 技术方案更好(占地面积小 容易清洗-污垢少-冻 结风险小,防腐抵抗力高)。 3、液泛汽体速度与基管高度的平方根成正比,基管高 度越高,液泛汽体速度越大,因此单排管换热管束 蒸汽设计流速可高于双排管、三排管。以防止液泛 发生的角度,单排管显然具有明显优势。 4、逆流管束与水平面的夹角在60-70度之间液泛汽体 速度最大。 度最大
排气管道、蒸汽分配管及歧管 管径 变化
真空度低,会造成如下情况:
1、真空漏入空气,增加凝结水含氧量,在排气装置除氧及除氧 器除氧过程中就会消耗更多的能量,增加煤耗。凝结水中的 含氧量也越多 从而加速了相关管道 设备的腐蚀速度 含氧量也越多,从而加速了相关管道、设备的腐蚀速度。 2、当蒸汽在冷凝过程中出现不凝结气体,凝结水液膜热阻将不 再是主要的传热热阻。此时管内换热表面被一层气膜覆盖, 气膜具有更高的传热热阻 此外 随着不凝结气体和蒸汽的 气膜具有更高的传热热阻。此外,随着不凝结气体和蒸汽的 混合汽体的过冷和不凝结气体比例的增大,凝汽器逆流单元 的传热热阻增大。 3 不凝气体的焓值较低 当气温下降到 定极限时 极易造成 3、不凝气体的焓值较低,当气温下降到一定极限时,极易造成 空气冷 凝器管束内冻结现象的发生。 4、漏真空后,空气进入凝汽器产生气阻,导致汽轮机背压升高, (汽轮机排气背压设计为15kP (TMCR/THA工况))汽轮机有 (汽轮机排气背压设计为15kPa(TMCR/THA工况))汽轮机有 相对应背压裕量,超过这个裕量(低压缸排气温度升高,腐 蚀汽轮机末级叶片,造成低压缸缸体变形)造成机组降负荷, 严重时机组跳闸。 严重时机组跳闸
空冷岛平台紧靠主厂房A排外,以单元群形式成矩阵布置, 每台机组共 每台机 共30个单元划分为5行 行、6列 列,全钢结构。砼柱顶标 全钢结构 柱顶标 高33.8m,平台顶部标高为35.00m,蒸汽分配管中心标高 47.53m,平面尺寸,73.5m X 62.81m, 安装在9根混凝土柱 子上,平台钢桁架连接而成,采用大六角高强螺栓连接。 (螺栓强度等级10.9S). 每个冷却单元由12个冷却翅片管束组成,管束安装在平台 导向槽上 散热管束分为顺流管束和逆流管束 逆流管束上 导向槽上。散热管束分为顺流管束和逆流管束,逆流管束上 部为不凝汽抽出点。 每列60个管束,其中顺流52个,逆流8个。管束下方布置 有风机环 风机桥架及其上安装的变频电机 减速机 轮毂 有风机环、风机桥架及其上安装的变频电机、减速机、轮毂、 风叶等设备。空冷凝汽器主吊机械为250T履带吊。
S te a m fro m S te a m T u rb in e
C o o lin g A ir O u tflo w
C o n d e n sa te re tu rn
C o o lin g A ir In flo w
顺、逆流单元流动图解
顺流单元工作原理: 1.正常运行时,顺流列 管内自上而下凝结水量 逐渐增加,而蒸汽量逐 渐减少; 逆流单元工作原理: 2.在逆流列管内,自下 而上,蒸汽量依次减少, 空气量逐渐增加
空气冷却的缺点 :
1、由于空气比热小,且冷却效 果取决于空气的干球温度,不 能将流体冷却到环境气温。 2 空气侧换热系数低 空气比 2、空气侧换热系数低,空气比 热小,所以空冷器需用较大的 面积。 3、空冷器性能受环境气温、雨 雪、大风的影响。 4 空冷器不能靠近大的建筑物 4、空冷器不能靠近大的建筑物, 以免形成热风再循环。 5、空冷器要求采用特殊制造的 翅片管
管束结构
翅片管的选择
翅片管是空冷器的核心和关键部件 它的性能直接影响空冷器的性能和作 用。对翅片管的基本要求如下:
①良好的传热性能。 ②良好的耐温性能。 ③良好的耐大气的腐蚀性 ③ 好 大气 腐蚀 能。 ④良好的耐热冲击力。 ④ ⑤易于清理尘垢。
⑥较低的制造费用。 ⑦足够的管内耐压能力, 较低的管内压降。 ⑧较小的空气侧阻力。 ⑨良好的抗机械振动性能。 ⑩易于取得的金属材料
B:水冷却优于空气冷却:
水冷却的优点 :
1、水冷却能将 艺流体冷却到 1、水冷却能将工艺流体冷却到 接近环境湿球温度 2、水冷却器结构紧凑,冷却面 2 冷却 结构紧凑 冷却 积比空冷器要小得多。 3、水冷却对环境气温的变化不 敏感。 4 水冷 4、水冷器可以放在其它设备之 放在其它设备之 间。 、 般的管壳式换热器即可满 5、一般的管壳式换热器即可满 足要求。
冷凝器 :
每个冷却单元由12个冷却翅片管束组成,管束安装 在平台导向槽上。散热管束分为顺流管束和逆流管束, 逆流管束上部为不凝汽抽出点。每列60个管束,其中顺 流52个,逆流8个。 对空冷器材采用顺流管束和凝流管束串联的方法, 称之为K/D结构,直接空冷凝汽器采用适当的顺逆流比 例配置,在环境温度较低或低负荷工况下,能有效地防 止蒸汽过冷却以及凝结水结冰,避免空冷凝汽器冻结, 在寒冷地区 一般为 在寒冷地区, 般为 6:4或7:3。新疆哈密大南湖电厂顺 新疆哈密大南湖电厂顺 逆流比例为6:4,空冷凝汽器的这种组成方式有效地提 高了冷凝器的防冻性能
空冷系统主要设计参数:
最低及最高环境温度:—28.9℃至43.2℃ 平均环境温度 平均环境温度: +10 10℃ 夏季平均温度:+26.6℃ 冬季平均温度:—10.4℃ 平均环境大气压力:930.0hPa 平均相对湿度为:44% 平均降雨量:38.6mm 平均降雨量 平均风速2.0m/s 最大设计风速:31m/s 全年盛行风向:东北 夏/冬主要风向:东北/东北