化工原理-5章气体吸收
化工原理-5-第八章-气体吸收

课后习题
P70页 5、6、7 下周上课前交
8.4.4填料塔的设计型计算和操作型分析 无论是设计型问题还是操作型问题,其求解的方法都是通过联立 求解全塔物料衡算和填料层高度计算式以及相平衡关系式。下面 分别讨论: 一、填料塔的设计型计算 设计型计算的特点:给定进口气体的溶质浓度yb、进塔混合气的 流率G、相平衡关系及分离要求,计算达到指定的分离要求所需 要的塔高度。 要完成设计型计算还要解决以下问题: ①确定传质系数; ②气液两相流向的选择,通常采取逆流操作; ③吸收剂进口浓度的确定; ④吸收剂用量的确定。
* 故: yb yb yb 0.05 0.14 0.224 0.01864
m 2 .s
* y a y a y a 4 10 4 0.14 0.002 0.00372
0.01864 0.00372 y m 9.258 10 3 0.01864 ln 0.00372
H 1.1508 4.96 5.65m
二、填料塔的操作型计算
特点:塔设备已给定(对填料塔高度h已知),基本类型有:
①校核现有的塔设备对指定的生产任务是否适用,如已知T、 P、H、G、L、xa、yb,校核ya是否满足要求; ②考察某一操作条件改变时,吸收结果的变化情况或为达到 指定的生产任务应采取的措施。如对给定的吸收塔,若气体处 理量增加(其余条件不变),分析ya、yb的变化趋势或此时应 采取什么措施才有可能使ya保持不变。
G y ya L
mG m 2G mG 1 y b mx a L y a L xa L 1 ln mG y a mx a 1 L
最后整理得:
mG y b mx a mG 1 ln 1 mG L y a mx a L 1 L L A ,A称为吸收因数 引入概念:令 mG 其几何意义为:操作线斜率L/G与平衡线斜率m之比;而 N OG
化工原理王志魁第五版-吸收最新版本

1/17/2020
24
5. 吸收
获取对流传质系数的方法
(1)数学模型法(仅适用于极少数情形) (2)量纲分析指导下的经验法
分析主要影响因素,归纳为若干无量纲数。
强制对流时,满足基本关系 Sh = f (Re, Sc)
Sc
DAB DAB
Sh kcL D AB
Re uL
假定其数学表达式,通过实验回归拟合参数。
11
5. 吸收
分子扩散的两种简单情形
等分子反方向扩散
隔板两侧A、B总浓度相等 (密度相等):
ccA 1cB 1cA 2cB 2
cA1
JA
cB1
cA1 cA2
cA2
JB
cB2
cB1 cB2
拿去隔板,A、B发生速率相等、方向相反的净扩散:
JA JB
NAJA,NBJB
NANB 等分子反方向扩散
NM
15
5. 吸收
(3)单项扩散的传质速率方程
1 NA 1 yA JA
JA
D
dcA dz
NARTD pyAddyzA
D p dyA RT dz
分离变量: N A dzR D T pd yy A AR D T pd( yy A A )
积分:
提交
3
5. 吸收
5.3 吸收过程的传质速率
吸收过程中相际的传质包括3个串联步骤:
1. 从气相主体到气液界面气相一侧 2. 在相界面上溶解并进入其液相一侧 3. 从界面液相一侧到液相主体 总传质速率由速率最慢步骤(控制步骤)决定。
1/17/2020
4
5. 吸收
5.3 吸收过程的传质速率
化工原理之气体吸收

化工原理之气体吸收气体吸收是化工过程中常用的一种物理操作,它指的是将气体从气相吸收到液相中。
气体吸收广泛应用于环境工程、化工工艺、能源工程等领域,例如废气处理、石油炼制、烟气脱硫等。
一、气体吸收的基本原理气体吸收的基本原理是气体和液体之间的质量传递过程。
气体吸收的过程中,气体溶质分子通过气相和液相之间的传质界面传递到溶液中,从而实现气体从气相到液相的转移。
气体吸收的速度由以下几个因素决定:1.液相溶剂的性质:液相溶剂的挥发性、表面张力、黏度和溶解度等性质都会影响气体吸收的速度。
通常情况下,挥发性较强的溶剂对气体的吸收速率较快。
2.溶剂和气体溶质之间的亲和力:溶剂和气体溶质之间的亲和力越强,气体吸收速度越快。
3.传质界面的面积和传质界面的厚度:传质界面的面积越大,气体吸收速度越快;传质界面的厚度越薄,气体吸收速度越快。
4.溶解度:气体的溶解度越高,气体吸收速度越快。
5.气体浓度梯度:气体浓度梯度越大,气体吸收速度越快。
二、气体吸收的设备常见的气体吸收设备包括吸收塔、吸收柱和吸附塔等。
1.吸收塔:吸收塔是最常用的气体吸收设备之一,它主要由一个塔体和填料层组成。
气体通过底部进入吸收塔,液体从塔顶滴入塔体中。
在填料层的作用下,气体和液体之间的接触面积增加,从而促进气体的传质。
通过提供充分的接触时间和表面积,吸收塔可以实现高效的气体吸收。
2.吸收柱:吸收柱通常用于含有反应过程的气体吸收。
与吸收塔类似,吸收柱也包含一个塔体和填料层。
区别在于,吸收柱还包括一个液相反应器,用于在吸收气体的同时进行反应。
3.吸附塔:吸附塔是另一种常用的气体吸收设备,主要用于吸附分离等工艺中。
吸附过程通过吸附剂将目标气体吸附在其表面上实现。
吸附塔通常由多个吸附层和吸附剂床组成,气体从底部进入吸附塔,经过吸附剂床后,被吸附物质从气相转移到固相中,从而实现气体吸附。
三、气体吸收的应用气体吸收在化工工艺中有着广泛的应用。
1.废气处理:气体吸收是一种有效的废气处理方法,可用于去除废气中的有害污染物,如二氧化硫、氮氧化物等。
化工原理答案-第五章--吸收

第五章 吸收 相组成的换算【5-1】 空气和2的混合气体中,2的体积分数为20%,求其摩尔分数y 和摩尔比Y 各为多少?解 因摩尔分数=体积分数,.02y =摩尔分数 摩尔比 ..020251102y Y y ===--. 【5-2】 20℃的l00g 水中溶解3, 3在溶液中的组成用摩尔分数x 、浓度c 及摩尔比X 表示时,各为多少?解 摩尔分数//117=0.010*******/18x =+浓度c 的计算20℃,溶液的密度用水的密度./39982skg m ρ=代替。
溶液中3的量为 /311017n kmol -=⨯溶液的体积 /.33101109982 V m -=⨯溶液中3的浓度//.33311017==0.581/101109982n c kmol m V --⨯=⨯ 或 . 3998200105058218s sc x kmol m M ρ==⨯=../ 3与水的摩尔比的计算//1170010610018X ==. 或 ..00105001061100105x X x ===--. 【5-3】进入吸收器的混合气体中,3的体积分数为10%,吸收率为90%,求离开吸收器时3的组成,以摩尔比Y 和摩尔分数y 表示。
吸收率的定义为122111Y Y Y Y Y η-===-被吸收的溶质量原料气中溶质量解 原料气中3的摩尔分数0.1y = 摩尔比 (11)10101111101y Yy ===-- 吸收器出口混合气中3的摩尔比为 () (2)11109011100111Y Y η=-=-⨯=()摩尔分数 (22)200111=0010981100111Y yY ==++ 气液相平衡【5-4】 l00g 水中溶解lg 3NH ,查得20℃时溶液上方3NH 的平衡分压为798。
此稀溶液的气液相平衡关系服从亨利定律,试求亨利系数E(单位为kPa )、溶解度系数H[单位为/()3kmol m kPa ⋅]和相平衡常数m 。
化工原理 第五章 气体吸收

Y
*
mX 1 (1 m) X
当溶液浓度很低时,上式右端分母约等于1,于是上式可简化为:
Y*=mX
20
三、 相平衡关系在吸收中的应用
(一)判断过程进行的方向
* pA pA * pA pA * pA pA
A由气相向液相传质,吸收过程 平衡状态
A由液相向气相传质,解吸过程
*或x* >x或 c * y
dc A —组分A在扩散方向z上的浓度梯度(kmol/m3)/m; dz
DAB——组分A在B组分中的扩散系数,m2/s。
负号:表示扩散方向与浓度梯度方向相反,扩散沿 着浓度降低的方向进行
28
理想气体:
pA cA RT
dc A 1 dp A = dz RT dz
DAB dpA JA RT dz
25
吸收过程: (1)A由气相主体到相界面,气相内传递; (2)A在相界面上溶解,溶解过程; (3)A自相界面到液相主体,液相内传递。
单相内传递方式:分子扩散;对流扩散 。
26
一、 分子扩散与菲克定律
分子扩散:在静止或滞流流体内部,若某一组分存 在浓度差,则因分子无规则的热运动使
该组分由浓度较高处传递至浓度较低处,
物系一定, E T 2)E大的,溶解度小,难溶气体 E小的,溶解度大,易溶气体
3)E的来源:实验测得;查手册
对于理想溶液,亨利常数即为纯溶质的饱和蒸汽压。亨利常数E值较大表示溶解度 较小。一般E值随温度的升高而增大,常压下压力对E值影响不大。
16
(二)亨利定律其它形式
cA 1)p H
体主体浓度线相交于一点E,则厚度zG为E到相界
面的垂直距离。
(二)气相传质速率方程
化工原理第五章吸收塔的计算

(1)吸收塔的塔径;
(2)吸收塔的塔高等。 2、操作型计算
(1)吸收剂的用量;
(2)吸收液的浓度;
(3)在物系、塔设备一定的情况下,对指定的生产
任务,核算塔设备是否合用。
2018/10/17
一、物料衡算和操作线方程
1、物料衡算 G——单位时间通过任一塔截
G, Y2 L, X2
2018/10/17
【特点】任一截面上的吸收的 推动力均沿塔高连续变化。
* N A KY (YA YA )
* NA K X ( X A X A)
逆流吸收塔内的吸收推动力
2018/10/17
(2)吸收塔填料层高度微分计算式 微分填料层的传质面积为:
Y2=(1-η)Y1=(1-0.95)×0.099=0.00495
据 Y*=31.13X 知: m=31.13
据
Y1 Y2 L ( ) min G Y1 / m X 2
L 0.099 0.00495 ( ) min 29.6 0.099 G 0 31.13
∴
2018/10/17
过程中L、G为常数)。以单位时间为基准,在全塔
范围内,对溶质A作物料衡算得:
G , Y2
L, X2
GY1 LX 2 GY2 LX1
(进入量=引出量) 或
G(Y1 Y2 ) L( X1 X 2 )
——全塔的物料衡算式
G, Y1 L, X1
物料衡算示意图
2018/10/17
【有关计算】 (1)吸收液的浓度 据
XXຫໍສະໝຸດ 吸收推动力2018/10/17
二、吸收剂用量与最小液气比
1、最小液气比
化工原理28气体吸收

煤气中的芳烃,可采用洗油吸收方法回收芳烃获得粗苯.
二、吸收操作分类
*物理吸收与化学吸收 *等温吸收与非等温吸收 *单组分吸收与多组分吸收 *定态吸收与非定态吸收(过程参数是否随时间而变) 本章讨论所作的基本假定: 单组分、低浓度、连续定态逆流、等温物理吸收
三、吸收操作的经济性
吸收操作费用主要包括: ①气、液两相流经吸收设备的能量消耗; ②溶剂的挥发损失和变质损失;
=
0
dz dz dz
—d —PA = - —d P—B
dz
dz
—d C—A= - —d —CB
dz
dz
DAB = DBA = D
若选择固定的,垂直扩散方向的截面为基准,观察 扩散传质的速率。对于定态分子扩散则有
NA= JA
同理有
NB= JB
由以上讨论可知,等摩尔逆向扩散过程传质速率的大小主
要是分子扩散的贡献。
有总体流动时的传质速率: 对于B组分有: NB = JB+NBM =0
即: JB= - NBM
且
NAM
PA
——— = ———
NBM
PB
JB= -NBM = - JA
对于A组分,其传递速率 :
即:
NA = JA + NAM = JA + NBM PA / PB NA =(1+ PA / PB)JA
NA=
dCA JA= - DAB———
dZ 式中:
JA— 组分A沿Z方向的扩散通量kmol/m2 ·s; CA— 组分A在混合物中摩尔浓度kmol/ m3 ; DAB—组分A在A、B混合中的扩散系数,m2/s 。
同理,对B组分的扩散可表示为
dCB JB= - DBA———
化工原理--2-8气体吸收

④吸收操作的物料衡算
⑤填料层高度的计算方法
⑥解吸过程计算
⑦传质设备,填料吸收塔
.
6
重点内容: a.物理吸收过程 b.低浓度吸收过程设计计算
本章难点: a.吸收过程的传质机理 b.相平衡关系不同表达式间的换算
.
7
物质的量浓度(摩尔浓度)CA = nA / V 物质的量分数(摩尔分数)xA = nA / n 摩尔比 XA = nA / nB
1+(1-m )XA
XA —— 液相摩尔比
或 YA* = m XA
*5 E、H、m之间关系 H =E xA/ CA ≈ E MS /ρS
m = E / P总压
E — 亨利系数,N/m2。
.
13
三、相平衡与吸收过程的关系
1、判别传质过程的方向
P
P
PA
A
PB*
PA*
PB
B
xA xA* x
xB* xB
x
上式也可写成:
DC
NA = —— ——(CA1 - CA2 ) Z CBm
式中:CBm—组分B浓度的对数平均值,kmol/m3。
C —混合物的总浓度,kmol/m3,(C =CA + CB )
**该式同样适用于液相。 .
28
4、分子扩散系数 D, m2/s
物性参数之一,表示物质在介质中的扩散能力。 影响因素:物质的种类
①气、液两相流经吸收设备的能量消耗;
②溶剂的挥发损失和变质损失;
③溶剂再生(解吸)费用,即解吸操作费用。
*以上三项费用中第③项所占比例最大。
.
5
本章基本内容:
本章基本内容:介绍物理吸收过程机理、传质速率方 程及吸收过程的设计计算和操作分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液两相的浓度呈连续变化。如填
溶剂
料塔。
溶剂
规整填料
散装填料
塑料丝网波纹填料 塑料鲍尔环填料
级式接触:气、液两相逐级接 触传质,两相的组成呈阶跃变 化。 如板式塔。
气体
气体
a 微分接触
b 级式接触
图9-2 填料塔和板式塔
5.1.3 吸收操作的分类
物理吸收:吸收过程溶质与溶剂不发生显著的化学反应。如用水 吸收二氧化碳、用水吸收乙醇或丙醇蒸汽、用洗油吸收芳烃等。
硫回收
低温 甲 醇洗
甲醇 醋酸
CO分离
醋酐
低温甲醇洗装置
原气料体器气热I/交合换成 新醇鲜储甲槽 锅冷炉却给器水
原料气 冷却器
补充泵
洗氨器 原料气 体/热合交成换气器
原料气 /交废换气器热
地下 废液罐
地下 吸收器 废液泵
II
C02 甲 醇 级 间冷却器
H进2料S-冷吸却收器器
合成气 原料气
原 凝物料 气 冷
yA 1 yA
KmolA/ KmolB
在计算比质量分数或比摩尔分数的数值时, 通常以在操作中不转移到另一相的组分作为 B组分。在吸收中,B组分是指吸收剂或惰 性气,A组分是指吸收质.
2.质量浓度与物质的量浓度
质量浓度是指单位体积混合物内所含物质的质量。对于A组分,有
A
mA V
kg / m3
对于气体混合物,在压强不太高、温度不太低的情况下,可视为理
EM s 83.318
第八章 吸收
三、吸收平衡线
表明吸收过程中气、液相平衡关系的图线称吸收平衡线。在吸收操作 中,通常用图来表示。
吸收平衡线
YA
1
mX A (1 m) X
A
YA mX A
5.2.3 相平衡关系在吸收过程中的应用
①判断吸收能否进行。由于溶解平衡是吸收进行的极限,所以,在一定 温度下,吸收若能进行,则气相中溶质的实际组成YA必须大于与液相中 溶质含量成平衡时的组成YA* ,即 YA>YA*, 。若出现YA<YA* 时,则过 程反向进行,为解吸操作。图中的A点,为操作(实际状态)点,若A点 位于平衡线的上方, YA>YA*,为吸收过程;A点在平衡线上, YA=YA*, 体系达平衡,吸收过程停止;当 A点位于平衡线的下方时,则YA<YA* , 为解吸过程。
1.比质量分数与比摩尔分数 如果混合物是双组分气体混合物时
WA
mA mB
wA wB
wA 1 wA
KgA/ KgB
比质量分数与比摩尔分数的换算关系
WA
mA mB
nAM A nBM B
XA
MA MB
M组分的千摩尔质量,kg/kmol
XA
nA nB
xA xB
xA 1 xA
KmolA/ KmolB
YA
yA yB
② 确定吸收推动力。 显然, YA>YA*,是吸收进行的必要条件,而差值 △YA= YA-YA*, 则是吸收 过程的推动力,差值越大,吸收速率越大。
例:在常压及20℃下,测得氨在水中的平衡数据为:0.5gNH3/100gH2O 浓度为的稀氨水上方的平衡分压为400Pa,在该浓度范围下相平衡关系 可用亨利定律表示,试求亨利系数E,溶解度系数H,及相平衡常数m。 (氨水密度可取为1000kg/m3)
气体
气相扩散 液相扩散
5.1.1 吸收操作在化工生产中的应用
吸收操作是分离气体混合物的一种重要方法,是传 质过程中的一种形式,在化工生产中有广泛的应用。
吸收的应用包括: 1.原料气净化; 2.回收混合气体中的有用组分。 3.制备气体的溶液作为产品; 4.环境保护,综合利用;
1.原料气净化 氨合成原料气中的CO2用乙醇胺水溶液吸收,以防止氨合 成催化剂中毒.
某些气体水溶液的亨利系数值(E×10-6/kPa)
讨论:
1)E 的影响因素:溶质、溶剂、T。
物系一定, T E 2)E 大,溶解度小,难溶气体
E 小,溶解度大,易溶气体 3)对于理想溶液,E即为该温度下的饱和蒸汽压 4)E 的来源:实验测得;查手册
二、亨利定律的其他表达形式 由于互成平衡的气、液两相组成各可采用不同的表示法,
废甲醇 补充甲醇
图例 备注
气体 水/蒸汽 液体 热功率 流号
来自煤项目的甲醇洗 装 工置 艺情 流况 程: 图基本情况
2.回收混合气体中的有用组分
洗油处理焦炉气以回收煤气中的苯。
洗油 脱苯煤气
加
热
含苯煤气
器
冷 却 器
苯 水 过热蒸汽
吸收与解吸流程
3.制备气体的溶液作为产品
将气体中需要的成份以指定的溶剂吸收出来,成为液态的产品或 半成品,如:从含HCl气体中盐酸 ,硫酸吸收SO3制浓硫酸,水 吸收甲醛制福尔马林液。
物理吸收(physical absorption):吸收过程溶质与溶剂不发 生显著的化学反应,可视为单纯的气体溶解于液相的过 程。如用水吸收二氧化碳、用水吸收乙醇或丙醇蒸汽、 用洗油吸收芳烃等。
化学吸收(chemical absorption):溶质与溶剂有显著的 化学反应发生。如用氢氧化钠或碳酸钠溶液吸收二氧化 碳、用稀硫酸吸收氨等过程。化学反应能大大提高单位 体积液体所能吸收的气体量并加快吸收速率。但溶液解 吸再生较难。
单组分吸收:混合气体中只有单一组分被液相吸收,其余 组分因溶解度甚小其吸收量可忽略不计。
多组分吸收:有两个或两个以上组分被吸收。
溶解热:气体溶解于液体时所释放的热量。化学吸收时, 还会有反应热。
非等温吸收:体系温度发生明显变化的吸收过程。
等温吸收:体系温度变化不显著的吸收过程。
气液两相的接触方式
连续接触(也称微分接触):气、
H2(CO2)
低温甲醇洗工艺是德国Linde公司和Lurgi公司共同开发的一种酸性气体 净化工艺。该工艺采用物理吸收法,以甲醇作为酸性气体吸收液,利用 其在-60℃左右的低温下对酸性气体溶解度极大的物理特性,选择性地 吸收原料气中的H2S,CO2及各种有机硫等杂质。
煤制甲醇的生产工艺
空分 气化
水煤浆
pA pyA
cA
nA V
pA RT
课本例题
5.2.1 气体在液体中的溶解度
吸收的相平衡关系,是指气液两相达到平衡时,被吸收的组分(吸收 质)在两相中的浓度关系,即吸收质在吸收剂中的平衡溶解度。
气体溶解度曲线
平衡状态:一定压力和温度,一定量的吸 收剂与混合气体充分接触,气相 中的溶质 向溶剂中转移,长期充分接触后,液相中 溶质组分的浓度不再增加,此时,气液两 相达到平衡。
例: 1atm下,浓度为0.02(摩尔分数)的稀氨水在20℃时 氨的平衡分压为1.666kPa,其相平衡关系服从亨利定律, 氨水密度可近似取1000kg/m3。 求:E、 m 、 H 。
解: 已知:P 1atm 101.3kPa, x 0.02
pe 1.666kPa, ρS 1000kg/m3
WA
mA mB
wA wB
wA 1 wA
XA
nA nB
xA xB
xA 1 xA
xA
XA 1 X
A
WA
mA mB
nAM A nBM B
XA
MA MB
质量浓度与物质的量浓度
气液相平衡关系
YA
yA yB
yA 1 yA
yA
YA 1 YA
A
mA V
cA
nA V
PA RT
平衡状态 饱和浓度 平衡分压
工业操作原则:
氧气等为难溶气体,氨气等为易溶气体
工业操作: 加压和降温对吸收操作有利; 升温和减压则有利于解吸。
工业吸收过程
吸收和解吸
脱苯煤气 (<2g /m3)
洗油(常温) (170℃)
冷凝器
苯
吸
加
冷解
收 塔
热 器
却吸 器塔
水
含苯煤气 (~35g /m3)
富油
贮液槽
过热蒸汽
贮液槽
5.2.2 亨利定律
一、亨利定律
吸收速率=解吸速率
饱和浓度:平衡时溶质在液相中的浓度。
平衡分压:平衡时气相中溶质的分压,用 p A表 示
讨论:
(1)分压一定,温度下降,在同一溶剂中,溶质的溶解度x
随之增加,有利于吸收 。
(2)温度一定,分压增加,在同一溶剂中,溶质的溶解度x随
之增加,有利于吸收 。
(3)相同的总压及摩尔分率, cO2 < cCO2 < cSO2 < cNH3
M 剂 ——溶剂的千摩尔质量,kg/kmol。
②用摩尔分数表示
yA
E p
xA
mx A
m-相平衡常数
m E p m值越大,表明该气体的溶解度越小。
③用比摩尔分数表示
YA m X A
1 YA
1 XA
YA
1
mX A (1 m) X
A
当溶液很稀时,XA很小,则 YA mX A
比质量分数与比摩尔分数
吸收分离操作:利用混合气体中各组分在液体中溶解度差 异,使某些易溶组分进入液相形成溶液,不溶或难溶组分 仍留在气相,从而实现混合气体的分离。
吸收实质:
气体吸收是混 合气体中某些 组分在气液相 界面上溶解、 在气相和液相 内由浓度差推 动的传质过程。
吸收剂
气相主体 相界面 液相主体
y 界面
x
xi yi
非等温吸收:体系温度发生明显变化的吸收过程。
等温吸收:体系温度变化不显著的吸收过程。
本章主要讨论单组分、等温的物理吸收过程。
第二节 气液相平衡xA来自XA 1 XA
yA