2016年高考数学江苏省(理科)试题及答案【解析版】

合集下载

2016年全国3卷高考理科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅲ卷)

2016年全国3卷高考理科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅲ卷)

2016年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.68.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.8110.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2016年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)【考点】1E:交集及其运算.【专题】37:集合思想;4O:定义法;5J:集合.【分析】求出S中不等式的解集确定出S,找出S与T的交集即可.【解答】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞),∵T=(0,+∞),∴S∩T=(0,2]∪[3,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【考点】9S:数量积表示两个向量的夹角.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【考点】F4:进行简单的合情推理.【专题】31:数形结合;4A:数学模型法;5M:推理和证明.【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;4R:转化法;56:三角函数的求值.【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【考点】4Y:幂函数的单调性、奇偶性及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.6【考点】EF:程序框图.【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣【考点】HT:三角形中的几何计算.【专题】35:转化思想;44:数形结合法;58:解三角形.【分析】作出图形,令∠DAC=θ,依题意,可求得cosθ===,sinθ=,利用两角和的余弦即可求得答案.【解答】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ,∵在△ABC中,B=,BC边上的高AD=h=BC=a,∴BD=AD=a,CD=a,在Rt△ADC中,cosθ===,故sinθ=,∴cosA=cos(+θ)=cos cosθ﹣sin sinθ=×﹣×=﹣.故选:C.【点评】本题考查解三角形中,作出图形,令∠DAC=θ,利用两角和的余弦求cosA 是关键,也是亮点,属于中档题.9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.81【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B.【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.另解:由△AMF∽△AEO,可得=,由△BOH∽△BFM,可得==,即有=即a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【考点】8B:数列的应用.【专题】16:压轴题;23:新定义;38:对应思想;4B:试验法.【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故选:C.【点评】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;4R:转化法;57:三角函数的图像与性质.【分析】令f(x)=sinx+cosx=2sin(x+),则f(x﹣φ)=2sin(x+﹣φ),依题意可得2sin(x+﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,也是难点,属于中档题.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是2x+y+1=0.【考点】6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;51:函数的性质及应用;52:导数的概念及应用.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;49:综合法;5B:直线与圆.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【考点】87:等比数列的性质;8H:数列递推式.【专题】34:方程思想;4R:转化法;54:等差数列与等比数列.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;35:转化思想;5I:概率与统计.【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈0.993,∵0.993>0.75,故y与t之间存在较强的正相关关系;(2)==≈≈0.103,=﹣≈1.331﹣0.103×4≈0.92,∴y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.10×9+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨.【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】15:综合题;35:转化思想;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD 内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN 所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【考点】J3:轨迹方程;K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,=|FN||y1﹣y2|,∴S△ABF∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【考点】6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4J:换元法;51:函数的性质及应用;53:导数的综合应用;56:三角函数的求值.【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);(Ⅱ)讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()|﹣|g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|<1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++>1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.【考点】NC:与圆有关的比例线段.【专题】35:转化思想;49:综合法;5M:推理和证明.【分析】(1)连接PA,PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,运用圆的性质和四点共圆的判断,可得E,C,D,F共圆,再由圆内接四边形的性质,即可得到所求∠PCD的度数;(2)运用圆的定义和E,C,D,F共圆,可得G为圆心,G在CD的中垂线上,即可得证.【解答】(1)解:连接PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,由⊙O中的中点为P,可得∠4=∠5,在△EBC中,∠1=∠2+∠3,又∠D=∠3+∠4,∠2=∠5,即有∠2=∠4,则∠D=∠1,则四点E,C,D,F共圆,可得∠EFD+∠PCD=180°,由∠PFB=∠EFD=2∠PCD,即有3∠PCD=180°,可得∠PCD=60°;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OG⊥CD.【点评】本题考查圆内接四边形的性质和四点共圆的判断,以及圆的垂径定理的运用,考查推理能力,属于中档题.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程;5S:坐标系和参数方程.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】11:计算题;35:转化思想;49:综合法;59:不等式的解法及应用.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.。

2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。

专题14:立体几何江苏卷高考真题赏析(解析版)

专题14:立体几何江苏卷高考真题赏析(解析版)

专题14:立体几何江苏卷高考真题赏析(解析版)1.2017年全国普通高等学校招生统一考试数学(江苏卷)如图,在圆柱O1 O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1 ,球O的体积为V2,则12VV的值是_____【答案】32【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.2.2019年江苏省高考数学试卷如图,长方体1111ABCD A B C D-的体积是120,E为1CC的中点,则三棱锥E-BCD的体积是_____.【答案】10.【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.二、解答题3.2020年江苏省高考数学试卷在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ⊥平面ABC ,AB 平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB 平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.4.2019年江苏省高考数学试卷如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析.【分析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可.【详解】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.5.2018年全国普通高等学校招生统一考试数学(江苏卷)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.【答案】(1)见解析(2)见解析【详解】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.6.2017年全国普通高等学校招生统一考试数学(江苏卷)如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D 不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明EF AB ∥,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC ⊥平面ABD ,则BC ⊥AD ,再由AB ⊥AD 及线面垂直判定定理得AD ⊥平面ABC ,即可得AD ⊥AC .试题解析:证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD .又AB ⊥AD ,BC AB B ⋂=,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC ,又因为AC ⊂平面ABC ,所以AD ⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.7.2016年全国普通高等学校招生统一考试数学(江苏卷)如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE 平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F.【答案】(1)详见解析(2)详见解析【解析】试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理. 试题解析:证明:(1)在直三棱柱111ABC A B C -中,11A C AC , 在三角形ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE AC ,于是11DE AC ,又因为DE ⊄平面1111,AC F AC ⊂平面11AC F ,所以直线DE//平面11AC F .(2)在直三棱柱111ABC A B C -中,1111AA A B C ⊥平面因为11A C ⊂平面111A B C ,所以111AA AC ⊥,又因为111111*********,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂⋂=,平面平面, 所以11A C ⊥平面11ABB A .因为1B D ⊂平面11ABB A ,所以111AC B D ⊥.又因为1111111111111,,B D A F AC AC F A F AC F AC A F A ⊥⊂⊂⋂=,平面平面, 所以111B D AC F ⊥平面.因为直线11B D B DE ⊂平面,所以1B DE 平面11.A C F ⊥平面【考点】直线与直线、直线与平面、平面与平面的位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.8.2015年全国普通高等学校招生统一考试数学(江苏卷)如图,在直三棱柱中,已知,,设的中点为,.求证:(1);(2).【答案】(1)详见解析(2)详见解析【解析】试题分析(1)由三棱锥性质知侧面为平行四边形,因此点为的中点,从而由三角形中位线性质得,再由线面平行判定定理得(2)因为直三棱柱中,所以侧面为正方形,因此,又,(可由直三棱柱推导),因此由线面垂直判定定理得,从而,再由线面垂直判定定理得,进而可得试题解析:(1)由题意知,为的中点,又为的中点,因此.又因为平面,平面,所以平面.(2)因为棱柱是直三棱柱,所以平面.因为平面,所以.又因为,平面,平面,,所以平面.又因为平面,所以.因为,所以矩形是正方形,因此.因为,平面,,所以平面.又因为平面,所以.考点:线面平行判定定理,线面垂直判定定理。

2016年高考数学新课标Ⅱ(理科)试题及答案 【解析版】

2016年高考数学新课标Ⅱ(理科)试题及答案 【解析版】

2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.【2016新课标Ⅱ(理)】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A.()31-,B.()13-,C.()1,∞+D.()3∞--,【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A .【2016新课标Ⅱ(理)】已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B = A.{}1B.{12},C.{}0123,,,D.{10123}-,,,, 【答案】C【解析】()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B = ,,,, 故选C .【2016新课标Ⅱ(理)】已知向量(1,)(3,2)a m b =- ,=,且()a b b +⊥,则m = A.8- B.6- C.6 D.8【答案】D【解析】 ()42a b m +=-,, ∵()a b b +⊥ ,∴()122(2)0a b b m +⋅=--=解得8m =, 故选D .【2016新课标Ⅱ(理)】圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=A.43-B.34- D.2【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d =,解得43a =-,故选A .【2016新课标Ⅱ(理)】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9 【答案】B【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法故选B .【2016新课标Ⅱ(理)】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A.20πB.24πC.28πD.32π 【答案】C【解析】几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .【2016新课标Ⅱ(理)】若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 A.()ππ26k x k =-∈Z B.()ππ26k x k =+∈Z C.()ππ212Z k x k =-∈ D.()ππ212Z k x k =+∈ 【答案】B【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =A.7B.12C.17D.34 【答案】C【解析】第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=,故选C .【2016新课标Ⅱ(理)】若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=A.725B.15C.15-D.725-【答案】D【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .【2016新课标Ⅱ(理)】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为A.4n m B.2n m C.4m n D.2mn【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .【2016新课标Ⅱ(理)】已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D.2 【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====--- 故选A .【2016新课标Ⅱ(理)】已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )A.0B.mC.2mD.4m【答案】B【解析】由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.【2016新课标Ⅱ(理)】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4c o s 5A =,5cos 13C =,1a =,则b = . 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=,由正弦定理得:sin sin b a B A =解得2113b =.【2016新课标Ⅱ(理)】α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 【解析】②③④【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 【解析】 (1,3)由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3),【2016新课标Ⅱ(理)】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 【解析】 1ln2-ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++ ∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =-∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明、证明过程或演算步骤.【2016新课标Ⅱ(理)】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.【2016新课标Ⅱ(理)】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯ 0.2550.150.250.30.1750.a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.【2016新课标Ⅱ(理)】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置OD '(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF D H ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r ,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩ 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅===u r u u ru r u u r∴sin θ=【2016新课标Ⅱ(理)】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++ 因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. ⑵直线AM的方程为(y k x =,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =所以3AN k k+因为2AM AN =所以23k k=+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.【2016新课标Ⅱ(理)】(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;xx x -++>(II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 【解析】⑴证明:()2e 2xx f x x -=+ ()()()22224e e 222x xx x f x x x x ⎛⎫-'⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞ ,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+∴()2e 20x x x -++>⑵ ()()()24e 2e xx a x x ax a g x x ----'=()4e 2e 2x x x x ax a x-++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭=[)01a ∈,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号【2016新课标Ⅱ(理)】如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . (I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△∴GDF DEF BCF ∠=∠=∠ DF CFDG BC= ∵DE DG =,CD BC = ∴DF CFDG BC= ∴GDF BCF △∽△ ∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒ ∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆. (Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =, 连接GB ,Rt Rt BCG BFG △≌△,∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.【2016新课标Ⅱ(理)】选修4—4:坐标系与参数方程在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB l的斜率.【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,=即22369014k k =+,整理得253k =,则k =【2016新课标Ⅱ(理)】选修4—5:不等式选讲已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+, 证毕.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏) 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【2016新课标Ⅱ(理)】已知z=(m+3)+(m ﹣1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(﹣3,1) B .(﹣1,3) C .(1,+∞) D .(﹣∞,﹣3)2.【2016新课标Ⅱ(理)】已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∪B=()A.{1} B.{1,2} C.{0,1,2,3} D.{﹣1,0,1,2,3}3.【2016新课标Ⅱ(理)】已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.84.【2016新课标Ⅱ(理)】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.25.【2016新课标Ⅱ(理)】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.96.【2016新课标Ⅱ(理)】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.【2016新课标Ⅱ(理)】若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)8.【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.349.【2016新课标Ⅱ(理)】若cos(﹣α)=,则sin2α=()A.B.C.﹣D.﹣10.【2016新课标Ⅱ(理)】从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.B.C.D.11.【2016新课标Ⅱ(理)】已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.212.【2016新课标Ⅱ(理)】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0 B.m C.2m D.4m二、填空题:本题共4小题,每小题5分.13.【2016新课标Ⅱ(理)】△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.14.【2016新课标Ⅱ(理)】α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是(填序号)15.【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.16.【2016新课标Ⅱ(理)】若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【2016新课标Ⅱ(理)】S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.【2016新课标Ⅱ(理)】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.【2016新课标Ⅱ(理)】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.20.【2016新课标Ⅱ(理)】已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.请考生在第22~24题中任选一个题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.【2016新课标Ⅱ(理)】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.[选修4-4:坐标系与参数方程]23.【2016新课标Ⅱ(理)】在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l 的斜率.[选修4-5:不等式选讲]24.【2016新课标Ⅱ(理)】已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.。

2016年高考理科数学江苏卷-答案

2016年高考理科数学江苏卷-答案
5
4 / 11
sin B 3 5
AB AC sinC sin B
AB
2
6
3
,即:
AB
5
2
2
5
(Ⅱ) cos A cos(C B) sin BsinC cos BcosC
cos A 2 又 A 为三角形的内角sin A 7 2
10
10
cos
A
π 6
3 cos A 1 sin A 7
准方程为 (x 6)2 ( y 1)2 1
|12 7 b | | 5 b |
(Ⅱ)由题意得 OA 2 5 , kOA 2 设 l : y 2x b ,则圆心 M 到直线 l 的距离 d
0
,由
b2
a2
c2

2 / 11
得 3 c2 1 a2 ,则 e c 2 6 .
42
a 33
【提示】设右焦点 F(c,0) ,将 y b 代入椭圆方程求得 B , C 的坐标,运用两直线垂直的条件:斜率之积 2
为 1,结合离心率公式计算即可得到所求值. 【考点】直线与椭圆的位置关系. 11.【答案】 2
容积的表达式,利用导数法,可得最大值 【考点】棱柱、棱锥、棱台的体积,组合几何体的面积、体积问题. 18.【答案】(Ⅰ)因为 N 在直线 x 6 上,设 N(6,n) ,因为与 x 轴相切,则圆 N 为 (x 6)2 ( y n)2 n2 ,
n 0 ,又圆 N 与圆 M 外切,圆 M : (x 6)2 (x 7)2 25 ,则 | 7 n || n | 5 ,解得 n 1 ,即圆 N 的标
=f
9 2
,可得
a
值,进而得到
f
(5a)

2016年江苏省高考数学压轴试卷(解析版)

2016年江苏省高考数学压轴试卷(解析版)

2016年江苏省高考数学压轴试卷(解析版)2016年江苏省高考数学压轴试卷一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在题中横线上)1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B=.2.若复数+m(i为虚数单位)为纯虚数,则实数m=.3.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是.4.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为.5.如图是一个算法流程图,则输出的x的值为.6.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.7.若sinα=且α是第二象限角,则tan(α﹣)=.8.如图,正四棱锥P﹣ABCD的底面一边AB长为,侧面积为,则它的体积为9.已知双曲线﹣=1 (a>0,b>0)的一条渐近线的方程为2x﹣y=0,则该双曲线的离心率为.10.不等式组所表示的区域的面积为.11.已知△ABC外接圆O的半径为2,且,||=||,则=.12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为.13.在等差数列{a n}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为.14.设关于x的实系数不等式(ax+3)(x2﹣b)≤0对任意x ∈[0,+∞)恒成立,则a2b=.二、解答题15.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD.(Ⅰ)求AD的长;(Ⅱ)求△ABC的面积.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.17.如图,A、B是海岸线OM、ON上的两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为2km、km.测得tan∠MON=﹣3,OA=6km.以点O为坐标原点,射线OM 为x轴的正半轴,建立如图所示的直角坐标系.一艘游轮以18km/小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线AB经过Q).(1)问游轮自码头A沿方向开往码头B共需多少分钟?(2)海中有一处景点P(设点P在xOy平面内,PQ⊥OM,且PQ=6km),游轮无法靠近.求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.18.已知椭圆C:的右焦点为F(1,0),且点P (1,)在椭圆C上;(1)求椭圆C的标准方程;(2)过椭圆C1:=1上异于其顶点的任意一点Q作圆O:x2+y2=的两条切线,切点分别为M、N(M、N不在坐标轴上),若直线MN在x轴,y轴上的截距分别为m、n,证明:为定值;(3)若P1、P2是椭圆C2:上不同两点,P1P2⊥x轴,圆E过P1、P2,且椭圆C2上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆C2是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.19.已知函数f(x)=e x|x2﹣a|(a≥0).(1)当a=1时,求f(x)的单调减区间;(2)若存在m>0,方程f(x)=m恰好有一个正根和一个负根,求实数m的最大值.20.已知数列{a n}的通项公式为a n=(n﹣k1)(n﹣k2),其中k 1,k2∈Z:(1)试写出一组k1,k2∈Z的值,使得数列{a n}中的各项均为正数;(2)若k1=1、k2∈N*,数列{b n}满足b n=,且对任意m∈N*(m≠3),均有b3<b m,写出所有满足条件的k2的值;(3)若0<k1<k2,数列{c n}满足c n=a n+|a n|,其前n项和为S n,且使c i=c j≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、S n中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲]21.如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE•CE=EF•EA.B.[选修4-2:矩阵与变换]22.已知矩阵A=,求矩阵A的特征值和特征向量.C.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.D.[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:2x+≥2y+3.四.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.25.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).26.若存在n个不同的正整数a1,a2,…,a n,对任意1≤i<j ≤n,都有∈Z,则称这n个不同的正整数a1,a2,…,a n 为“n个好数”.(1)请分别对n=2,n=3构造一组“好数”;(2)证明:对任意正整数n(n≥2),均存在“n个好数”.2016年江苏省高考数学压轴试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在题中横线上)1.若集合A={x|y=,x∈R},B={x||x|≤1,x∈R},则A∩B={1} .【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出两集合的交集即可.【解答】解:由A中y=,得到x﹣1≥0,解得:x≥1,即A={x|x≥1},由B中不等式变形得:﹣1≤x≤1,即B={x|﹣1≤x≤1},则A∩B={1},故答案为:{1}.2.若复数+m(i为虚数单位)为纯虚数,则实数m=﹣1.【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,然后由实部等于0求得m的值.解:∵+m==m+1+2i,由复数+m为纯虚数,得m+1=0,解得m=﹣1.故.3.若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是(0,2).【考点】二元一次不等式(组)与平面区域.【分析】因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,由此能求出a的取值范围.【解答】解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,解得0<a<2,4.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为0.032.【考点】极差、方差与标准差.【分析】先计算数据的平均数后,再根据方差的公式计算.【解答】解:数据9.7,9.9,10.1,10.2,10.1的平均数==10,方差=(0.09+0.01+0.01+0.04+0.01)=0.032.故答案为:0.032.5.如图是一个算法流程图,则输出的x的值为.【分析】模拟执行算法流程,依次写出每次循环得到的x,n 的值,当n=6时,满足条件n>5,退出循环,输出x的值为.【解答】解:模拟执行算法流程,可得n=1,x=1, x=,n=2, 不满足条件n>5,x=,n=3不满足条件n>5,x=,n=4, 不满足条件n>5,x=,n=5, 不满足条件n>5,x=,n=6满足条件n>5,退出循环,输出x的值为.故答案为:.6.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.【考点】古典概型及其概率计算公式.【分析】根据互斥时间的概率公式计算即可.解:从5个球中任意取两个共有C52=10种,两球颜色相同的有2种,两球颜色不同的概率是1﹣=,7.若sinα=且α是第二象限角,则tan(α﹣)=﹣7.【分析】由已知求得cosα,进一步得到tanα,再由两角差的正切求得tan(α﹣)的值.【解答】解:∵α是第二象限角,sinα=,∴,∴,则=,故答案为﹣7.8.如图,正四棱锥P﹣ABCD的底面一边AB长为,侧面积为,则它的体积为4【考点】棱柱、棱锥、棱台的体积.【分析】作出棱锥的高PO,则O为底面中心,作OE⊥AB于E,根据侧面积计算PE,利用勾股定理计算PO,带入体积公式计算体积.【解答】解:过P作底面ABCD的垂线PO,则O为底面正方形ABCD的中心,过O作OE⊥AB于E,连结PE.则OE==.∵PO⊥平面ABCD,AB⊂平面ABCD,∴PO⊥AB,又AB⊥OB,PO⊂平面POE,OE⊂平面POE,PO∩OE=O,∴AB⊥平面POE,∵PE⊂平面POE,∴AB⊥PE.∴正四棱锥的侧面积S 侧=4S△PAB=4×=8,解得PE=2.∴PO==1.∴正四棱锥的体积V=S 正方形ABCD•PO=(2)2×1=4.故答案为:4.9.已知双曲线﹣=1 (a>0,b>0)的一条渐近线的方程为2x﹣y=0,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】利用双曲线﹣=1(a>0,b>0)的一条渐近线方程为2x﹣y=0,可得b=2a,c=a,即可求出双曲线的离心率.解:∵双曲线﹣=1(a>0,b>0)的一条渐近线方程为2x ﹣y=0,∴b=2a,c=a,∴离心率是e==.10.不等式组所表示的区域的面积为16.【分析】作出不等式组对应的平面区域,求出交点坐标,【解答】解:由不等式组作出平面区域如图所示(阴影部分),则由,,得A(﹣1,1),B(3,5),C(3,﹣3),所以,11.已知△ABC外接圆O的半径为2,且,||=||,则=12.【分析】运用平面向量的三角形法则,以及外心的特点,可得O为BC的中点,三角形ABC为直角三角形,再由勾股定理和向量的数量积定义,即可求出结果.【解答】解:如图所示,△A BC的外接圆的半径为2,且,∴(﹣)+(﹣)=2,∴+=2+2=,∴O为BC的中点,即AB⊥AC;又||=||,∴△ABO为等边三角形,且边长为2,由勾股定理得,AC==2,则•=||•||•cos∠ACB=2×4×=12.故答案为:12.12.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=•(i=1,2,3,…,10),则m1+m2+…+m10的值为180.【考点】平面向量数量积的运算.【分析】以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B 2(3,),B3(5,),C3(6,0),求出直线B3C3的方程,可设P i(x i,y i),可得x i+y i=6,运用向量的数量积的坐标表示,计算即可得到所求和.【解答】解:以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B 2(3,),B3(5,),C3(6,0),直线B 3C3的方程为y=﹣(x﹣6),可设P i(x i,y i),可得x i+y i=6,即有m i=•=3x i+y i=(x i+y i)=18,则m1+m2+…+m10=18×10=180.故答案为:180.13.在等差数列{a n}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为200.【考点】等差数列的前n项和.【分析】先排除不是遗漏掉首项与末项,从而设9项为a n,a n+1,a n+2,…,a n+m﹣1,a n+m+1,a n+m+2,…,a n+9,从而可得10(2n+1)+90﹣2(m+n)﹣1=185,从而求得.【解答】解:若遗漏的是10项中的第一项或最后一项,则185=9•a中,故a中=20(舍去);故设9项为a n,a n+1,a n+2,…,a n+m﹣1,a n+m+1,a n+m+2,…,a n+9,其中(0<m<9,m∈N*)故10a n+×2﹣a m+n=185,即10(2n+1)+90﹣2(m+n)﹣1=185,故m=9n﹣43,故n=5,m=2;故10×a5+×2=110+90=200;14.设关于x的实系数不等式(ax+3)(x2﹣b)≤0对任意x ∈[0,+∞)恒成立,则a 2b=9.【分析】利用换元法设f(x)=ax+3,g(x)=x2﹣b,根据一元一次函数和一元二次函数的图象和性质进行判断求解即可.【解答】解:∵(ax+3)(x2﹣b)≤0对任意x∈[0,+∞)恒成立,∴当x=0时,不等式等价为﹣3b≤0,即b≥0,当x→+∞时,x2﹣b>0,此时ax+3<0,则a<0,设f(x)=ax+3,g(x)=x2﹣b,若b=0,则g(x)=x2>0,函数f(x)=ax+3的零点为x=﹣,则函数f(x)在(0,﹣)上f(x)>0,此时不满足条件;若a=0,则f(x)=3>0,而此时x→+∞时,g(x)>0不满足条件,故b>0;∵函数f(x)在(0,﹣)上f(x)>0,则(﹣,+∞))上f(x)<0,而g(x)在(0,+∞)上的零点为x=,且g(x)在(0,)上g(x)<0,则(,+∞)上g(x)>0,∴要使(ax+3)(x 2﹣b)≤0对任意x∈[0,+∞)恒成立,则函数f(x)与g(x)的零点相同,即﹣=,∴a2b=9.故答案为:9.二、解答题15.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD.(Ⅰ)求AD的长;(Ⅱ)求△ABC的面积.【考点】解三角形.【分析】(1)假设AD=x,分别在△ACD和△ABC中使用余弦定理计算cosA,列方程解出x;(2)根据(1)的结论计算sinA,代入面积公式计算.【解答】解:(1)设AD=x,则BD=2x,∴BC==.在△ACD中,由余弦定理得cosA==,在△ABC中,由余弦定理得cosA==.∴=,解得x=5.∴AD=5.(2)由(1)知AB=3AD=15,cosA==,∴sinA=.∴S△ABC===.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.(1)求证:PC∥平面BDE;(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连结AC,交BD于O,连结OE,E为PA的中点,利用三角形中位线的性质,可知OE∥PC,利用线面平行的判定定理,即可得出结论;(2)先证明PA⊥DE,再证明PA⊥OE,可得PA⊥平面BDE,从而可得平面BDE⊥平面PAB.【解答】证明:(1)连结AC,交BD于O,连结OE.因为ABCD是平行四边形,所以OA=OC.…因为E为侧棱PA的中点,所以OE∥PC.…因为PC⊂平面BDE,OE⊂平面BDE,所以PC∥平面BDE.…(2)因为E为PA中点,PD=AD,所以PA⊥DE.…因为PC⊥PA,OE∥PC,所以PA⊥OE.因为OE⊂平面BDE,DE⊂平面BDE,OE∩DE=E,所以PA⊥平面BDE.…因为PA⊂平面PAB,所以平面BDE⊥平面PAB.…17.如图,A、B是海岸线OM、ON上的两个码头,海中小岛有码头Q到海岸线OM、ON的距离分别为2km、km.测得tan∠MON=﹣3,OA=6km.以点O为坐标原点,射线OM 为x轴的正半轴,建立如图所示的直角坐标系.一艘游轮以18km/小时的平均速度在水上旅游线AB航行(将航线AB看作直线,码头Q在第一象限,航线AB经过Q).(1)问游轮自码头A沿方向开往码头B共需多少分钟?(2)海中有一处景点P(设点P在xOy平面内,PQ⊥OM,且PQ=6km),游轮无法靠近.求游轮在水上旅游线AB航行时离景点P最近的点C的坐标.【考点】直线与圆的位置关系.【分析】(1)由已知得:A(6,0),直线ON的方程为y=﹣3x,求出Q(4,2),得直线AQ的方程,从而求出水上旅游线AB的长,由此能求出游轮在水上旅游线自码头A沿方向开往码头B共航行时间.(2)点P到直线AB的垂直距离最近,则垂足为C,分别求出直线AB的方程和直线PC的方程,联立直线AB和直线PC 的方程组,能求出点C的坐标.【解答】解:(1)由已知得:A(6,0),直线ON的方程为y=﹣3x,…1分设Q(x1,2),(x1>0),由及x1>0,得x1=4,∴Q (4,2),…3分∴直线AQ的方程为y=﹣(x﹣6),即x+y﹣6=0,…5分由,得,即B(﹣3,9),…6分∴AB==9,即水上旅游线AB的长为9km.游轮在水上旅游线自码头A沿方向开往码头B共航行30分钟时间.…8分(2)点P到直线AB的垂直距离最近,则垂足为C. (10)分由(1)知直线AB的方程为x+y﹣6=0,P(4,8),则直线PC的方程为x﹣y+4=0,…12分联立直线AB和直线PC的方程组,得点C的坐标为C(1,5).…14分18.已知椭圆C:的右焦点为F(1,0),且点P (1,)在椭圆C上;(1)求椭圆C的标准方程;(2)过椭圆C1:=1上异于其顶点的任意一点Q作圆O:x2+y2=的两条切线,切点分别为M、N(M、N不在坐标轴上),若直线MN在x轴,y轴上的截距分别为m、n,证明:为定值;(3)若P1、P2是椭圆C2:上不同两点,P1P2⊥x轴,圆E过P1、P2,且椭圆C2上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆C2是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由焦点坐标确定出c的值,根据椭圆的性质列出a与b的方程,再将P点坐标代入椭圆方程列出关于a与b的方程,联立求出a与b的值,确定出椭圆方程即可.(2)由题意:确定出C1的方程,设点P(x1,y1),M(x2,y2),N(x3,y3),根据M,N不在坐标轴上,得到直线PM与直线OM斜率乘积为﹣1,确定出直线PM的方程,同理可得直线PN的方程,进而确定出直线MN方程,求出直线MN与x轴,y轴截距m与n,即可确定出所求式子的值为定值.(3)依题意可得符合要求的圆E,即为过点F,P1,P2的三角形的外接圆.所以圆心在x轴上.根据题意写出圆E的方程.由于圆的存在必须要符合,椭圆上的点到圆E距离的最小值是|P1E|,结合图形可得圆心E在线段P1P2上,半径最小.又由于点F已知,即可求得结论.【解答】解:(1)∵椭圆C:的右焦点为F(1,0),且点P(1,)在椭圆C上;∴,解得a=2,b=,∴椭圆C的标准方程为.(2)由题意:C1: +=1,设点P(x1,y1),M(x2,y2),N(x3,y3),∵M,N不在坐标轴上,∴k PM=﹣=﹣,∴直线PM的方程为y﹣y2=﹣(x﹣x2),化简得:x2x+y2y=,①,同理可得直线PN的方程为x3x+y3y=,②,把P点的坐标代入①、②得,∴直线MN的方程为x1x+y1y=,令y=0,得m=,令x=0得n=,∴x1=,y1=,又点P在椭圆C1上,∴()2+3()2=4,则+=为定值.(3)由椭圆的对称性,可以设P1(m,n),P2(m,﹣n),点E在x轴上,设点E(t,0),则圆E的方程为:(x﹣t)2+y2=(m﹣t)2+n2,由内切圆定义知道,椭圆上的点到点E距离的最小值是|P 1E|,设点M(x,y)是椭圆C上任意一点,则|ME|2=(x﹣t)2+y2=,当x=m时,|ME|2最小,∴m=﹣,③,又圆E过点F,∴(﹣)2=(m﹣t)2+n2,④点P1在椭圆上,∴,⑤由③④⑤,解得:t=﹣或t=﹣,又t=﹣时,m=﹣<﹣2,不合题意,综上:椭圆C存在符合条件的内切圆,点E的坐标是(﹣,0).19.已知函数f(x)=e x|x2﹣a|(a≥0).(1)当a=1时,求f(x)的单调减区间;(2)若存在m>0,方程f(x)=m恰好有一个正根和一个负根,求实数m的最大值.【考点】一元二次方程的根的分布与系数的关系;分段函数的应用.【分析】(1)求出a=1的f(x)的解析式,分别求出各段的导数,解不等式即可得到减区间;(2)讨论a=0,a>0,通过导数判断单调区间和极值,由方程f(x)=m恰好有一个正根和一个负根,即可求得m的范围,进而得到m的最大值.【解答】解:(1)当a=1时,f(x)=,当|x|>1时,f′(x)=e x(x2+2x﹣1),由f′(x)≤0得﹣1﹣≤x≤﹣1+,所以f(x)的单调减区间是(﹣1﹣,﹣1);当|x|≤1时,f′(x)=﹣e x(x2+2x﹣1),由f′(x)≤0得x≥﹣1+或x≤﹣1﹣.所以f(x)的单调减区间是(﹣1+,1);综上可得,函数f(x)的单调减区间是(﹣1﹣,﹣1),(﹣1+,1);(2)当a=0时,f(x)=e x•x2,f′(x)=e x•x(x+2),当x<﹣2时,f′(x)>0,f(x)递增,当﹣2<x<0时,f′(x)<0,f(x)递减,当x>0时,f′(x)>0,f(x)递增.f(﹣2)为极大值,且为4e﹣2,f(0)为极小值,且为0,当a>0时,f(x)=同(1)的讨论可得,f(x)在(﹣∞,﹣﹣1)上增,在(﹣﹣1,﹣)上减,在(﹣,﹣1)上增,在(﹣1,)上减,在(,+∞)上增,且函数y=f(x)有两个极大值点,f(﹣﹣1)=,f(﹣1)=,且当x=a+1时,f(a+1)=e a+1(a2+a+1)>(﹣1)>,所以若方程f(x)=m恰好有正根,则m>f(﹣﹣1)(否则至少有二个正根).又方程f(x)=m恰好有一个负根,则m=f(﹣﹣1).令令g(x)=e﹣x(x+1),x≥1.g′(x)=﹣xe﹣x<0,g(x)在x≥1递减,即g(x)max=g(1)=,等号当且仅当x=1时取到.所以f(﹣﹣1)max=()2,等号当且仅当a=0时取到.且此时f(﹣﹣1)=(﹣1)=0,即f(﹣﹣1)>f(﹣1),所以要使方程f(x)=m恰好有一个正根和一个负根,m的最大值为.20.已知数列{a n}的通项公式为a n=(n﹣k1)(n﹣k2),其中k1,k2∈Z:(1)试写出一组k1,k2∈Z的值,使得数列{a n}中的各项均为正数;(2)若k1=1、k2∈N*,数列{b n}满足b n=,且对任意m∈N*(m≠3),均有b 3<b m,写出所有满足条件的k2的值;(3)若0<k1<k2,数列{c n}满足c n=a n+|a n|,其前n项和为S n,且使c i=c j≠0(i,j∈N*,i<j)的i和j有且仅有4组,S1、S2、…、S n中至少3个连续项的值相等,其他项的值均不相等,求k1,k2的最小值.【考点】数列的求和;数列递推式.【分析】(1)通过函数f(x)=(x﹣k1)(x﹣k2)是与x轴交于k1、k2两点且开口向上的抛物线可知,只需知k1、k2均在1的左边即可;(2)通过k1=1化简可知b n=n+﹣(1+k2),排除k2=1、2可知k2≥3,此时可知对于f(n)=n+而言,当n≤时f(n)单调递减,当n≥时f(n)单调递增,进而解不等式组即得结论;(3)通过0<k1<k2及a n=(n﹣k1)(n﹣k2)可知c n=,结合c i=c j≠0(i,j∈N*,i<j)可知0<i<k1<k2<j,从而可知k1的最小值为5,通过S1、S2、…、S n 中至少3个连续项的值相等可知5=k1≤m+1<m+2<…<k2,进而可得k2的最小值为6.【解答】解:(1)k1=k2=0;(2)∵k1=1、k2∈N*,a n=(n﹣k1)(n﹣k2),∴b n===n+﹣(1+k2),当k2=1、2时,f(n)=n+均单调递增,不合题意;当k2≥3时,对于f(n)=n+可知:当n≤时f(n)单调递减,当n≥时f(n)单调递增,由题意可知b1>b2>b3、b3<b4<…,联立不等式组,解得:6<k2<12,∴k2=7,8,9,10,11;(3)∵0<k1<k2,a n=(n﹣k1)(n﹣k2),∴c n=a n+|a n|=,∵c i=c j≠0(i,j∈N*,i<j),∴i、j∉(k1,k2),又∵c n=2[n2﹣(k1+k2)n+k1k2],∴=,∴0<i<k1<k2<j,此时i的四个值为1,2,3,4,故k1的最小值为5,又S1、S2、…、S n中至少3个连续项的值相等,不妨设S m=S m+1=S m+2=...,则c m+1=c m+2= 0∵当k1≤n≤k2时c n=0,∴5=k1≤m+1<m+2<…<k2,∴k2≥6,即k2的最小值为6.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲]21.如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE•CE=EF•EA.【考点】圆的切线的性质定理的证明.【分析】欲证明BE•CE=EF•EA.在圆中线段利用由切割线定理得EB2=EF•FA,进而利用四边形BODE中的线段,证得BE=CE即可.【解答】证明:因为Rt△ABC中,∠ABC=90°所以OB ⊥CB, 所以CB为⊙O的切线, 所以EB2=EF•FA连接OD,因为AB=BC, 所以∠BAC=45°, 所以∠BOD=90°, 在四边形BODE中,∠BOD=∠OBE=∠BED=90°所以BODE为矩形, 所以, 即BE=CE.所以BE•CE=EF•EA.B.[选修4-2:矩阵与变换]22.已知矩阵A=,求矩阵A的特征值和特征向量.【考点】特征值与特征向量的计算.【分析】先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组求出相应的特征向量.【解答】B.矩阵A的特征多项式为,…由f(λ)=0,解得λ1=2,λ2=3..…当λ1=2时,特征方程组为故属于特征值λ1=2的一个特征向量;…当λ2=3时,特征方程组为故属于特征值λ2=3的一个特征向量.…C.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】求出曲线C的极坐标方程化为直角坐标方程,求出圆心与半径,直线的参数方程为普通方程,利用圆心距半径半弦长满足勾股定理求解弦长即可.【解答】解:曲线C的直角坐标方程为x2+y2﹣2x﹣2y=0,圆心为(1,1),半径为,直线的直角坐标方程为x﹣y﹣=0,所以圆心到直线的距离为d==,所以弦长=2=.D.[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:2x+≥2y+3.【分析】因为x>y,所以x﹣y>0,所以不等式左边减去2y 得:2x+=(x﹣y)+(x﹣y)+,这样便可证出本题.【解答】证明:由题设x>y,可得x﹣y>0;∵2x+﹣2y=2(x﹣y)+=(x﹣y)+(x﹣y)+;又(x﹣y)+(x﹣y)+,当x﹣y=1时取“=“;∴2x+﹣2y≥3,即2x+≥2y+3.四.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.25.甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).【考点】随机事件;离散型随机变量及其分布列.【分析】(1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.由此能求出比赛结束后甲的进球数比乙的进球数多1个的概率.(2)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(1)比赛结束后甲的进球数比乙的进球数多1个,有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.比赛结束后甲的进球数比乙的进球数多1个的概率:p=++=.(2)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)=+++= =,P(ξ=1)=+++=,P(ξ=3)==,P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)=1﹣=,∴ξ的分布列为:ξ0 1 2 3PEξ==1.26.若存在n个不同的正整数a1,a2,…,a n,对任意1≤i<j ≤n,都有∈Z,则称这n个不同的正整数a1,a2,…,a n 为“n个好数”.(1)请分别对n=2,n=3构造一组“好数”;(2)证明:对任意正整数n(n≥2),均存在“n个好数”.【分析】(1)利用新定义,分别对n=2,n=3构造一组“好数”;(2)利用数学归纳法进行证明即可.【解答】解:(1)当n=2时,取数a1=1,a2=2,因为=3∈Z,当n=3时,取数a1=2,a2=3,a3=4,则=﹣5∈Z,=﹣7∈Z,=﹣3∈Z,即a1=2,a2=3,a3=4可构成三个好数.(2)证:①由(1)知当n=2,3时均存在,②假设命题当n=k(k≥2,k∈Z)时,存在k个不同的正整数a1,a2,…,a k,使得对任意1≤i<j≤k,都有∈Z成立,则当n=k+1时,构造k+1个数A,A+a1,A+a2,…,A+a k,(*)其中A=1×2×…×a k,若在(*)中取到的是A和A+a i,则=﹣﹣1∈Z,所以成立,若取到的是A+a i和A+a j,且i<j,则=+,由归纳假设得∈Z,又a j﹣a i<a k,所以a j﹣a i是A的一个因子,即∈Z,所以=+∈Z,所以当n=k+1时也成立.所以对任意正整数,均存在“n 个好数”.。

2016年高考江苏数学试题及答案(word解析版)

2016年高考江苏数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211ni i s x xn ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2016年江苏,1,5分】已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B =_______.【答案】{}1,2-【解析】由交集的定义可得{}1,2AB =-.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题. (2)【2016年江苏,2,5分】复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是_______. 【答案】5【解析】由复数乘法可得55i z =+,则则z 的实部是5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.(3)【2016年江苏,3,5分】在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是_______.【答案】210【解析】2210c a b =+=,因此焦距为2210c =.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础 (4)【2016年江苏,4,5分】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是_______. 【答案】0.1【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用. (5)【2016年江苏,5,5分】函数232y x x =--的定义域是_______. 【答案】[]3,1-【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题. (6)【2016年江苏,6,5分】如图是一个算法的流程图,则输出a 的值是________. 【答案】9【解析】,a b 的变化如下表:a 1 5 9b 9 7 5 则输出时9a =.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(7)【2016年江苏,7,5分】将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.【答案】56【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.(8)【2016年江苏,8,5分】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是_______. 【答案】20【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=,解得14a =-,3d =,则948320a =-+⨯=. 【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(9)【2016年江苏,9,5分】定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是________.【答案】7【解析】画出函数图象草图,共7个交点.【点评】本题考查正弦函数与余弦函数的图象,作出函数sin 2y x =与cos y x =在区间[]0,3π上的图象是关键,属于中档题.(10)【2016年江苏,10,5分】如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是________【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得 0BF CF ⋅=,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭,则22231044c a b -+=,由222b a c =-可得 223142c a =,则c e a ==. 【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.(11)【2016年江苏,11,5分】设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是________.【答案】25-【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-.【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a 值,是解答的关键.(12)【2016年江苏,12,5分】已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩ 则22x y +的取值范围是________.【答案】4,135⎡⎤⎢⎥⎣⎦【解析】在平面直角坐标系中画出可行域如下:22x y +为可行域内的点到原点距离的平方.可以看出图中A 点距离原点最近,此时距离为原点A 到直线220x y +-=的距离,d ==,则()22min 45x y +=,图中B 点距离原点最远,B 点为240x y -+=与330x y --=交点,则()2,3B ,则()22max13x y +=.【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键. (13)【2016年江苏,13,5分】如图,在ABC △中,D 是BC 的中点,,E F 是AD 上两个三等分点,4BA CA ⋅=,1BF CF ⋅=-,则BE CE ⋅的值是________.【答案】78【解析】令DF a =,DB b =,则DC b =-,2DE a =,3DA a =,则3BA a b =-,3CA a b =+,2BE a b =-,2CE a b =+,BF a b =-,CF a b =+,则229BA CA a b ⋅=-,22BF CF a b ⋅=-, 224BE CE a b ⋅=-,由4BA CA ⋅=,1BF CF ⋅=-可得2294a b -=,221a b -=-,因此22513,88a b ==,因此22451374888BE CE a b ⨯⋅=-=-=.【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.(14)【2016年江苏,14,5分】在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C 的最小值是_______. 【答案】8【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =,可得sin cos cos sin 2sin sin B C B C B C +=(*),由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>, 在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=,又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t >,2222tan tan tan 111t A B C t t t =-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 2tan 2tan 4B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2016年江苏,15,14分】在ABC △中,6AC =,4cos 5B =,π4C =.(1)求AB 的长;(2)求πcos 6A ⎛⎫- ⎪⎝⎭的值. 解:(1)4cos 5B =,B 为三角形的内角,3sin 5B ∴=,sinC sin AB ACB =,635=,即:AB = (2)()cos cos sin sin cos cos A C B B C B C =-+=-,cos A ∴=又A 为三角形的内角,sin A ∴=,π1cos sin 62A A A ⎛⎫∴-+ ⎪⎝⎭【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于中档题.(16)【2016年江苏,16,14分】如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证: (1)直线//DE 平面11A C F ; (2)平面1B DE ⊥平面11A C F .解:(1),D E 为中点,DE ∴为ABC ∆的中位线,//DE AC ∴,又111ABC A B C -为棱柱,11//AC AC ∴11//DE AC ∴,又11AC ⊂平面11A C F ,且11DE AC F ⊄,//DE ∴平面11A C F .(2)111ABC A B C -为直棱柱,1AA ∴⊥平面111A B C ,111AA AC ∴⊥,又1111AC A B ⊥,且1111AA A B A =,111,AA A B ⊂平面11AA B B ,11AC ∴⊥平面11AA B B ,又11//DE AC ,DE ∴⊥平面11AA B B , 又1A F ⊂平面11AA B B ,1DE A F ∴⊥,又11A F B D ⊥,1DEB D D =,且1,DE B D ⊂平面1B DE ,1A F ∴⊥平面1B DE ,又111A F AC F ⊂,∴平面1B DE ⊥平面11A C F .【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难答不大. (17)【2016年江苏,17,14分】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱 的高1O O 是正四棱锥的高1PO 的4倍.(1)若6m AB =,12m PO =,则仓库的容积是多少;(2)若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?解:(1)12m PO =,则18m OO =,1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==, 111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==,111111113312m =P A B C D ABCD A B C D V V V --+=,故仓库的容积为3312m . (2)设1m PO x =,仓库的容积为()V x ,则14m OO x =,11m A O =,11A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1111233142888m ABCD A B C D ABCD V S OO x x x-⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<,()()22'263122612V x x x =-+=--()06x <<,当(x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =时,()V x 取到最大值,即1m PO =时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.(18)【2016年江苏,18,16分】如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点()2,4A .(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;(3)设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.解:(1)因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >,又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=.(2)由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l的距离d ==,则BC ==BC =1A FEDCBAC 1B 1A 1解得5b =或15b =-,即l :25y x =+或215y x =-. (3)TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =,(TA t =,又10PQ ≤,10,解得2t⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 的平行线,2TA P Q 、两点,此时TA PQ=,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.(19)【2016年江苏,19,16分】已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. (1)设2a =,12b =. ①求方程()2f x =的根;②若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值;(2)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 解:(1)①()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =.②由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立,令122xx t =+,则由20x >可得2t =≥,此时226t mt --≥恒成立,即244t m tt t+=+≤恒成立∵2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.(2)()()22x x g x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb a h x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b a a x b ⎛⎫=- ⎪⎝⎭时()00h x =, 因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <;()0,x x ∈+∞时,()0h x >,ln 0x a b >, 则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x ,① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >;x >log b 2时,0x a >,log 22b x b b >=, 则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点, 2log 2b x >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =, 由()00020g a b =+-=,因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.(20)【2016年江苏,20,16分】记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. (1)求数列{}n a 的通项公式;(2)对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<;(3)设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.解:(1)当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=. (2)2112131133332k k kT k k S a a a a -+-++=++++=<=≤(3)设()C A C D =,()D B C D =,A B =∅,C A C D S S S =+,D B CDS S S =+, 22C CDD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥. ① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m ,若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾.因为A B =∅,所以l m ≠,所以1l m +≥,211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C C D D S S S +≥.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.数学Ⅱ【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2016年江苏,21-A,10分】(选修4—1:几何证明选讲)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点,求证:EDC ABD ∠=∠.解:由BD AC ⊥可得90BDC ∠=︒,由E 是BC 中点可得12DE CE BC ==,则EDC C ∠=∠, 由90BDC ∠=︒可得90C DBC ∠+∠=︒,由90ABC ∠=︒可得90ABD DBC ∠+∠=︒,因此ABD C ∠=∠, 又EDC C ∠=∠可得EDC ABD ∠=∠.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C 是关键,属于中档题.(21—B )【2016年江苏,21—B,10分】(选修4—2:矩阵与变换)已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB .解:()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121*********⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB . 【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题. (21—C )【2016年江苏,21—C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.ED CB A解:直线l0y --=,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB =. 【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.(21-D )【2016年江苏,21-D 】(本小题满分10分)(选修4—4:不等式选讲)设0a >,13a x -<,23ay -<,求证:24x y a +-<.解:由13a x -<可得2223a x -<,22422233a a x y x y a +--+-<+=≤. 【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.【必做题】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2016年江苏,22,10分】如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>.(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.解:(1):20l x y --=,∴l 与x 轴的交点坐标为()2,0,即抛物线的焦点为()2,0,22p∴=,28y x ∴=. (2)① 设点()11,P x y ,()22,Q x y ,则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+-, 又,P Q 关于直线l 对称,1PQ k ∴=-,即122y y p +=-,122y y p +∴=-,又PQ 中点一定在直线l 上,12122222x x y y p ++∴=+=-,∴线段PQ 上的中点坐标为()2,p p --;② 中点坐标为()2,p p --,122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩,12212244y y p y y p p +=-⎧∴⎨=-⎩, 即关于222440y py p p ++-=有两个不等根,0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力. (23)【2016年江苏,23,10分】(1)求34677C 4C -的值;(2)设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.解:(1)34677C 4C 7204350-=⨯-⨯=.(2)对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m mm m m m m m k k k m m m k k m +++-++++++++++=+,当1n k =+时,左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++()()2211C2Cm m k k m k +++=+++,右边()231C m k m ++=+,而()()()()()()()()()22323!2!1C 1C 12!1!2!!m m k k k k m m m m k m m k m ++++⎡⎤+++-+=+-⎢⎥+-++-⎢⎥⎣⎦()()()()()()()()()12!1!13122C 2!1!!1!mk k k m k k m k k m k m m k m +++=+⨯+--+=+=+⎡⎤⎣⎦+-+-+ 因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C CCkk k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。

2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)【2016(理)】已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.【答案】{﹣1,2}【解析】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},【2016(理)】复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.【答案】5【解析】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,【2016(理)】在平面直角坐标系xOy中,双曲线﹣=1的焦距是.【答案】 2【解析】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.【2016(理)】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.【答案】0.1【解析】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.【2016(理)】函数y=的定义域是.【答案】[﹣3,1]【解析】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],【2016(理)】如图是一个算法的流程图,则输出的a的值是.【答案】9【解析】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,【2016(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】【解析】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.【2016(理)】已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.【答案】20【解析】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.【2016(理)】定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.【答案】7【解析】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.【2016(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【答案】【解析】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,【2016(理)】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.【答案】﹣【解析】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,【2016(理)】已知实数x,y满足,则x2+y2的取值围是.【答案】[,13]【解析】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值围是[,13],故答案为:[,13].【2016(理)】如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【答案】【解析】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,【2016(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.【答案】8【解析】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.二、解答题(共6小题,满分90分)【2016(理)】在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解析】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【2016(理)】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【解析】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【2016(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【解析】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时,仓库的容积最大.【2016(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,数t的取值围.【解析】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:((x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)=,即,即||=||,||=,又||≤10,即≤10,解得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,此时,||≤10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P、Q两点,此时||=||,即,因此实数t的取值围为t∈[2﹣2,2+2],.【2016(理)】已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【解析】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=axlna+bxlnb=ax[+],0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【2016(理)】记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【解析】解:(1)当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a i+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=<=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】【2016(理)】如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【解析】解:由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.B.【选修4—2:矩阵与变换】【2016(理)】已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【解析】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.C.【选修4—4:坐标系与参数方程】【2016(理)】在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C 的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【解析】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【2016(理)】设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【解析】证明:由a>0,|x﹣1|<,|y﹣2|<,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.附加题【必做题】【2016(理)】如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px (p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值围.【解析】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.【2016(理)】(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解析】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.2016年省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.【2016(理)】已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.2.【2016(理)】复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.3.【2016(理)】在平面直角坐标系xOy中,双曲线﹣=1的焦距是.4.【2016(理)】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.5.【2016(理)】函数y=的定义域是.6.【2016(理)】如图是一个算法的流程图,则输出的a的值是.7.【2016(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.【2016(理)】已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.9.【2016(理)】定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.10.【2016(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.11.【2016(理)】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.12.【2016(理)】已知实数x,y满足,则x2+y2的取值围是.13.【2016(理)】如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.14.【2016(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.二、解答题(共6小题,满分90分)15.【2016(理)】在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.【2016(理)】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线D E∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.【2016(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.【2016(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,数t的取值围.19.【2016(理)】已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.【2016(理)】记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.【2016(理)】如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.【2016(理)】已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.【2016(理)】在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C 的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.【2016(理)】设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.【2016(理)】如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px (p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值围.26.【2016(理)】(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.DOC专业资料.。

相关文档
最新文档