北斗卫星导航系统介绍
北斗导航系统

北斗导航系统引言北斗导航系统是中国的卫星导航系统,由中国国家航天局主导研发和建设。
该系统在全球范围内提供高精度、全天候、全天时的定位、导航和时间服务。
北斗导航系统的建设和发展标志着中国在卫星导航领域取得了重大突破和进展。
本文将介绍北斗导航系统的基本原理、应用范围以及在经济、社会、科研和安全领域中的重要作用。
一、北斗导航系统的基本原理北斗导航系统是基于一组卫星和地面控制系统构建的。
该系统由一组地球静止轨道卫星和多颗中圆轨卫星组成。
卫星通过与地面控制系统的通信和协调,向用户提供定位、导航和时间服务。
北斗导航系统利用广播星历和差分星座,在用户设备和卫星间建立通信链路,实现定位和导航功能。
用户设备接收卫星发射的信号,通过信号延迟和多普勒效应计算出自身位置和速度。
该系统的测算精度可以达到米级或亚米级,满足大多数定位和导航需求。
二、北斗导航系统的应用范围北斗导航系统广泛应用于多个领域,包括交通运输、农业、测绘、物流、海洋、航空航天和安全等。
具体应用包括但不限于以下几个方面:1. 交通运输:北斗导航系统在交通运输领域发挥着重要作用,包括车辆定位、导航和调度等。
通过北斗导航系统,交通管理部门可以实时监控车辆位置和运行状态,提高交通管理效率。
2. 农业:北斗导航系统可用于农业机械自动驾驶和精准农业管理。
农民可以根据系统提供的地块信息,精确施肥、浇水和农药等,提高农业产量和效益。
3. 测绘:北斗导航系统可以为测绘和地理信息系统提供高精度的位置数据。
通过卫星信号,可以快速获取各种地理信息,如地形、地貌和地物分布等。
4. 物流:北斗导航系统可以提供物流车辆的实时定位和路径规划功能,提高物流运输的效率和安全性。
5. 海洋:北斗导航系统可以为海洋航行提供定位和导航服务。
海洋渔业、海上油气开发和海洋科学研究等领域都可以受益于该系统。
6. 航空航天:北斗导航系统可以为航空航天领域提供导航和飞行控制服务,提高航空器的定位精度和安全性。
北斗导航系统介绍

北斗导航系统介绍北斗导航系统由空间段、地面段和用户终端组成。
空间段由北斗卫星组成,这些卫星在轨运行,以提供导航信号。
地面段由控制中心、监测站、差分站和用户服务站等组成,负责卫星管理、导航信号的处理和用户服务等任务。
用户终端包括手机、车载设备、船载设备等,可以接收导航信号并进行导航、定位等操作。
1.全球覆盖:北斗导航系统覆盖全球,包括陆地、海洋和空域,能够提供全球范围内的导航和定位服务。
2.独立运行:北斗导航系统采用自主研发的导航卫星,不依赖其他导航系统,可以独立运行,确保数据的安全性和可靠性。
3.高精度定位:北斗导航系统提供的定位精度可达米级,对于需要高精度定位的应用场景非常适用,如车辆导航、测绘和航空航天等。
4.多种服务:除了导航定位功能外,北斗导航系统还提供增强型导航、速度测量、授时服务等多种功能,满足用户在不同应用场景下的需求。
5.多频多制式:北斗导航系统支持多频多制式的导航信号,能够适应不同地域和不同需求的用户。
1.车辆导航与交通管理:北斗导航系统可以为车辆提供实时导航和定位服务,帮助司机规划最佳行车路线,减少行程时间和燃料消耗,同时可以通过密集监控和实时交通信息,提高道路交通的管理和安全性。
2.海洋渔业和船舶导航:北斗导航系统可以为渔船提供定位和导航服务,帮助渔民和海航人员准确定位和规划航线,提高渔业的效率和安全性。
3.矿山勘探和测绘:在矿山勘探和测绘领域,北斗导航系统可以为工程师和测绘人员提供高精度的定位和导航服务,使勘探和测绘的结果更准确和可靠。
4.精准农业和水资源管理:利用北斗导航系统的高精度定位功能,可以为农民提供精准的农作物种植方案,减少土地和水资源的浪费,提高农业生产的效率和质量。
5.物流和运输管理:北斗导航系统可以为物流和运输行业提供实时的物流追踪和定位服务,帮助物流公司和运输企业提高物流管理的效率和可靠性。
综上所述,北斗导航系统是中国自主研发的全球卫星导航系统,具有全球覆盖、独立运行、高精度定位等功能特点,广泛应用于车辆导航、船舶导航、矿山勘探、精准农业等领域,为用户提供全方位、高效率的导航、定位和授时服务。
北斗卫星导航系统简要介绍

北斗卫星导航系统一、北斗的概念北斗卫星导航系统是中国自行研制的全球卫星定位与通信系统。
系统由空间端、地面端和用户端组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度优于20m ,授时精度优于100ns 。
二、国内北斗应用现状1、渔船上安装北斗目前北斗导航系统已在交通、渔业、水文、气象、林业、通信、电力、救援等行业都有了一定的应用。
北斗一代自2003年底正式运行以来,到现在已注册用户数大约在10万,其中渔业应用最广,占比超过60%。
渔政部门已通过北斗向渔民发送了12500条气象警报。
还根据北斗反馈的定位信息,救助了渔船6艘,旅游船1艘,救助渔民27人,游客6人,危重病人1人。
2、军用领域随着“北斗”系统及其配套设施的逐渐成熟,解放军必将成为最主要的受益者。
如果说中国军方特别是“二炮”部队此前还依赖国外卫星信号,那么国产接收机一旦投入批量生产并与现有装备相结合,则能在较短的时间内生产出大量同美制JDAM “联合直接攻击弹药”相仿的低成本制导武器;此外,“北斗”系统所特有的短信息通讯功能,也会给解放军三军的信息化作战能力带来提高。
三、市场应用份额统计数据显示,2010年我国卫星导航系统产值约为500亿元,其中北斗系统仅占5%的市场份额。
截至2011年年底,我国北斗一代终端社会持有量为10万余套;而同一时期,GPS 导航终端2011年的总销售量突破4500万台。
世界范围内,手机GPS 的集成率超过80%9月初发改委发布消息,已经制定了“2014~2016年北斗导航产业重大应用示范发展专项”。
受政策扶植,北斗导航产业正在加速发展,各路企业也纷纷涌入这个行业,积极分享盛宴图 1 渔船上的北斗卫星通信系统图 2 军用手持北斗接收终端。
北斗卫星导航系统介绍

伽利略系统与北斗系统均遵循国际标准,具有良好的兼容性,可以实现互操作。
与格洛纳斯比较分析
卫星数量与分布
格洛纳斯系统由24颗卫星组成,主要分布在三个轨道面上。北斗系统在亚太地区具有更多的可见卫星 ,有助于提高定位精度。
定位精度
格洛纳斯系统在开放服务中的定位精度相对较低,一般认为在10-15米之间。而北斗系统在亚太地区 的定位精度更高。
民用领域应用案例
智能交通
北斗卫星导航系统可以应用于车辆导航、智能交通信号控 制、自动驾驶等领域,提高交通运行效率和安全性。
灾害监测与救援
通过北斗卫星导航系统,可以实时监测地震、洪水等自然 灾害的发生和演变,为灾害预警、救援和恢复提供重要支 持。
精准农业
利用北斗卫星导航系统的高精度定位和时间服务,可以实 现农机精准作业、农田信息实时监测等,提高农业生产效 率和质量。
北斗系统具有短报文通信功能,用户可以通过卫星信号发 送短信息,而GPS则不具备此功能。
与伽利略比较分析
系统构成
伽利略系统由30颗中高度圆轨道卫星组成,其中27颗为工作卫星,3颗为备份卫星。北斗系统则由地球同步轨道卫星 、倾斜地球同步轨道卫星和中圆地球轨道卫星三种轨道卫星组成混合导航星座。
定位精度
伽利略系统设计目标为提供更高的定位精度,但其实际性能可能受到多种因素影响。北斗系统在亚太地区具有较高的 定位精度。
北斗卫星导航系统介绍
目录
• 北斗卫星导航系统概述 • 北斗卫星导航技术原理 • 北斗卫星导航系统性能评估 • 北斗卫星导航在各领域应用案例 • 北斗卫星导航与其他系统比较分析 • 未来发展趋势及挑战
01 北斗卫星导航系统概述
定义与发展历程
定义
北斗卫星导航系统(BDS)是中国 自主研发的全球卫星导航系统,旨 在提供全球范围内的定位、导航和 授时服务。
北斗卫星导航系统介绍资料

北斗卫星导航系统介绍资料北斗卫星导航系统,是中国自主研发的全球卫星导航系统。
它是由一系列卫星、地球站以及用户设备组成,能够为全球用户提供全天候、全天时、高精准度的导航、定位和授时服务。
北斗系统主要包括北斗卫星导航系统、北斗增强系统和北斗国际系统三个方面。
首先,北斗卫星导航系统由一组北斗卫星组成,这些卫星以地球同步轨道、倾斜地球同步轨道和中地球轨道等不同轨道形式运行,能够覆盖全球范围的导航需求。
目前,北斗系统已经成功发射了40颗卫星,预计到2024年将建成全球40颗卫星的导航网络。
这些卫星通过与地面的用户设备进行通信,实现了对用户的导航、定位和授时服务。
北斗卫星导航系统的主要特点是具备高可靠性、高精度和全球覆盖的能力。
其次,北斗增强系统是为了满足用户对高精度、高可靠性的导航需求而开发的系统。
该系统通过增加卫星数量、地面网络改进、扩大覆盖范围等手段来提高导航精度和可用性。
北斗增强系统可以提供高精度的导航定位服务,其定位精度可在米级范围内实现,具备了适合交通运输、物流、环境监测等领域的高精度导航应用能力。
最后,北斗国际系统是北斗卫星导航系统在国际领域的应用,通过与其他国际卫星导航系统建立协同合作关系,实现了对国际用户的导航服务。
目前,北斗系统已与俄罗斯的格洛纳斯系统、欧洲的伽利略系统等国际卫星导航系统进行了合作,实现了跨区域、跨系统的导航覆盖。
这种国际系统间的合作,提高了北斗系统的导航可用性和精度,为用户提供了更好的导航服务。
总之,北斗卫星导航系统是中国自主研发的全球卫星导航系统,具备高可靠性、高精度和全球覆盖的能力。
它通过一系列卫星、地球站和用户设备的配合,为用户提供全天候、全天时的导航、定位和授时服务。
北斗系统还包括北斗增强系统和北斗国际系统,通过增加卫星数量、改进地面网络以及与国际系统合作,进一步提高了系统的精度和覆盖范围。
北斗卫星导航系统在交通运输、物流、环境监测等领域具有广泛的应用前景。
北斗卫星导航系统介绍

全球卫星导航系统
北斗卫星导航系统简介
北斗卫星导航系统是中国自行研制的全 球卫星定位与通信系统(BDS),是继美全 球定位系统(GPS)、俄(GLONASS)和 欧盟(GALILEO)之后第四个成熟的卫星导 航系统。系统由空间端、地面端和用户端组 成,可在全球范围内全天候、全天时为各类 用户提供高精度、高可靠定位、导航、授时 服务,并具短报文通信能力。
5.海运和水运 6.航空运输 7.应急救援
对比GPS
覆盖范围
北斗导航系统是覆盖中国本土的区域导航系统, 覆盖范围东经约70°-140°,北纬5°- 55°。 GPS是覆盖全球的全天候导航系统,能够确保 地球上任何地点、任何时间能同时观测到6-9颗卫星 (实际上最多能观测到11颗)。
数量轨道பைடு நூலகம்
北斗导航系统是在地球赤道平面上设置 2颗地球同步卫星,卫星的赤道角距约60°。 GPS是在6个轨道平面上设置24颗卫星, 轨道赤道倾角55°,轨道面赤道角距60°。 GPS导航卫星轨道为准同步轨道,绕地球一
系统容纳的最大用户数:540000户/小时。
北斗卫星导航系统已成功应用于诸多领 域,产生了显著的经济效益和社会效益。 特别是在2008年北京奥运会、汶川抗震 救灾中发挥了重要作用。
军用功能
“北斗”卫星导航定位系统的军事功能 与GPS类似,如:飞机、导弹、水面舰艇和 潜艇的定位导航;弹道导弹机动发射车、自 行火炮与多管火箭发射车等武器载具发射位 置的快速定位,以缩短反应时间;人员搜救、 水上排雷定位等。
面临的挑战
一、部署进度的比拼。 四大全球系统部署的时间进度是个重大 考验,捷足先登是成功的第一步。GPS在这 方面遥遥领先,GLONASS正在恢复建设中, Galileo遭遇资金困境,北斗系统若要抢占市
北斗导航卫星系统(CNSS或BDS)简介

北斗IGSO卫星介绍
IGSO卫星即倾斜地球同步轨道卫星 •由于北斗MEO卫星的发射周期较长,要完成27颗的发射需要至少10~20年的时间,为了让北斗系统 尽快的实现区域的服务,首先发射了3颗IGSO卫星,目前可观测到6颗 •这些IGSO卫星的轨道高度和GEO卫星类似,绕地球一圈也是24小时,但是轨道并不正好在赤道上, 而是和赤道面有个夹角,这种卫星在地球固定一个位置看到的轨迹是如右图所示的同地面平行的“8” 字形 •IGSO卫星虽然不是完全同地面静止的,但是大部分时候在中国境内都能看到,所以保证了北斗系统 的区域性立即可用
那么,北斗系统为什要设计用27颗MEO卫星呢? •美国在设计 GPS 的时候,“够”的定义是保证地球上任何地点任何时间都可以定位,即能看到至少 4 颗 卫星;按照这个要求,在六轨面和轨道高度 20200km 的前提下,只要 21 颗卫星就够了,所以,GPS 选 择了 21 工作卫星 + 3 备份卫星的基础星座。同时代的 GLONASS 的设计是三轨面 21 工作卫星 + 3 备份卫 星,同样可以保证全球任何时间都能看到至少 4 颗卫星
北斗民用频段 北斗一号短报文
北斗二号
频段
Tx Rx B1I B2I B3I
Frequency(MHz)
中心频率
下限频率
上限频率
1615.68
1611.1
1620.26
2491.75
2487.17
2496.33
1561.098 1559.052 1563.144
1207.14
1196.91
1217.37
目前北斗系统的精度不够高很大一部分的原因是中国的原子钟不行
•卫星导定位中,时间系统有着极其重要的意义,在由跟踪站对卫星进行定轨时,要求卫星位置 的误差小于1cm时,相应的时刻误差应小于2.6μs;如果要求测量的距离误差小于1cm时,则信号 传播时间的测定误差应小于 0.03ns •中国的原子钟相对国外产品,体积大、质量重、精度还差了一个量级,这种高精尖的技术国外 是对中国禁运的,我们只能靠自己
北斗卫星导航系统简介

中心控制系统解算出用户的三维位置数据之后再发回用户,其
间要经过地球静止卫星走一个来回,再加上卫星转发,中心控
制系统的处理,时间延迟就更长了,因此对于高速运动体,就 加大了定位的误差。
此外,“北斗一号”卫星导航系统也有一些自身的特点,其具备 的短信通讯功能就是GPS所不具备的。
*
面临挑战
一、部署进度的比拼。四大全球系统部署的时间进度是个重 大考验,捷足先登是成功的第一步。GPS在这方面遥遥领先, 格洛纳斯(GLONASS)正在恢复建设中,伽利略(Galileo) 遭遇资金困境,北斗系统若要抢占市场,在系统部署方面面 临挑战。 二、卫星性能的竞争。导航卫星设计和研制水平决定着系统 的性能,北斗卫星设计已经达到国外导航卫星水平,在未来 发展中要不断自主创新,争取在国际导航卫星研制领域处于 领先地位。 三、系统发展的博弈。未来卫星导航系统需要持续的发展建 设,以满足用户要求;需要国家持续的经费投入、人才培养、 产业推广,以确保我国北斗卫星导航系统在未来发展与国际 竞争中占据优势地位
气象应用的开展,可以促进我国天气分析和数值天气预报、气 候变化监测和预测,也可以提高空间天气预警业务水平,提升 我国气象防灾减灾的能力。 智能交通
卫星导航将促进传统运输方式实现升级与转型。例如,在铁路 运输领域,通过安装卫星导航终端设备,可极大缩短列车行驶 间隔时间,降低运输成本,有效提高运输效率。未来,北斗卫 星导航系统将提供高可靠、高精度的定位、测速、授时服务, 促进铁路交通的现代化,实现传统调度向智能交通管理的转型。
汶川地震中投入使用的 北斗一号卫星导航定位 系统手持机,发挥了重 要作用。
航空运输和水运
在世界各大洋和江河湖泊行驶的各类船舶大多都安装了卫星 导航终端设备,使海上和水路运输更为高效和安全。北斗卫 星导航系统将在任何天气条件下,为水上航行船舶提供导航 定位和安全保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安全1201 马振鑫
目录
1.发展历程 2.组成部分
3.定位的基本原理 4.应用前景 5.与GPS导航系统的比较
全球卫星导航系统
一、发展历程
北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主研发、独立运行的全球 卫星导航系统,缩写为BDS。截至目前,我国“北斗”卫星导航系统建 设的“三步走”规划已成功实现第一、二步。
2003年5月25日 东经110.5度
一
2009年4月15日 GEO卫星
2010年1月17日 GEO卫星
一、发展历程
二、系统组成
(1)空间段
由5颗GEO(静止轨道)卫星和30颗Non-GEO
(非静止轨道)卫星组成
GEO 卫星
MEO 卫星
空间星座
二、系统组成
实现中心与用户间的双向通信,并测量电波在中心 、卫星、用户间往返的传播时间(或距离)。
二、系统组成
2) 地面测控网(2)
主控站利用测得的主控站、卫星与用户间电波往返 的传播时间、气压高度数据、误差校正数据和卫星 星历数据,结合存储在计算中心的系统覆盖区数字 地图,对用户进行精确定位。
系统中各用户通过与计算中心的通信,间接地实现 用户与用户之间的通信。由于主控站集中了系统中 全部用户的位置、航迹等信息,可方便地实现对覆 盖区内的用户进行识别、监视和控制。
三、定位的基本原理
更具体的表述:定位采用三球交会测量原理。地 面中心通过两颗卫星向用户广播询问信号 (出站信号 ),根据用户响应的应答信号 (入站信号)测量并计算出 用户到两颗卫星的距离;然后根据中心存储的数字地 图或用户自带测高仪测出的高程,算出用户到地心的 距离,根据这三个距离就可以确定用户的位置,并通 过出站信号将定位结果告知用户。授时和报文通信功 能也在这种出、入站信号的传输过程中同时实现。
二、系统组成
2) 地面测控网(4) 校准站亦分布在系统覆盖区内,其位置坐标应 准确已知。校准站的设备及其工作方式与用户机及 其工作方式完全相同。由主控站对其进行定位,将 主控站解算出的校准站的位置坐标与校准站的实际 位置坐标相减,求得差值,由此差值形成用户定位 修正值。一个校准站的修正值一般可用来作为其周 围100~200km区域内用户的定位修正值。
第三步:2020年左右,北斗卫星导航 系统形成全球覆盖能力。
第二步:建设北斗卫星导航系统,2012年左右形成覆盖亚太 大部分地区的服务能力。 第一步:2000年建成了北斗卫星导航试验系统,使中国成为世界上第三个拥 有自主卫星导航系统的国家。
一、发展历程
2000年10月31日 东经140度
2000年12月21日 东经80度
三、定位的基本原理
几何原理 以卫星为球心,以卫星至测站(用户)的斜距 为半径,可以作两个大球,在满足—定条件下 ,两大球面相交形成交线圆,并穿过赤道面, 在地球的南半球和北半球各有一个交点、其中 一个交点就是用户的点位,在已知用户大地高 时,可惟一确定用户的位置。
三、定位的基本原理
根据系统定位的几何原理和几何分析,要惟一确 定用户的点位必须满足以下3个条件: 两卫星间的弦长必须小于两斜距之和,即两卫星间的 最大夹角不得超过162°。否则以卫星至用户的斜距 为半径的两个大球不能形成交线圆。当两卫星的弧距 为60°时,几何精度最好。
四、应用前景
北斗卫星导航系统已成功应用于诸多领 域,产生了显著的经济效益和社会效益。 特别是在2008年北京奥运会、汶川抗震 救灾中发挥了重要作用。
四、应用前景
军用功能:“北斗”卫星导航定位系统的军 事功能与GPS类似,如:飞机、导弹、水面舰 艇和潜艇的定位导航;弹道导弹机动发射车、 自行火炮与多管火箭发射车等武器载具发射 位置的快速定位,以缩短反应时间;人员搜 救、水上排雷定位等。
四、应用前景
5.海运和水运 6.航空运输 7.应急救援
五、对比GPS
覆盖范围
卫星数量 北斗导航 VS GPS
服务能力
定位原理
定位精度
五、对比GPS
覆盖范围
北斗导航系统是覆盖中国本土的区域导航系统, 覆盖范围东经约70°-140°,北纬5°- 55°。 GPS是覆盖全球的全天候导航系统,能够确保 地球上任何地点、任何时间能同时观测到6-9颗卫星 (实际上最多能观测到11颗)。
二、系统组成
(2)地面段
由主控站、主控站(计算中心)、 测轨站、气压测高站和校准站。 组成 。
二、系统组成
(3)用户段
由北斗用户终端以及与美国GPS、俄罗斯GLONASS、欧盟GALILEO 等其他卫星导航系统兼容的终端组成
北斗系统的用户终端
二、系统组成
三、定位的基本原理
双星通信导航定位系统采用双星定位体 制,系统中用户的点位是利用卫星位置、用户 至卫星的斜距以及用户的大地高计算出来的, 如何由卫星位置、两条斜距和大地高计算用户 的位置就是系统的定位原理问题。系统的定位 原理可以从几何和代数两个方面来描述。
四、应用前景
3.道路交通管理 卫星导航将有利于减缓交通阻塞,提升 道路交通管理水平。通过在车辆上安装卫星 导航接收机和数据发射机,车辆的位置信息 就能在几秒钟内自动转发到中心站。 4.铁路智能交通 北斗卫星导航系统将提供高可靠、高精 度的定位、测速、授时服务,促进铁路交通 的现代化,实现传统调度向智能交通管理的 转型。
二、系统组成
2) 地面测控网(1) 主控站(计算中心)、测轨站、气压测高站和校准站。 主控站设在北京,控制整个系统工作,主要任务有:
接收卫星发射的遥测信号;向卫星发送遥控指令, 控制卫星的运行、姿态和工作。
控制各测轨站的工作,收集它们的测量数据,对卫 星进行测轨、定位,结合卫星的动力学、运动学模 型,制作卫星星历。
五、对比GPS 定位原理 北斗导航系统是主动式双向测距二 维导航,地面中心控制系统解算,供用 户三维定位数据。
GPS是被动式伪码单向测距三维导 航,由用户设备独立解算自己三维定位 数据。
五、对比GPS
定位精度 北斗导航系统三维定位精度约几十 米,授时精度约100ns。 GPS三维定位精度P码目前已由16m 提高到6m,C/A码目前已由25-100m提高 到12m,授时精度目前约20ns。
生存能力
和所有导航定位卫星系统一样,"北斗一号"基于中心控制系统和卫星的 工作,但是"北斗一号"对中心控制系统的依赖性明显要大很多,因为定位解算在 那里而不是由用户设备完成的。为了弥补这种系统易损性,GPS正在发展星际横 向数据链技术,使万一主控站被毁后GPS卫星可以独立运行。而"北斗一号"系统 从原理上排除了这种可能性,一旦中心控制系统受损,系统就不能继续工作了。
四、应用前景
民用功能: 1.个人位置服务 当你进入不熟悉的地方时,你可以使用装有 北斗卫星导航接收芯片的手机或车载卫星导航装置 找到你要走的路线。 2.气象应用 北斗导航卫星气象应用的开展,可以促进我 国天气分析和数值天气预报、气候变化监测和预测, 也可以提高空间天气预警业务水平,提升我国气象 防灾减灾的能力。
三、定位的基本原理
用户坐标Xu是空间三维坐标,即式1的两个方程含 三个未知数。若能给出用户的第三维坐标,则可求解 用户的其余两维坐标。用户坐标可以是地固直角坐标 (X,Y, Z)或大地坐标(λ,ϕ,H),日常生活中多用大地坐标 表示地点位位。利用该式可以得到含大地高度的大地 经纬度λ 和ϕ 的表达式,只有给定用户的大地高H, 才能求出λ 、ϕ的具体数值,即双星定位需要知道大 地高。
系统中的卫星是空间导航站,即在空间的位置 基准点,也是通信中继站,它是离地约36000km 高 的地球静止卫星。由三颗北斗一号卫星组成,两颗 卫星分别定点在东经80°、东经140°上空 ,另一颗 在轨备份卫星定点在东经 110.5°上空。每颗卫星 由有效载荷、电源、测控、姿态和轨道控制、推进 、热控、结构等分系统组成。卫星上设置两套转发 器,一套构成地面中心到用户的通信链,另一套构 成由用户到地面中心的通信链。卫星波束覆盖我国 领土和周边地区,主要满足国内导航通信需要。
交线圆必须与用户水平面相交,否则产生同步卫星定 位的“模糊区”。
必须已知用户点的大地高。
三、定位的基本原理
代数原理
是指如何利用已知的卫星位置、观测站应答询问 信号之后的观测量与测站点位坐标之间的函数关系, 进行测站(用户)的位置解算。一个测站(用户)应答 询问信号之后可得两个观测量方程。
(式1) Xs和Xu分别为卫星坐标矢量和测站(用户)坐标矢量
二、系统组成
2) 地面测控网(5) 测高站设置在系统覆盖区内,用气压式高度计 测量测高站所在地区的海拔高度。通常一个测高站 测得的数据粗略地代表其周围100~200km地区的海 拔高度。海拔高度与该地区大地水准面高度之代数 和,即为该地区实际地形离基准椭球面的高度。各测 高站将测量的数据通过卫星发送至主控站。 一般的测轨站、测高站、校准站均是无人值守 自动数据测量、收集中心,在主控站控制下工作。
四、应用前景
短报文通信:北斗系统用户终端具有双向报文通信 功能,用户可以一次传送40-60个汉字的短报文信息。 精密授时:北斗系统具有精密授时功能,可向用户 提供20ns-100ns时间同步精度。
定位精度:水平精度100米,设立标校站之后为20米 (类似差分状态)。工作频率:2491.75MHz。 系统容纳的最大用户数:540000户/小时。
(式1)
三、定位的基本原理
双 星 系 统 定 位 原 理 图
三、定位的基本原理
用户所在点大地高为H,用户点位纬度处的卯酉圈曲率半径 (卯酉圈曲率半径恰好等于椭球面和短轴之间的一段法线的长度 ,亦即卯酉圈的曲率中心位于椭球的旋转轴上)Ne。N=Ne+H, 可看成是一个观测量,则又可以组成一个观测方程 (式2) Xo’为过用户的法线与短轴交点O′坐标矢量,其值为 这样在给定用户大地高 H 时,此式与上式联立得到三个 观测方程,便可解算出用户三维坐标。实际工作中用户大地高 H由地面中心的数字化地形图或用户携带的气压测高仪提供。