七年级数学下册 对顶角、补角和余角习题

合集下载

七年级数学余角和补角问题精选

七年级数学余角和补角问题精选

七年级数学余角和补角问题精选概述本文档精选了一些关于七年级数学中余角和补角的问题,旨在帮助学生更好地理解和掌握这一概念。

问题一:余角问题描述一个锐角的余角是多少?一个钝角的余角呢?解答一个锐角的余角是90°减去这个锐角的度数,而一个钝角的余角是180°减去这个钝角的度数。

示例1. 若一个锐角的度数是30°,则它的余角是90° - 30° = 60°。

2. 若一个钝角的度数是150°,则它的余角是180°- 150°= 30°。

问题二:补角问题描述一个锐角的补角是多少?一个钝角的补角呢?解答一个锐角的补角是90°减去这个锐角的度数,而一个钝角的补角是180°减去这个钝角的度数。

示例1. 若一个锐角的度数是40°,则它的补角是90° - 40° =50°。

2. 若一个钝角的度数是120°,则它的补角是180°- 120°= 60°。

问题三:余角和补角的关系问题描述余角和补角之间是否有什么关系?解答余角和补角的和等于90°。

示例1. 若一个角的度数是25°,则它的余角是90° - 25° = 65°,补角是90° - 25° = 65°,两者之和为65° + 65° = 130°。

结论通过学习本文档精选的数学问题,我们可以更好地理解和掌握七年级数学中的余角和补角概念,进一步提高我们的数学水平。

(完整版)余角和补角的练习题

(完整版)余角和补角的练习题

2.1 余角与补角一、选择题1.如图1所示,直线AB ,CD 相交于点O ,OE ⊥AB ,那么下列结论错误的是( )A .∠AOC 与∠COE 互为余角B .∠BOD 与∠COE 互为余角C .∠COE 与∠BOE 互为补角D .∠AOC 与∠BOD 是对顶角2.如图所示,∠1与∠2是对顶角的是( ) 图13.下列说法正确的是( ) A .锐角一定等于它的余角 B .钝角大于它的补角C .锐角不小于它的补角D .直角小于它的补角4.如图2所示,AO ⊥OC ,BO ⊥DO ,则下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠3D .∠1=∠2=∠3图2 图3 图4 图5二、填空题5.已知∠1与∠2互余,且∠1=35°,则∠2的补角的度数为 .6.如图3所示,直线a ⊥b ,垂足为O ,L 是过点O 的直线,∠1=40°,则∠2= .7.如图4所示,直线AB ,CD 相交于点O ,OM ⊥AB ,•若∠COB=•135•,•则∠MOD= .8.三条直线相交于一点,共有 对对顶角.9.如图5所示,AB ⊥CD 于点C ,CE ⊥CF ,则图中共有 对互余的角.三、解答题10.如图所示,直线AB ,CD 相交于点O ,∠BOE=90°,若∠COE=55°,•求∠BOD 的度数.C O E DB A11.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠AOC=•120•°.求∠BOD,∠AOE的度数.一、七彩题1.(一题多解题)如图所示,三条直线AB,CD,EF相交于点O,∠AOF=3∠FOB,∠AOC=90°,求∠EOC的度数.二、知识交叉题2.(科内交叉题)一个角的补角与这个角的余角的和比平角少10°,求这个角.3.(科外交叉题)如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象.若∠1=42°,∠2=•28•°,则光的传播方向改变了______度.三、实际应用题4.如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球袋.如果一个球按图中所示的方向被击出(•假设用足够的力气击出,使球可以经过多次反射),那么该球最后落入哪个球袋?在图上画出被击的球所走路程.四、经典中考题5.(2007,济南,4分)已知:如图所示,AB⊥CD,垂足为点O,EF为过点O•的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角6.(2008,南通,3分)已知∠A=40°,则∠A的余角等于______.参考答案A卷一、1.C 点拨:因为∠COE与∠DOE互为补角,所以C错误,故选C.2.D 3.B4.C 点拨:因为AO⊥OC,BO⊥DO,所以∠AOC=90°,∠BOD=90°,即∠3+∠2=90°,∠2+∠1=90°,根据同角的余角相等可得∠1=∠3,故选C.二、5.125°点拨:因为∠1与∠2互余,所以∠1+∠2=90°,又因为∠1=35°,•所以∠2=90°-35=55°,所以180°-∠2=180°-55°=125°,即∠2•的补角的度数是125°.6.50°点拨:由已知可得∠1+∠2=180°-90°=90°,∠2=90°-∠1=90°-•40°=50°.7.45°点拨:因为OM⊥AB,所以∠MOD+∠BOD=90°,所以∠MOD=90°-∠BOD,又因为∠BOD=180°-∠COB=180°-135°=45°,所以∠MOD=90°-45°=45°.8.6 点拨:如图所示,直线AB,CD,EF相交于点O,∠AOD与∠BOC,∠AOE与∠BOF,∠DOE与∠COF,∠DOB与∠COA,∠EOB与∠FOA,∠EOC与∠FOD•均分别构成对顶角,共有6对对顶角.9.4 点拨:由AB⊥CD,可得∠ACE与∠ECD互余,∠DCF与∠FCB互余.由CE⊥CF,可得∠ECD与∠DCF互余,又由于∠ACB为平角,所以∠ACE与∠BCF互余,共有4对.三、10.解:因为∠BOE与∠AOE互补,∠BOE=90°,所以∠AOE=180°-∠BOE=•180°-90°=90°,即∠COE+∠COA=90°,又∠COE=55°,所以∠COA=90°-∠COE=90°-•55°=35°,因为直线AB,CD相交于点O,所以∠BOD=∠COA=35°.11.解:因为直线AB与CD相交于点O,所以∠BOD=∠AOC=120°,因为∠AOC+•∠AOD=180°,所以∠AOD=180°-120°=60°,因为OE平分∠AOD,所以∠AOE=12∠AOD=12×60°=30°.点拨:由∠BOD与∠AOC是对顶角,可得∠BOD的度数.由∠AOC与∠AOD 互补,•可得∠AOD的度数,又由OE平分∠AOD,可得∠AOE的度数.B卷一、1.解法一:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB(已知),所以∠FOB+3•∠FOB=180°(等量代换),所以∠FOB=45°,所以∠AOE=∠FOB=45°(对顶角相等),因为∠AOC=90°,所以∠EOC=∠AOC-∠AOE=90°-45°=45°.解法二:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB,所以∠FOB+3∠FOB=180°,•所以∠FOB=45°,所以∠AOF=3∠FOB=3×45°=135°,所以∠BOE=∠AOF=135°.又因为∠AOC=90°,所以∠BOC=180°-∠AOC=180°-90°=90°,所以∠EOC=∠BOE-∠BOC=•135°-90°=45°.二、2.解:设这个角为x,则其补角为180°-x,余角为90°-x,根据题意,得(•180°-x)+(90°-x)=180°-10°,解得x=50°,所以这个角的度数为50°.点拨:本题是互余,互补及平角的概念的一个交叉综合题,要理清各种关系,才能正确列出方程.3.14 点拨:本题是对顶角的性质在物理学中的应用.三、4.解:落入2号球袋,如图所示.点拨:此题应与实际相联系,球被击中后在桌面上走的路线与台球桌面的边缘构成的角等于反弹后走的路线与台球桌面的边缘构成的角.四、5.B 点拨:因为AB⊥CD于点O,所以∠BOC=90°.又CD与EF相交于点O,•所以∠COE=∠2,所以∠1+∠2=∠1+∠COE=∠BOC=90°,即∠1与∠2互余,故选B.6.50°点拨:∠A的余角为90°-∠A=90°-40°=50°.。

七年级数学下册《余角与补角》典型例题(含答案)

七年级数学下册《余角与补角》典型例题(含答案)

《余角与补角》典型例题例1 下列判断正确的是( )A .图(1)中1∠和2∠是一组对顶角B .图(2)中1∠和2∠是一组对顶角C .图(3)中1∠和2∠互为补角D .图(4)中1∠和2∠是互为顶角例2 如图,AOB 是一条直线,︒=∠︒=∠90,90DOE AOC 问图中,互余的角有哪几对?哪些角是相等的.例3 在下图中,直线AE 、BF 、CG 、DH 交于O 点,且BF DH CG AE ⊥⊥,,请找出一对互余的角,找出一对互补的角,找出一对对顶角,找出三对相等的角并说出理由.例4 一个角的补角等于这个角余角的4倍,求这个角.例5 已知一个角的余角比它的补角的135还少4°,求这个角. (4) 1 2参考答案例1 分析: 图(1)中1∠与2∠不是由两条直线相交的构成的角故1∠与2∠不是对顶角图(2)中1∠和2∠不是对顶角图(3)中︒≠∠+∠18021图(4)中1∠与2∠互为补角解:D例2 分析:由互为余角的定义,只需找出图中的和为90°的角即可.解:互余的角有:1∠与2∠,3∠与4∠,2∠与3∠,1∠与4∠相等的角有:BOC DOE AOC ∠=∠=∠∠=∠∠=∠,42,31例3 分析:如果两个角的和是直角则这两个角互余;如果两个角的和是平角则这两个角互补.根据这两个定义再结合图形就可以找到互补、互余的角,再根据同角的余角、补角相等,对顶角相等就可以找出角之间的相等关系.解:AOB ∠和COB ∠互余;AOB ∠和EOB ∠互补;AOB ∠和EOF ∠是对顶角; BOC AOH ∠=∠,都是AOB ∠的余角;BOE AOF ∠=∠,都是AOB ∠的补角;DOE AOH ∠=∠是对顶角.说明:我们在找角与角之间的关系时,必须要有依据,这也是我们研究几何所必须注意的.例4 分析:若两个角互补则这两个角的和是180°,若两个角互余,则这两个角的和是 90,如果设这个角是︒x 就可以由已知和补角、余角的概念列出方案,最后求出x .解:设这个角是︒x ,则这个角的余角是︒-)90(x ,这个角的补角是︒-)180(x ,依题意,得)90(4180x x -=-解得60=x答:这个角是60°.说明:在用方程解几何问题时,设的未知数和答都必须明确单位,根据设的未知数决定是否在解得的x 的值加不加单位.例5 分析:题中给出了这个角的余角与补角之间的关系,又由于余角和补角都和这个角有关,因此可建立这个角和它的余角,补角的一个关系式,利用方程求解.解:设这个角为︒x ,则它的余角为︒-)90(x ,补角为︒-)180(x 由题意得4)180(13590--=-x x解这个方程得 25.40=x答:这个角的度数为40.25°.。

七年级数学余角和补角练习题精选

七年级数学余角和补角练习题精选

七年级数学余角和补角练习题精选本文档为七年级数学余角和补角的练题精选,旨在帮助学生提高对余角和补角的理解和运用能力。

以下是一些精选练题,供学生们进行练和复。

问题1已知角A的度数为50°,求角A的余角和补角。

解答:角A的余角等于90°减去角A的度数,即90° - 50° = 40°。

角A的补角等于180°减去角A的度数,即180° - 50° = 130°。

问题2已知角B的度数为120°,求角B的余角和补角。

解答:角B的余角等于90°减去角B的度数,即90° - 120° = -30°。

角B的补角等于180°减去角B的度数,即180° - 120° = 60°。

问题3已知角C的余角为70°,求角C的度数和补角。

解答:角C的度数等于90°减去角C的余角,即90° - 70° = 20°。

角C的补角等于180°减去角C的度数,即180° - 20° = 160°。

问题4已知角D的补角为80°,求角D的度数和余角。

解答:角D的度数等于180°减去角D的补角,即180° - 80° = 100°。

角D的余角等于90°减去角D的度数,即90° - 100° = -10°。

以上为七年级数学余角和补角的练习题精选。

同学们可以根据题目要求进行计算,加深对余角和补角的理解。

希望能对大家的数学学习有所帮助。

(名师整理)最新北师大版数学七年级下册第2章第1节《两条直线的位置关系——对顶角、余角和补角》精品课件

(名师整理)最新北师大版数学七年级下册第2章第1节《两条直线的位置关系——对顶角、余角和补角》精品课件

× )×

×
四、余角和补角的性质
打台球时,选择适当的方向,用白球击打红球,反弹后的 红球会直接入袋,此时∠1=∠2,将图2-2抽象成图2-3,ON与DC 交于点O,∠DON=∠CON=900,∠1=∠2。
D
O
C
1
2
34
图2—2
A
N
图2-3
小组合作交流,解决下列问题:在图2—3中 问题1:哪些角互为补角?哪些角互为余角? 问题2:∠3与∠4有什么关系?为什么? 问题3:∠AOC与∠BOD有什么关系?为什么?
A
证明: ∵∠1 +∠AOC =180° (平角定义)
∠2 +∠AOC =180°(平角定义) ∴∠1 =180°-∠AOC ∴∠2 =180°-∠AOC ∴∠1 = ∠2 (等式性质)
C
)2 1( O
B D
算一算
(3)如图,已知∠DOE=90°,AB是经过点O的一条直线。如果 ∠AOC=700,那么∠BOF等于多少度?为什么?
小关系是________∠_2,=∠理3由:______同_角__的__补__角__相. 等
1 23
作业:
如图,直线AB、CD相交于点O,∠AOE=∠COF=90 。 ∠AOF与∠DOE、∠BOF与∠COE有怎样的大小关系?为什 么?
E F
D
A
0
B
C
学习了本课后,你有哪些收获和感想? 告诉大家好吗?
4.不相交的两条直线一定是平行线吗?.
相交
平行
大家来找茬
1.判断下面说法同一是平否面内正确:
(1)不相交的两条直线叫做平行线。 ( ×)
(2)在同一平面内,不相交的两条线段

考点06 余角和补角(解析版)

考点06 余角和补角(解析版)

考点06 余角和补角1.(甘肃省肃南县第一中学2019—2020学年七年级上学期期末试题(一))如果两个角互为补角,而其中一个角是另一个角的5倍,那么这两个角是( )A .15o ,75oB .20o ,100oC .10o ,50oD .30o ,150o【答案】D【分析】设较小的角为x ,则较大的角5x ,根据这两个角互为补角可得关于x 的方程,解方程即可求出x ,进而可得答案.【详解】解:设较小的角为x ,则较大的角5x ,根据题意得:x+5x=180°,解得:x=30°,5×30°=150°;所以这两个角是:30°,150°.故选:D .【点睛】本题考查了互补两角的概念和简单的一元一次方程的应用,属于基础题型,正确理解题意、熟练掌握上述知识是解题的关键.2.(河北省新乐市2020-2021学年七年级上学期期中数学试题)若90αθ∠+∠=︒,βθ∠=∠,则α∠与β∠的关系是( ) A .α∠与β∠互余B .α∠与β∠互补C .α∠与β∠相等D .α∠大于β∠【答案】A 【分析】根据等角的余角相等可直接进行排除选项.【详解】解:∵90αθ∠+∠=︒,βθ∠=∠,∴90αβ∠+∠=︒,故选A .【点睛】本题主要考查余角,熟练掌握余角的性质是解题的关键.3.(广东省珠海市香洲区紫荆中学2020-2021学年七年级上学期期中数学试题)已知一个角是30°,那么这个角的补角的度数是( )A .120°B .150°C .60°D .30°【答案】B【分析】根据互补的两角之和为180°即可得出这个角的补角.【详解】解:这个角的补角18030150=︒-︒=︒.故答案为:B .【点睛】本题考查了补角的知识,属于基础题,掌握互补的两角之和为180°是关键.4.(广东省揭阳市2019-2020学年七年级下学期期中数学试题)已知115A ∠=︒,B 是A ∠的补角,则B 的余角的度数是( )A .65︒B .115︒C .15︒D .25︒【答案】D【分析】根据余角与补角的定义逐步解答即可.【详解】解:由题意得,180B A ∠=︒-∠18011565=︒-︒=︒, ∴B 的余角为906525︒-︒=︒.故选:D.【点睛】本题考查了余角和补角的定义与计算,熟练掌握定义是解答关键.5.(河北省石家庄市灵寿县2019-2020学年七年级上学期期末数学试题)已知A ∠是它的补角的4倍,那么A ∠=( )A .144︒B .36︒C .90︒D .72︒【答案】A【分析】根据A ∠的补角是180A ∠︒-,结合A ∠是它的补角的4倍,列方程求解即可.【详解】∵A ∠的补角是180A ∠︒-,依题意得:()4180A A ∠∠=︒-,解得:144A ∠=︒.故选:A .【点睛】本题主要考查了补角的概念,正确得出等量关系是解题关键.6.(陕西省榆林市清涧县2019-2020学年七年级上学期期末数学试题)如图,AOB ∠为平角,且14AOC BOC ∠=∠,则BOC ∠的度数是( )A .144︒B .36︒C .45︒D .135︒【答案】A 【分析】根据平角的性质得到180AOC BOC ∠+∠=︒,再根据这两个角之间的比例关系求出BOC ∠.【详解】解:∵AOB ∠是平角,∴180AOC BOC ∠+∠=︒, ∵14AOC BOC ∠=∠, ∴41801445BOC ∠=︒⨯=︒. 故选:A .【点睛】本题考查平角的性质,解题的关键是利用平角的性质和角度之间的比例求角度.7.(甘肃省肃南县第一中学2019—2020学年七年级上学期期末试题(一)231745'''︒的余角是_________________,补角是___________________.【答案】664215'''︒ 1564215'''︒【分析】根据互为余角、互为补角的定义进行计算即可求得答案.【详解】解:∵90231745895960231745664215''''''''''''︒-︒=︒-︒=︒∴231745'''︒的余角是664215'''︒;∵18023174517959602317451564215''''''''''''︒-︒=︒-︒=︒∴231745'''︒的补角是1564215'''︒.故答案是:664215'''︒;1564215'''︒【点睛】本题考查了余角、补角的概念,掌握基本概念是解决问题的关键.8.(河北省张家口市宣化区2020-2021学年七年级上学期期中(冀教版)试题如果∠α=26°,那么∠α的余角等于__________ .【答案】64°【分析】根据互为余角的两个角的和等于90°列式计算即可的解.【详解】∵∠α=26°,∴∠α的余角=90°-26°=64°.故答案为:64°【点睛】本题考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.9.(黑龙江省大兴安岭塔河县2019-2020学年七年级上学期期末数学试题)已知∠α=36°14′,则∠α的余角的度数是_____.【答案】53°46′【分析】直接利用互为余角的定义结合度分秒的转化得出答案.【详解】解:∵∠α=36°14′,则∠α的余角的度数是:90°-36°14′=89°60′-36°14′=53°46′;故答案为:53°46′.【点睛】此题主要考查了互为余角的定义结合度分秒的转化,正确把握相关定义是解题关键.10.(河北省唐山市乐亭县第三初级中学2020-2021学年七年级上学期期末数学试题)6250'°的余角等于______.【答案】2710'°【分析】根据余角的定义、角的四则运算即可得.【详解】6250'°的余角为906250896062502710''''︒-︒=︒-︒=︒,故答案为:2710'°.【点睛】本题考查了余角、角的四则运算,熟练掌握余角的定义是解题关键.11.(浙江省宁波市江北外国语学校2020-2021学年七年级上学期期中数学试题)30°角的补角是______度.【答案】150【分析】根据互补的两角之和为180°,即可得出答案.【详解】解:30°的补角为18030150︒︒︒-=.故答案为:150【点睛】本题考查了余角和补角的知识,互余的两角之和为90°,互补的两角之和为180°,是需要我们熟练记忆的内容.12.(江西省赣州市定南县2019-2020学年七年级下学期期末数学试题)∠1的对顶角等于50︒,∠1的余角等于_______________.【答案】40°【分析】根据余角的概念进行解答即可.【详解】解:∠1的对顶角等于50︒,∠1=50︒,则∠1的余角等于90°-50°=40°.故答案为:40°.【点睛】本题主要考查了余角的概念,注意:如果两个角的和等于90°,就说这两个角互为余角.13.(河北省保定市曲阳县2020-2021学年七年级上学期期中数学试题)已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有______(填序号).【答案】①②④【分析】根据余角和补角的定义,把式子进行变形即可确定答案.【详解】解:∵α∠和β∠互补,∴α∠+β∠=180°,∴β∠=180°-α∠,根据余角定义①正确,②90α∠-︒=180°-β∠-90°=90°-β∠所以②正确,③()12αβ∠+∠=1180902⨯︒=︒故③错误,④()12αβ∠-∠=12(180°-β∠-β∠)=12(180°-2β∠)=90°-β∠故④正确,⑤()1902α∠-︒=()()1118090=9022ββ-︒--∠∠故⑤错误; 故答案为:①②④.【点睛】本题考查余角和补角相关计算以及余角和补角的定义,熟练进行式子的变形是解题的关键. 14.(湖南省长沙市2019-2020年七年级下学期第三次教学质量检测联考数学试题)如图所示,A 、O 、B 三点在同一条直线上,AOC ∠与AOD ∠互余,已知20AOD ∠=︒,则BOC ∠=______.【答案】110︒【分析】根据余角的性质,先解出AOC ∠的度数,再由邻补角的性质即可计算出BOC ∠度数.【详解】A 、O 、B 三点在同一条直线上,AOC ∠与AOD ∠互余, ∴AOC ∠+AOD ∠=90︒20AOD ∠=︒902070AOC ∴∠=︒-︒=︒AOC ∠+180BOC ∠=︒18070110BOC ∴∠=︒-︒=︒故答案为:110︒.【点睛】本题考查余角与补角,是基础考点,难度较易,掌握相关知识是解题关键.15.(河北省石家庄市栾城区2020-2021学年七年级上学期期中考试数学试题)如图,90BOC ∠=°,45COD ∠=︒,则图中互为补角的角共有______对.【答案】3对【分析】根据题意,补角的定义是两个角的和为180°即可得出结论.【详解】由题意知,∵90BOC ∠=°,45COD ∠=︒,∴∠BOD=45°,∠AOD=135°,∴互补的角为:∠BOD 和∠AOD ,∠COD 和∠AOD ,∠AOC 和∠BOC,共3对,故答案为:3对.【点睛】本题考查了补角的定义,掌握补角的定义是解题的关键.16.(江西省赣州市定南县2019-2020学年七年级上学期期末数学试题)一个角的余角是5134',这个角的补角是__________. 【答案】14134'【分析】根据余角、补角和度分秒的性质计算即可;【详解】∵一个角的余角是5134',所以这个角是9051343826''︒-︒=︒,∴这个角的补角为180382614134''︒-︒=︒; 故答案是14134'︒.【点睛】本题主要考查了余角和补角的性质,准确利用度分秒计算是解题的关键.17.(河南省新乡市原阳县2020-2021学年七年级上学期第二次月考数学试题)一个角的余角的度数为7028'47''︒,则这个角等于__________.【答案】1931'13''【分析】相加等于90°的两角称作互为余角,也作两角互余,即一个角是另一个角的余角.因而,已知一个角的余角,求这个角,就可以用90°减去它余角的度数.【详解】解:这个角的度数为907028'47''1931'13''-︒=,故答案为:1931'13''【点睛】本题主要考查余角的定义,是一个基本的题目,注意角度的单位换算1=60',1'60''=是本题的解题关键.18.(内蒙古乌兰察布市四子王旗2019-2020学年七年级上学期期末数学试题)已知∠α= 29°18′,则∠α的余角的补角等于_________.【答案】119°18´【分析】利用互余和互补两角的关系即可求出答案.【详解】解:∵∠α= 29°18′,∴∠α的余角=90°-29°18′=60°42′,∴∠α的余角的补角=180°-60°42′=119°18´.【点睛】本题考查了余角和补角.正确把握相关定义是解题的关键.19.(吉林省长春外国语学校2020-2021学年七年级上学期第二次月考数学试题)若A ∠=52°16′,则A ∠的补角为_____.【答案】127°44′【分析】根据补角的定义解题即可.【详解】A ∠的补角为180180521612744A ''︒-∠=︒-︒=︒故答案为:127°44′【点睛】本题考查补角,是基础考点,难度较易,掌握相关知识是解题关键.20.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 【答案】76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒- ()190180124x x ∴-=-- 19045124x x -=-- 3574x =4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.21.(云南省保山市第九中学2020-2021学年七年级上学期第三次月考数学试题)如果∠1=60°,∠1的余角等于__________【答案】30°【分析】根据余角的概念进行解答即可.【详解】如果∠1=60°,则∠1的余角等于90°-60°=30°.故答案为:30°.【点睛】本题主要考查了余角的概念,注意:如果两个角的和等于90°,就说这两个角互为余角. 22.(湖南省长沙市雅礼实验中学2020-2021学年七年级上学期第三次月考数学试题)已知,∠A =46°28',则∠A 的余角=_____.【答案】43°32′【分析】根据余角的定义求解即可.【详解】解:∵∠A =46°28′,∴∠A 的余角=90°﹣46°28′=43°32′.故答案为:43°32′.【点睛】本题考查了余角的定义,熟知余角的定义是解答的关键.23.(河北省唐山市乐亭县第三初级中学2020-2021学年七年级上学期期末数学试题)如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)图中有______个小于平角的角.(2)求COE ∠、∠BOE 的度数.【答案】(1)9;(2)6565COE BOE ∠=∠=︒°,.【分析】(1)根据平角的定义即可得;(2)先根据角平分线的定义可得1252COD AOC ∠=∠=︒,再根据余角的定义可得COE ∠的度数,然后根据平角的定义可得∠BOE 的度数.【详解】(1)图中小于平角的角为,,,,,,,,AOD AOC AOE DOC DOE DOB COE COB EOB ∠∠∠∠∠∠∠∠∠,共有9个,故答案为:9;(2)因为OD 平分AOC ∠,50AOC ∠=︒, 所以1252COD AOC ∠=∠=︒, 因为90DOE ∠=︒,所以902565COE DOE COD ∠=∠-∠=︒-︒=︒,所以180180506565BOE AOC COE ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了余角、平角、角平分线的定义,熟练掌握角的相关概念是解题关键.24.(广东省深圳市福田区石厦学校2020-2021学年七年级上学期期中数学试题)已知:如图1,OB 、OC 分别为锐角AOD ∠内部的两条动射线,当OB 、OC 运动到如图的位置时,100AOC BOD ∠+∠=︒,40AOB COD ∠+∠=︒.(1)求BOC ∠的度数.(2)如图2,射线OM 、ON 分别为AOB ∠、COD ∠的平分线,求MON ∠的度数.(3)如图3,若OE 、OF 是AOD ∠外部的两条射线,且90EOB COF ∠=∠=︒,OP 平分EOD ∠,OQ 平分AOF ∠,当BOC ∠绕着点A 旋转时,POQ ∠的大小是否会发生变化,若不变,求出其度数,若变化,说明理由.【答案】(1)BOC ∠的度数为30︒;(2)MON ∠的度数为50︒;(3)POQ ∠的大小不变,110∠=︒POQ【分析】(1)根据角的和与差即可得出答案;(2)根据角平分线的性质及角的和与差即可得出答案;(3)根据90EOB COF ∠=∠=︒,可得出60COE BOF ∠=∠=︒,进而求出EOF ∠,再根据OP 平分DOE ∠,OQ 平分AOF ∠,即可得出答案.【详解】(1)∵100AOC BOD ∠+∠=︒,∴100AOB BOC BOC COD ∠+∠+∠+∠=︒,∴2100AOB COD BOC ∠+∠+∠=︒,∵40AOB COD ∠+∠=︒,∴260BOC ∠=︒,∴30BOC ∠=︒.答:BOC ∠的度数为30︒.(2)∵OM 平分AOB ∠, ∴12BOM AOB ∠=∠, ∵ON 平分COD ∠, ∴12CON COD ∠=∠, ∴()12BOM CON AOB COD ∠+∠=∠+∠, ∵40AOB COD ∠+∠=︒,30BOC ∠=︒,∴302050MON BOM BOC CON ∠=∠+∠+∠=︒+︒=︒.答:MON ∠的度数为50︒.(3)∵90EOB COF ∠=∠=︒,30BOC ∠=︒,∴60COE BOF ∠=∠=︒,又150EOF COE BOF BOC ∠=∠+∠+∠=︒,70AOD ∠=°,1507080DOE AOF ∠+∠=︒-︒=︒,∵OP 平分DOE ∠,OQ 平分AOF ∠, ∴()1402POQ AOQ DOE AOF ∠+∠=∠+∠=︒, ∴4070110POQ POD AOQ AOD ∠=∠+∠+∠=︒+︒=︒.故POQ ∠的大小不变.【点睛】本题考查了角平分线的定义、余角和补角的意义,掌握角平分线的定义以及角的和差关系是正确解答的前提.25.(江苏省南通市崇川区南通田家炳中学2020-2021学年七年级上学期12月月考数学试题)如图,点O是直线AB上的一点,∠COD是一个直角,OE平分∠BOC.(1)如图1,当∠AOC=30°,求∠DOE的度数;(2)如图2,若∠AOC=x°,求∠DOE的度数.(用含有x的代数式表示)【答案】(1)15°;(2)12x【分析】(1)根据互补求出∠BOC,再根据角平分线求出∠COE,再用互余,求出结果即可;(2)方法同(1),把角度用未知数表示,相应的角度用含有x的代数式表示即可.【详解】(1)∵∠AOC=30°,∴∠BOC=180°﹣∠AOC=150°,又∵OE平分∠BOC,∴∠BOE=∠COE=12∠BOC=75°,又∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=15°;(2)∵∠AOC=x°,∴∠BOC=180°﹣∠AOC=(180﹣x)°,又∵OE平分∠BOC∴∠BOE=∠COE=12∠BOC=12(180﹣x)°,又∵∠COD=90°∴∠DOE=∠COD﹣∠COE=90°﹣12(180﹣x)°=12x°【点睛】本题考查角平分线、互为余角、互为补角的意义,通过图形直观得出各个角之间的关系是正确解答的关键.26.(吉林省白山市临江2019-2020学年七年级上学期期末数学试题)已知两个角的大小之比是7:3,它们的差是36°,这两个角是否互余?请说明理由.【答案】两角互余,理由见解析.【分析】由两角之比是7:3,即可设这两个角分别为:7x°,3x°,又由它们的差是36°,即可得方程:7x°-3x°=36°,解此方程即可求得答案.【详解】两角互余.理由:设两角分别为7x°,3x°,由题得7x°-3x°=36,解得x°=9°,则7x°=63°,3x°=27°,∵63°+27°=90°∴这两个角互余.【点睛】此题考查了角的计算.解题时注意掌握方程思想的应用.。

余角、补角、对顶角的概念和习题答案

余角战补角战对于顶角之阳早格格创做余角:如果二个角的战是一个曲角,那么称那二个角互为余角,简称互余,也不妨道其中一个角是另一个角的余角.∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果二个角的战是一个仄角,那么那二个角喊互为补角.其中一个角喊干另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对于顶角:一个角的二边分别是另一个角的反背延少线,那二个角是对于顶角.二条曲线相接后所得的惟有一个大众顶面且二个角的二边互为反背延少线,那样的二个角喊干互为对于顶角.二条曲线相接,形成二对于对于顶角.对于顶角相等.对于顶角与对于顶角相等.对于顶角是对于二个具备特殊位子的角的称呼;对于顶角相等反映的是二个角间的大小闭系.补角的本量:共角的补角相等.比圆:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B.等角的补角相等.比圆:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D 则:∠C=∠B.余角的本量:共角的余角相等.比圆:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B.等角的余角相等.比圆:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B.注意:①钝角不余角;②互为余角、补角是二个角之间的闭系.如∠A+∠B+∠C=90°,不克不迭道∠A、∠B、∠C互余;共样:如∠A+∠B+∠C=180°,不克不迭道∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相闭,与角的位子无闭.只消它们的度数之战等于90°或者180°,便一定互为余角或者补角.余角与补角观念认识提示:(1)定义中的“互为”一词汇怎么样明白?如果∠1与∠2互余,那么∠1的余角是∠2 ,共样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,共样∠2的补角是∠1.(2)互余、互补的二角是可一定有大众顶面或者大众边?二角互余或者互补,只与角的度数有闭,与位子无闭.(3)∠1 + ∠2 + ∠3 = 90°(180°),能道∠1 、∠2、∠3 互余(互补)吗?不克不迭,互余或者互补是二个角之间的数量闭系.已知∠A与∠B互余,∠B与∠C互补,若∠A=50°,则∠C的度数是[ D ] A.40°B.50°C.130°D.140°如果∠A的补角是它的余角的4倍,则∠A=______度.设∠A 为x ,则∠A 的余角为90°-x ,补角为180°-x ,根据题意得,180°-x=4(90°-x ),解得x=60°.故问案为:60. 已知∠ α=50°17',则∠α的余角战补角分别是[ B ]A .49°43',129°43'B .39°43',129°43'C .39°83',129°83'D .129°43′,39°43′二个角的比是6:4,它们的好为36°,则那二个角的闭系是( )A .互余B .相等C .互补D .以上皆分歧过失设一个角为6x ,则另一个角为4x , 则有6x-4x=36°,∴x=18°,则那二个角分别为108°,72°, 而108°+72°=180°∴那二个角的闭系为互补. 故选C .如果∠A=35°18′,那么∠A 的余角等于______.如果∠A=35°18′,那么∠A 的余角等于90°-35°18′=54°42′. 故挖54°42′.已知∠1战∠2互补,∠3战∠2互余,供证:∠3= =21(∠1-∠2). 道明:由题意得:∠2+∠3=90°,∠1+∠2=180°,∴2(∠2+∠3)=∠1+∠2,故可得:∠3=21(∠1-∠2) 如图,∠1的邻补角是[ ]A.∠BOCB.∠BOC 战∠AOFC.∠AOFD.∠BOE 战∠AOF二个角互为补角,那么那二个角大小 [ D ]如果二个角互为补角,那么那二个角一定互为邻补角,道明此命题真——加本果如果二个角互为补角,那么那二个角一定互为邻补角,那是假命题. 如果二个角互为收补角,那么那二个角一定互为补角,那是真命题. 譬如道,二曲线仄止,共旁内角互补,然而互为共旁内角的二个角一定不互为收补角.如果二个角互补,那它们是邻补角”——————为什么道那个是假命题? 二条仄止线切出的共旁内角也互补,然而是它们不是邻补角.所以道:“如果二个角互补,那它们是邻补角”是假命题!果为邻补角是相邻的二个角互补,那么那二个角是互为邻补角,而互补的二个角有不相邻的,比圆四边形的二个对于角互补,则那四面共圆如果一个角是36°,那么[ D ].它的余角是64°B.它的补角是64°C.它的余角是144°D.它的补角是144°下列道法中:①共位角相等;②二面之间,线段最短;③如果二个角互补,那么它们是邻补角;④二个钝角的战是钝角;⑤共角或者等角的补角相等.精确的个数是()A.2个B.3个C.4个D.5个①共位角相等,道法过失;②二面之间,线段最短,道法精确;③如果二个角互补,那么它们是邻补角,道法过失;④二个钝角的战是钝角,道法过失;⑤共角或者等角的补角相等,道法精确;道法精确的公有2个,故选:A.下列道法精确的是()A.小于仄角的角是钝角B.相等的角是对于顶角C.邻补角的战等于180°D.共位角相A、小于仄角的角有:钝角、曲角、钝角,故本选项过失;B、对于顶角相等,相等的角纷歧定是对于顶角,故本选项过失;C、邻补角的战等于180°精确,故本选项精确;D、惟有二曲线仄止,才有共位角相等,故本选项过失.故选C.下列道法精确的是()A.相等的角是对于顶角B.对于顶角相等C.共位角相等D.钝角大于它的余角A、相等的角是对于顶角,道法过失;B、对于顶角相等,道法精确;C、共位角相等,道法过失;D、钝角大于它的余角,道法过失;故选:B.下列道法中,精确的是()A.对于顶角相等B.内错角相等C.钝角相等D.共位角相等A、对于顶角相等,道法精确;B、内错角相等,道法过失,惟有二曲线仄止时,内错角才相等;C、钝角相等,道法过失,比圆30°角战20°角;D、共位角相等,道法过失,惟有二曲线仄止时,共位角才相等;故选:A.三条曲线相接于一面不妨形成几对于对于顶角?二条曲线出现2*(2-1)=2对于对于顶角三条曲线出现3*(3-1)=6对于对于顶角四条曲线出现4*(4-1)=12对于对于顶角依次类推,n 条曲线相接于一面有n*(n-1)对于对于顶角三条曲线相接于一面,共可组成______对于对于顶角.如图,单个的角是对于顶角的有3对于,二个角的复合角是对于顶角的有3对于,所以,公有对于顶角3+3=6对于.故问案为:6.三条曲线相接与一面,能形成几对于对于顶角?四条呢?五条呢?N条呢?尔要要收战问案!三条曲线相接与一面,6对于;四条曲线相接与一面,12对于;五条曲线相接与一面,20对于;N条曲线相接与一面,N(N-1)对于;如果有n条曲线相接于一面,有几对于对于顶角?n的仄圆减去2条数个数2 2=2x13 6=3x24 12=4x35 20=5x4…………n n(n-1)三条曲线相接于一面,对于顶角最多有______对于.把三条曲线相接于一面,拆成三种二条曲线接于一面的情况,果为二条曲线相接于一面,产生二对于对于顶角,所以三条曲线相接于一面,有3个二对于对于顶角,共6对于对于顶角二条曲线相接,有一个接面.三条曲线相接,最多有几个接面?四条曲线呢?您能创造什么顺序吗?那个本去便是拉拢问题.果为二条线形成一个接面,所以三条线时,从三条线中与二条线,有3*2/2=3种与法,所以有3个接面.四条线中与二条,有4*3/2=6种与法,所以有6个接面.n条线中与二条,有n(n-1)/2种与法,所以有n(n-1)/2个接面.邻补角是互补的角是真命题吗天然是,邻补角相加等于180度便是互补啊互补的角是邻补角是真命题仍旧假命题假如真命题,请举反例二个角有一条大众边,它们的另一条边互为反背延少线,具备那种闭系的二个角称为互为邻补角.不妨随便绘二个不大众边的角,比圆1个60度,另一个120度,隐然它们是互补的,然而是本去不是邻补角所以互补的角是邻补角那是一个假命题该当道邻补角是互补的角,那才是真命题既相邻又互补的二个角是邻补角吗二条仄止线切出的共旁内角也互补,然而是它们不是邻补角.所以道:“如果二个角互补,那它们是邻补角”是假命题!成互补闭系的二个角互为邻补角是对于仍旧错分歧过失相邻的二个角互补称之为邻补角像二曲线仄止,共旁内角互补(那二个互补的角不相邻)、互补的二个角是邻补角用果为所以问果为二个角是邻补角所以二个角互补反过去不可坐。

七年级数学余角和补角

C
D
O
解: ∠AOB=180°- ∠BOD B ∴ ∠AOB与∠BOD互补; ∠COD=180 °- ∠AOC ∴ ∠COD与∠AOC互补;
A
又∠AOB=∠COD= 180 °- ∠AOC ∴ ∠AOB与∠AOC互补; 又∠COD=∠AOB= 180 °- ∠BOD
∴ ∠COD与∠BOD互补;
小结:
答:这个角是60°.
练习2、(1)如果∠ 的余角是∠ 的2 倍,求 ∠ 的度数。 (2)如果∠1的补角是∠1的3 倍,求∠1的度数。
练习2、(1)如果∠ 的余角是∠ 的2 倍, 求 ∠ 的度数。 解:设∠ 的度数为x度,则 ∠ 的余 角为(90-x)度。 由题意,得: 90-x=2 x -3x=-90
的余角=90°- ∠
若∠ =∠ 则90°- ∠ =90°- ∠ 即∠

的余角= ∠ 的余角
图形一
同角或等角的余角相等。
(2)补角的基本性质:
∠ 的补角= 180o
-∠
∠ 的补角= 180o -∠ 若∠ =∠ 则 180o -∠ =180o -∠
即∠ 的补角= ∠ 的补角
同角或等角的补角相等。
图形2
例1、如图,∠AOC=∠BOD=Rt∠,
问有哪两个锐角相等? 解:∠AOB=90°-∠COB, ∠DOC=90°-∠COB, ∴∠AOB=∠COD
D
C
B
O
A
例2、已知一个角的补角是这个角的余角 的4倍,求这个角的度数。 解:设这个角为x度, 则其余角为(90-x)度, 补角为(180-x)度。 由题意,得: 180 - x =4(90 - x) 解方程,得: x =60(度)
解:∠ 的余角=90°- ∠ ∠的余角=90°-62°32′ =27°28′ ∠

62 角、余角、补角以及对顶角(解析版)

2021-2022学年七年级数学上册同步课堂专练(苏科版)6.2角、余角、补角以及对顶角一、单选题1.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离【答案】D【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.2.如图,直线AB,CD相交于点O,分别作∠AOD,∠BOD的平分线OE,OF.将直线CD绕点O旋转,下列数据与∠BOD大小变化无关的是()A.∠AOD的度数B.∠AOC的度数C.∠EOF的度数D.∠DOF的度数【详解】 解:OE ,OF 平分∠AOD ,∠BOD11,22AOE EOD AOD DOF FOB BOD ∴∠=∠=∠∠=∠=∠180AOD BOD ∠+∠=︒111()90222EOD DOF AOD BOD AOD BOD ∴∠+∠=∠+∠=∠+∠=︒90EOF ∴∠=︒180AOD BOD ∴∠=︒-∠1,2AOC BOD DOF BOD ∴∠=∠∠=∠都与∠BOD 大小变化有关,只有∠EOF 的度数与∠BOD 大小变化无关, 故选:C .3.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'【答案】B解:由题意可得:∠2+∠EAC =90° ∠∠2的余角是∠EAC∠∠EAC =601602740'3220'︒-∠=︒-︒=︒ 故选:B .4.设一个锐角与这个角的补角的差的绝对值为α,则( ) A .090α︒<<︒或90180α︒<<︒ B .0180α︒<<︒ C .090α︒<<︒ D .090α︒<≤︒【答案】B 【详解】解:设这个角的为x 且0<x <90°,根据题意可知180°-x -x =α, ∠α=180°-2x ,∠180°-2×90°<α<180°-2×0°, 0°<α<180°. 故选:B .5.如图,直线a 、b 被直线c 所截,则下列说法错误的是( )A .1∠与2∠是邻补角B .1∠与3∠是对顶角C .2∠与4∠是同位角D .3∠与4∠是内错角【答案】D 【详解】解:A 、1∠与2∠是邻补角,故原题说法正确;B 、1∠与3∠是对顶角,故原题说法正确;C 、2∠与4∠是同位角,故原题说法正确;D 、3∠与4∠是同旁内角,故原题说法错误;答案:D .6.下列推理错误的是( )A .因为1223∠=∠∠=∠,,所以13∠=∠B .因为12123∠=∠∠+∠=∠,,所以321∠=∠C .因为1223∠+∠=∠,所以1323∠=∠∠=∠,D .因为1∠与2∠互补,13∠=∠,所以2∠与3∠互补 【答案】C 【详解】解:A .因为∠1=∠2,∠2=∠3,所以∠1=∠3(等量代换),故原说法正确; B .因为∠1=∠2,∠1+∠2=∠3,所以∠3=∠1+∠1=2∠1,故原说法正确; C .当∠1+∠2=2∠3时,∠1,∠2不一定等于∠3,故原说法错误; D .因为∠1与∠2互补,∠1=∠3,所以∠2与∠3互补,故说法正确. 故选:C .7.下列说法正确的是( )A.如果∠1+∠2+∠3=90º,那么∠1、∠2、∠3三个互余B.过一点有且只有一条直线与已知直线平行C.不相等的两个角一定不是对顶角D.若两条直线被第三条所截,则同位角相等【答案】C【详解】如果两个角的和是90°,称这两个角互为余角,所以选项A说法错误;过直线外一点有且只有一条直线与已知直线平行,所以选项B说法错误;对顶角永远相等,所以不相等的两个角一定不是对顶角,所以选项C正确;若两条平行直线被第三条所截,则同位角相等,所以选项D说法错误;故选C.8.在下列说法中,正确的是()A.连接A,B就得到AB的距离B.延长AOB∠的平分线C.一个有理数不是整数就是分数D.23-a是单项式【答案】C 【详解】解:A. 连接A ,B 就得到线段AB ,而线段AB 的长度叫做的距离,故原说法错误,不符合题意; B. AOB ∠的平分线就是射线,若延长也只能反向延长,故原说法错误,不符合题意; C. 一个有理数不是整数就是分数,原说法正确,符合题意; D.23-a 是多项式,故原说法错误,不符合题意; 故选:C . 二、填空题9.已知,//MN PQ ,将一副三角板按照如图方式摆放在平行线之间,且线段BC 落在直线MN 上,线段DE 落在直线PQ 上,其中60ACB ∠=︒,45AED ∠=︒,CO 平分ACB ∠,EO 平分AED ∠,两条角平分线相交与点O ,则COE ∠=________︒.【答案】52.5 【详解】延长CO 交PQ 于点F ,则∠COE =∠CFE +∠OEF ,∠60ACB ∠=︒,45AED ∠=︒,CO 平分ACB ∠,EO 平分AED ∠, ∠∠BCF =30°,∠OEF =22.5°, ∠//MN PQ , ∠∠BCF =∠CFE ,∠∠COE =30°+22.5°=52.5°,故答案为:52.5°.10.如图是某城市一座古塔底部平面图,在不能进入塔内测量的情况下,学习兴趣小组设计了如图所示的一种测量方案,学习兴趣小组认为测得COD ∠的度数就是AOB ∠的度数.其中的数学原理是__________.【答案】对顶角相等 【详解】解:∠∠COD 与∠AOB 互为对顶角 ∠∠COD =∠AOB 故答案为:对顶角相等11.如图,AB 和CD 交于点O ,则AOC ∠的邻补角是___;AOC ∠的对顶角是___;若40AOC ∠=︒,则BOD ∠=___,AOD ∠=___,BOC ∠=___.【答案】AOD ∠和BOC ∠ BOD ∠ 40° 140° 140° 【详解】解:AB 和CD 交于点O ,则AOC ∠的邻补角是AOD ∠和BOC ∠;AOC ∠的对顶角是BOD ∠,40AOC ∠=︒,40BOD AOC ∴∠=∠=︒,180********AO D AO C ∴∠=︒-∠=︒-︒=︒, 140BO C AO D ∴∠=∠=︒.故答案为:AOD ∠和BOC ∠;BOD ∠;40︒;140︒;140︒.12.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°12'的方向上,则∠AOB 的补角的度数是_____.【答案】100°12′. 【详解】解:∠OA 是表示北偏东62°方向的一条射线,OB 是表示南偏东38°12′方向的一条射线, ∠∠AOB =180°-62°-38°12′=79°48′,∠∠AOB 的补角的度数是180°-79°48′=100°12′. 故答案是:100°12′. 三、解答题13.如图,已知直线AB,CD相交于点O,射线OE把∠AOC分成两部分.(1)写出图中∠AOC的对顶角,∠COE的补角是;(2)已知∠AOC=60°,且∠COE:∠AOE=1:2,求∠DOE的度数.【答案】(1)∠BOD,∠DOE;(2)160°【详解】解:(1)由图形可知,∠AOC的对顶角是∠BOD,∠COE的补角是∠DOE;(2)设∠COE=x,则∠AOE=2x,∠∠AOC=60°,∠x+2x=60,解得x=20,即∠COE=20°,∠AOE=40°,∠∠AOC+∠AOD=180°,∠∠AOD=120°,∠∠DOE=∠AOE+∠AOD=40°+120°=160°.14.在同一平面内已知∠AOB=150°,∠COD=90°,OE平分∠BOD.(1)当∠COD的位置如图1所示时,且∠EOC=35°,求∠AOD的度数;(2)当∠COD的位置如图2所示时,作∠AOC的角平分线OF,求∠EOF的度数;(3)当∠COD的位置如图3所示时,若∠AOC与∠BOD互补,请你过点O作射线OM,使得∠COM为∠AOC的余角,并求出∠MOE的度数.(题中的角都是小于平角的角)【答案】(1)40°;(2)150°;(3)见解析,∠MOE的度数为105°或135°.【详解】解:(1)∠∠COD=90°,∠EOC=35°,∠∠EOD=55°,∠OE平分∠BOD,∠∠BOD=2∠EOD=110°,∠∠AOD=∠AOB﹣∠BOD=40°;(2)∠∠AOB=150°,∠COD=90°,∠∠AOC+∠BOD=360°﹣150°﹣90°=120°,∠OF平分∠AOC,OE平分∠BOD,∠∠COF=12∠AOC,∠DOE=12∠BOD,∠∠COF+∠DOE=60°,∠∠EOF=60°+90°=150°;(3)设∠AOC=α,∠∠AOB=150°,∠COD=90°,∠∠AOD=90°﹣α,∠BOC=150°﹣α,∠∠AOC与∠BOD互补,∠∠AOC+∠BOD=180°,∠∠AOD+∠BOC=180°,∠90°﹣α+150°﹣α=180°,∠α=30°,即∠AOC=30°,∠∠BOD=150°,∠OE平分∠BOD,∠∠DOE=∠BOE=75°,如图3,∠∠COM为∠AOC的余角,∠∠COM=60°,∠∠DOM=30°,∠∠MOE=∠MOD+∠DOE=30°+75°=105°,如备用图,∠∠COM为∠AOC的余角,∠∠COM=60°,∠BOM=60°,∠∠MOE =∠BOM +∠BOE =60°+75°=135°;综上所述,∠MOE 的度数为105°或135°.15.已知直线AB 与CD 相交于点O .(∠)如图1,若90AOM ∠=︒,OC 平分AOM ∠,则AOD ∠=_________.(∠)如图2,若90AOM ∠=︒,4BOC BON ∠=∠,OM 平分CON ∠,求MON ∠的大小;(∠)如图3,若AOM α∠=,4BOC BON ∠=∠,OM 平分CON ∠,求MON ∠的大小(用含α的式子表示).【答案】(∠)135°;(∠)54°;(∠)54035α︒- 【详解】解(∠)90AOM =︒∠,OC 平分AOM ∠,11904522AOC AOM ∴∠=∠=⨯︒=︒, 180AOC AOD ∠+∠=︒,180********AOD AOC ∴∠=-∠=︒-︒︒=︒,即AOD ∠的度数为135︒;(∠)4BOC NOB ∠=∠∴设NOB x ∠=︒,4BOC x ∠=︒,43CON COB BON x x x ∴∠=∠-∠=︒-︒=︒,OM 平分CON ∠,1322COM MON CON x ∴∠=∠=∠=︒, 3902BOM x x ∠=︒+︒=︒, 36x ∴=︒,33365422MON x ∴∠=︒=⨯︒=︒, 即MON ∠的度数为54︒;(∠)4BOC NOB ∠=∠∴设NOB x ∠=︒,4BOC x ∠=︒,43CON COB BON x x x ∴∠=∠-∠=︒-︒=︒, OM 平分CON ∠,1322COM MON CON x ∴∠=∠=∠=︒, 31802BOM x x α∠=︒+︒=︒-, 36025x α︒-∴=, 336025403255MON αα︒-︒-∴∠=⨯=.。

七年级数学余角和补角(1)


D
3
E
1
A
CБайду номын сангаас
B
课堂练习
一个角的余角和它的补角互补.求这个角。
小结:
本节课你有什么收获?
布置作业:
1、P141 练习 第1、3题;
2、已知两个角互为补角,它们的差为30 °,
求这两个角的度数。
; 2019亚洲杯澳门盘口 ;
陆续前来.呐名银色长袍男子,并不是混沌至尊,从其生命气息看,也绝不是初始生灵.他の实历,应该是天尊层次,若是在人类族群中,算得上是比较强の天尊,可能是接近第壹档次天尊..如果您喜欢呐部作品,欢迎您来起点投、,您の支持,就是俺最大の动历.收寄用户请到阅读.<!--qigka--> 第壹陆肆陆章银玉雕见那银色长袍男子正与白雪说话,鞠言也就顿住脚没有走过去.由于,看起来此人是与白雪认识の.既然白雪与此人正在说话,那自身冒然过去可能就显得有些冒失了.“银玉雕,俺不知道你在说哪个.”白雪开口如此回应那银色长袍男子.“白雪,你怎么能不知道俺在说哪 个呢?万年前,俺随师父他老人家来过呐里,当事俺第壹眼见到你,就喜欢上了你.俺师父,也向你师父女砧娘娘提过呐件事,女砧娘娘都不反对你俺两人结为道侣.”“白雪,俺只是没想到,呐才万年事间过去,你居然就成了混沌至尊.俺记得,万年之前,你那事候の实历可比俺低多了.”“你也 知道,俺喜欢上你,全部是真心の,并不是由于你现在の实历.否则,万年前你实历还很低の事候,俺也不会要你答应成为俺の道侣.”银色长袍男子银玉雕焦急の说道.“银玉雕,你不要再说了.俺和你,是不可能成为道侣の.俺师尊女砧娘娘和你の师父银泊尪虽然是朋友,但俺与你却算不上是 朋友,更不要谈成为道侣了.”白雪微微皱眉说.白雪の语气,还算委婉.但她の眼申,却已经有壹些不耐.显然,白雪并不想与呐个银玉雕多说哪个.可是,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在一个平面内,任意三条直线相交,交点的个数最多有( )
A.7个
B.6个
C.5个
D.3个
2. 下列图形中,∠1与∠2是对顶角的是()
3.如图,两条直线a、b相交于点O,若∠1=70°,则∠2=_____.
4.试用几何语言描述下图:_____.
5.如图,已知:直线AB与CD相交于点O,∠1=50度.求:∠2和∠3的度数.
6.平面上有9条直线,任意两条都不平行,欲使它们出现29个交点,能否做到,如果能,怎么安排才能做到?如果不能,请说明理由.
7. 如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数.
8. 已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.
9. 如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.
答案:(未完)
1.答案:D
3.答案:110°
解析:【解答】∵∠1+∠2=180°又∠1=70°
∴∠2=110°.。

相关文档
最新文档