2019年安徽省安庆中考一模数学试卷(word 版含答案)

合集下载

2019年安徽省中考数学一模试卷(含答案解析)

2019年安徽省中考数学一模试卷(含答案解析)

2019年安徽省中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A.B.C.D 四个选项,其中只有一个是正确的,请将正确答案的代号填入题后括号内1.(4分)计算2﹣1的结果是()A.B.﹣C.﹣2D.22.(4分)经过约38万公里、26天的漫长飞行,2019年1月3日10时26分,“嫦娥四号“探测器自主着陆在月球背面南极一艾特肯盆地内的冯,卡门擅击坑内,实现人类探测器的首次月背软着陆,数据38万用科学记数法可表示为()A.0.38×106B.3.8×107C.3,8×108D.3.8×1053.(4分)下列计算错误的是()A.(ab≠0 )B.ab2÷(b≠0)C.2a2b+3ab2=5a3b3D.(ab2)3=a3b64.(4分)不等式组的解集是()A.x>2B.x≥1C.1≤x<2D.x≥﹣15.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.6.(4分)如图,AB是⊙O的直径,BC是⊙O的弦,∠AOC=80°,则∠C的度数为()A.20°B.30°C.40°D.50°7.(4分)由于春季气温回暖,某服装店从3月份开始对冬装进行“折上折“(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需490元,设该店冬装原本打x折,则有()A.490(1﹣2x)=1000B.1000(1﹣x2)=490C.1000=490D.1000=4908.(4分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.111.110.910.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁9.(4分)二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限10.(4分)甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是()A.334B.335C.336D.337二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣6的相反数等于.12.(5分)分解因式;ax2+ay2﹣2axy=.13.(5分)如图,在四边形ABCD中,AC=BD=8,E、F、G、H分别是边AB、BC、CD、DA的中点,则EG2+FH2的值为.14.(5分)如图,点A是x轴负半轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0),连接OD,当OD=时,n=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|+(2cos30°﹣1)0﹣.16.(8分)《九章算术》中有这样道题,原文如下:今有共买豕,人出一百,盈一百,人出九十,适足,问人数、豕价各几何?大意为:今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适,问合伙的人数、猪价各是多少?四、(本大题共2小题,每小题8分满分16分)17.(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B 两点(点A在第一象限).若点A的横坐标为4.(1)求k的值.(2)根据图象,直接写出当>x时,x的取值范围,18.(8分)在由边长为1个单位长度的小正方形组成的网格中建立直角坐标系,△ABC的位置如图所示.(1)试在网格图中画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称.(2)直接写出点C1的坐标与线段OC1的长度,五、(本大题共2小题,每小题10分,满分20分)19.(10分)现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:5640 6430 6320 6798 7325 8430 8215 7453 7446 67547638 6834 7325 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95002E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=,n=.(2)补全频数分布直方图.(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.20.(10分)如图1所示的是午休时老师们所用的一种折叠椅,现将躺椅以如图2所示的方式倾斜放置,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,BP是躺椅的伸缩支架,且30°≤BPM≤90°.(结果精确到1厘米;参考数据 1.4, 1.7, 2.2)(1)求此时点C与地面的距离.(2)在(1)的条件下,求伸缩支架BP可达到的最大值.六、(本题满分12分)21.(12分)如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=°;(2)求证:DE与⊙O相切;(3)点F在上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.七、(本题满分12分)22.(12分)某4A风景区准备开设风光游览业务,调查后发现,准备4辆风光游览车时,每辆车每天有16班;且每增加1辆风光游览车,每辆车就需减少2个班次若每辆游览车的载客人数为20人,且每班均载满游客,设游览车的辆数为x(x>0),(1)设每天运送的游客人数为w,求w关于x的函数关系式,(2)该景区应开设多少辆游览车,才能运送最多的游客?最多的人数是多少?(3)已知每辆车每个班次的成本为100元,每名游客的游览车票价为10元,另外该景区每天还需支付其他费用共3000元,若每天此项业务的收入为4200元,求x的值.八、(本题满分14分)23.(14分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别:S▱ABCD=.是线段,;S矩形AEFG(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.2019年安徽省中考数学一模试卷(解析版)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A.B.C.D四个选项,其中只有一个是正确的,请将正确答案的代号填入题后括号内1.(4分)计算2﹣1的结果是()A.B.﹣C.﹣2D.2【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得答案.【解答】解:原式=,故选:A.【点评】此题主要考查了负整数指数幂,关键是掌握计算公式.2.(4分)经过约38万公里、26天的漫长飞行,2019年1月3日10时26分,“嫦娥四号“探测器自主着陆在月球背面南极一艾特肯盆地内的冯,卡门擅击坑内,实现人类探测器的首次月背软着陆,数据38万用科学记数法可表示为()A.0.38×106B.3.8×107C.3,8×108D.3.8×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将38万用科学记数法表示为:3.8×105.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列计算错误的是()A.(ab≠0 )B.ab2÷(b≠0)C.2a2b+3ab2=5a3b3D.(ab2)3=a3b6【分析】根据分分式的运算法则以及整式的运算法则即可求出答案.【解答】解:(C)原式=2a2b+3ab2,故选:C.【点评】本题考查学生的运算,解题的关键是熟练运用运算法则,本题属于基础题型.4.(4分)不等式组的解集是()A.x>2B.x≥1C.1≤x<2D.x≥﹣1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,则不等式组的解集为x>2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.6.(4分)如图,AB是⊙O的直径,BC是⊙O的弦,∠AOC=80°,则∠C的度数为()A.20°B.30°C.40°D.50°【分析】根据圆周角定理直接来求∠B的度数,进而解答即可.【解答】解:∵∠AOC=80°,∴∠B=40°,∵OC=OB,∴∠C=∠B=40°,故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(4分)由于春季气温回暖,某服装店从3月份开始对冬装进行“折上折“(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需490元,设该店冬装原本打x折,则有()A.490(1﹣2x)=1000B.1000(1﹣x2)=490C.1000=490D.1000=490【分析】设该店冬装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.【解答】解:设该店冬装原本打x折,依题意,得:1000(1﹣)2=490.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.(4分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.111.110.910.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.9.(4分)二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【分析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【解答】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选:A.【点评】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.10.(4分)甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是()A.334B.335C.336D.337【分析】设丙同学第n次报的数为a n(n为正整数),根据报数的规律可找出a n=3n且丙同学报的数奇偶交替出现,再结合2019=673,673÷2=336.5,即可找出结论.【解答】解:设丙同学第n次报的数为a n(n为正整数),根据题意得:a1=3,a2=6,a3=9,a4=12,a5=15,…,∴a n=3n.∴丙同学报的数奇偶交替出现.∵2018=673,673÷2=336.5,∴丙同学需要拍手的次数为336.故选:C.【点评】本题考查了规律型中数字的变化类,根据报数的规律找出甲报的数奇偶交替出现是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣6的相反数等于6.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣6的相反数等于:6.故答案为:6.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.12.(5分)分解因式;ax2+ay2﹣2axy=a(x﹣y)2.【分析】先提取公因式a,在用完全平方公式进行分解即可.【解答】解:ax2+ay2﹣2axy=a(x2+y2﹣2xy)=a(x﹣y)2.故答案为a(x﹣y)2.【点评】本题考查提公因式法和公式法进行因式分解.能够分解完全是解题的关键.13.(5分)如图,在四边形ABCD中,AC=BD=8,E、F、G、H分别是边AB、BC、CD、DA的中点,则EG2+FH2的值为64.【分析】连接HE、EF、FG、GH,根据三角形中位线定理、菱形的判定定理得到平行四边形HEFG是菱形,根据菱形的性质、勾股定理计算即可.【解答】解:连接HE、EF、FG、GH,∵E、F分别是边AB、BC的中点,∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四边形HEFG为平行四边形,∵AC=BD,∴EH=EF,∴平行四边形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案为:64.【点评】本题考查的是中点四边形,掌握三角形中位线定理、菱形的判定和性质定理是解题的关键.14.(5分)如图,点A是x轴负半轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0),连接OD,当OD=时,n=﹣2.【分析】先求得OD与y轴的夹角为45°,然后依据OD的长,可求得OF和DF的长,作辅助线,构建全等三角形,再证明△AFD≌△DEC,从而可得到AF=DE=3,从而可得到点A的坐标.【解答】解:如图所示:过点D作EF⊥x轴于F,过C作CE⊥EF于E,∵四边形ABCD为正方形,∴A、B、C、D四点共圆,∠DAC=45°.又∵∠COA=90°,∴点O也在这个圆上,∴∠COD=∠CAD=45°.又∵OD=,∴OF=DF=1.∵C(0,4),∴OC=EF=4,∴DE=4﹣1=3,∵四边形ABCD为正方形,∴AD=CD,∵∠ADC=90°,∴∠ADF+∠CDE=∠CDE+∠DCE=90°,∴∠ADF=∠DCE,∵∠AFD=∠DEC=90°,∴△AFD≌△DEC(SAS),∴AF=DE=3,∴AO=2,∴A(﹣2,0),即n=﹣2;故答案为:﹣2.【点评】本题主要考查的是正方形的性质、全等三角形的性质、四点共圆,证得OD与两坐标轴的夹角为45°是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|+(2cos30°﹣1)0﹣.【分析】原式利用绝对值的代数意义,零指数指数幂法则,以及二次根式性质计算即可求出值.【解答】解:原式=2+1﹣5=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(8分)《九章算术》中有这样道题,原文如下:今有共买豕,人出一百,盈一百,人出九十,适足,问人数、豕价各几何?大意为:今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适,问合伙的人数、猪价各是多少?【分析】设合伙的人数为x人,猪价为y钱,根据“每人出100钱,则会多出100钱;每人出90钱,恰好合适”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设合伙的人数为x人,猪价为y钱,依题意,得:,解得:.答:合伙的人数为10人,猪价为900钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共2小题,每小题8分满分16分)17.(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B 两点(点A在第一象限).若点A的横坐标为4.(1)求k的值.(2)根据图象,直接写出当>x时,x的取值范围,【分析】(1)先将x=4代入正比例函数y=x,可得出y=3,求得点A(4,3),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.【解答】解:(1)∵点A一次函数y=x的图象上,∴把x=4代入正比例函数y=x,解得y=3,∴点A(4,3),∵点A与B关于原点对称,∴B点坐标为(﹣4,﹣3),把点A(4,2)代入反比例函数y=;(2)由交点坐标,根据图象可得当>x时,x的取值范围为:x<﹣4或0<x<4.【点评】本题考查了应用待定系数法求反比例函数的解析式,这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.18.(8分)在由边长为1个单位长度的小正方形组成的网格中建立直角坐标系,△ABC的位置如图所示.(1)试在网格图中画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称.(2)直接写出点C1的坐标与线段OC1的长度,【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点C1的位置,写出坐标,利用两点间的距离公式计算即可.【解答】解:(1)△A1B1C1如图所示.(2)C1(﹣2,﹣1),OC1==.【点评】本题考查作图﹣轴对称变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、(本大题共2小题,每小题10分,满分20分)19.(10分)现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:5640 6430 6320 6798 7325 8430 8215 7453 7446 67547638 6834 7325 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95002E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=5,n=1.(2)补全频数分布直方图.(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.【分析】(1)由题干所给数据统计即可得;(2)依据以上所得m、n的值即可补全图形;(3)用C、D、E组的频数和除以数据的总数可得.【解答】解:(1)由题意知,7500≤x<8500的人数m=5,9500≤x<10500的人数n =1,故答案为:5,1;(2)补全频数分布直方图如下:(3)估计该好友的步数不低于7500步(含7530步)的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(10分)如图1所示的是午休时老师们所用的一种折叠椅,现将躺椅以如图2所示的方式倾斜放置,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,BP是躺椅的伸缩支架,且30°≤BPM≤90°.(结果精确到1厘米;参考数据 1.4, 1.7, 2.2)(1)求此时点C与地面的距离.(2)在(1)的条件下,求伸缩支架BP可达到的最大值.【分析】(1)根据题意和图象,利用锐角三角函数可以解答本题;(2)根据(1)中的条件和图形,可以求得伸缩支架BP可达到的最大值.【解答】解:(1)∵AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,∴点A到地面的距离为:AM•sin s45°=50×=25(厘米),CD=BC•sin30°=72×=36(厘米),∴点C与地面的距离是:25+36≈71(厘米),即此时点C与地面的距离是71厘米;(2)∵AB∥ME,∴点B到ME的距离是25厘米,∴BP=,∵30°≤BPM≤90°,∴当∠MPM=30°时,BP取得最大值,此时BP==50≈70(厘米),即伸缩支架BP可达到的最大值是70厘米.【点评】本题考查解直角三角形的应用、特殊角的三角函数值,解答本题的关键是明确题意,利用数形结合的思想解答.六、(本题满分12分)21.(12分)如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=60°;(2)求证:DE与⊙O相切;(3)点F在上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.【分析】(1)由CD⊥AB和M是OA的中点,利用三角函数可以得到∠DOM=60°,进而得到△OAD是等边三角形,∠OAD=60°.(2)只需证明DE⊥OD.便可以得到DE与⊙O相切.(3)利用圆的综合知识,可以证明,∠CND=90°,∠CFN=60°,根据特殊角的三角函数值可以得到FN的数值.【解答】解:(1)如图1,连接OD,AD∵AB是⊙O的直径,CD⊥AB∴AB垂直平分CD∵M是OA的中点,∴OM=OA=OD∴cos∠DOM==∴∠DOM=60°又:OA=OD∴△OAD是等边三角形∴∠OAD=60°故答案为:60°(2)∵CD⊥AB,AB是⊙O的直径,∴CM=MD.∵M是OA的中点,∴AM=MO.又∵∠AMC=∠DMO,∴△AMC≌△OMD.∴∠ACM=∠ODM.∴CA∥OD.∵DE⊥CA,∴∠E=90°.∴∠ODE=180°﹣∠E=90°.∴DE⊥OD.∴DE与⊙O相切.(3)如图2,连接CF,CN,∵OA⊥CD于M,∴M是CD中点.∴NC=ND.∵∠CDF=45°,∴∠NCD=∠NDC=45°.∴∠CND=90°.∴∠CNF=90°.由(1)可知∠AOD=60°.∴.在Rt△CDE中,∠E=90°,∠ECD=30°,DE=3,∴.在Rt△CND中,∠CND=90°,∠CDN=45°,CD=6,∴.由(1)知∠CAD=2∠OAD=120°,∴∠CFD=180°﹣∠CAD=60°.在Rt△CNF中,∠CNF=90°,∠CFN=60°,,∴.【点评】本题考查圆的综合运用,特别是垂径定理、切线的判定要求较高,同时对于特殊角的三角函数值的运用有所考察,需要学生能具有较强的推理和运算能力.七、(本题满分12分)22.(12分)某4A风景区准备开设风光游览业务,调查后发现,准备4辆风光游览车时,每辆车每天有16班;且每增加1辆风光游览车,每辆车就需减少2个班次若每辆游览车的载客人数为20人,且每班均载满游客,设游览车的辆数为x(x>0),(1)设每天运送的游客人数为w,求w关于x的函数关系式,(2)该景区应开设多少辆游览车,才能运送最多的游客?最多的人数是多少?(3)已知每辆车每个班次的成本为100元,每名游客的游览车票价为10元,另外该景区每天还需支付其他费用共3000元,若每天此项业务的收入为4200元,求x的值.【分析】(1)设游览车的辆数为x,则每辆车每天有[16﹣2(x﹣4)]班,根据每天运送的游客人数=游览车的辆数×每辆车每天的班次数×20,即可得出w关于x的函数关系式;(2)由(1)的结论,利用二次函数的性质即可解决最值问题;(3)根据每天此项业务的收入=每天运送的游客人数×10﹣100×游览车的辆数×每辆车每天的班次数﹣其他费用,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)设游览车的辆数为x,则每辆车每天有[16﹣2(x﹣4)]班,依题意,得:w=20x•[16﹣2(x﹣4)]=﹣40x2+480x.(2)w=﹣40x2+480x=﹣40(x﹣6)+1440,∵a=﹣40<0,∴当x=6时,w取得最大值,最大值为1440.答:该景区应开设6辆游览车,才能运送最多的游客,最多的人数是1440.(3)依题意,得:10×(﹣40x2+480x)﹣100x•[16﹣2(x﹣4)]﹣3000=4200,整理,得:x2﹣12x+36=0,解得:x1=x2=6.答:当每天此项业务的收入为4200元时,x的值为6.【点评】本题考查了一元二次方程的应用以及二次函数的性质,解题的关键是:(1)根据各数量之间的关系,找出w关于x的函数关系式;(2)利用二次函数的性质,求出w 的最大值;(3)找准等量关系,正确列出一元二次方程.八、(本题满分14分)23.(14分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别:S▱ABCD=1:2.是线段AE,GF;S矩形AEFG(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.【分析】(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=S▱ABCD,即可得出答案;(2)由矩形的性质和勾股定理求出FH,即可得出答案;(3)折法1中,由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM =CM==3,得出AD=BG=BM﹣GM=1,BC=BM+CM=7;折法2中,由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB =4,DG=NG,NH=CH,BM=FM,MC=CN,求出GH=CD=5,由叠合正方形的性质得出EM=GH=5,正方形EMHG的面积=52=25,由勾股定理求出FM=BM==3,设AD=x,则MN=FM+FN=3+x,由梯形ABCD的面积得出BC=﹣x,求出MC=BC﹣BM=﹣x﹣3,由MN=MC得出方程,解方程求出AD=,BC =;折法3中,由折叠的性质、正方形的性质、勾股定理即可求出BC、AD的长.【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;∴S矩形AEFG故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH==13,由折叠的性质得:AD=FH=13;(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC =90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG =NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.【点评】本题是四边形综合题目,考查了折叠的性质、正方形的性质、勾股定理、梯形面积的计算、解方程等知识;本题综合性强,有一定难度.。

安庆市2019年中考一模数学试卷

安庆市2019年中考一模数学试卷

安庆市2019年中考一模数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有( )A.25.30千克B.25.51千克C.24.80千克D.24.70千克2.下列运算正确的是()A.(a+b)2=a2+b2 B.3a2﹣2a2=a2 C.﹣2(a﹣1)=﹣2a﹣1D.a6÷a3=a23.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10B.11C.12D. 134.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.5.使分式的值等于零的x是( )A.6B.-1或6C.-1D.-66.式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A.有5个单项式,2个多项式B.有4个单项式,2个多项式C.有3个单项式,3个多项式D.有5个整式7.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组B.9组C.8组D.7组8.根据测试距离为5m 的标准视力表制作一个测试距离为3m 的视力表,如果标准视力表中“E ”的长a 是3.6cm,那么制作出的视力表中相应“E ”的长b 是( )A.1.44cmB.2.16cmC.2.4cmD.3.6cm9.如图,己知点A 是双曲线y=kx-1(k>0)上的一个动点,连AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y=mx -1(m<0)上运动,则m 与k 的关系是( )A.m=-kB.m=-kC.m=-2kD. m=-3k10.如图,○O 的半径为1,AD ,BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发(P 点与O 点不重合),沿O →C →D 的路线运动,设AP=x ,sin ∠APB=y ,那么y 与x 之间的关系图象大致是( )二、填空题(本大题共4小题,每小题5分,共20分) 11、能够使代数式112++x x 有意义的x 的取值范围是____________. 12、因式分解:=+-xy y x y x 232__________.13、已知△OAC 中,∠OAC=90°,OA=2,∠AOC=60°,以O 为原点,OC 所在直线为x 轴建立平面直角坐标系,如图. 双曲线xky =(x>0)的图象经过直角顶点A ,并与直角边AC 交于点B ,则B 点的坐标为__________.14、已知,如图,△ABC 中,AC=BC ,∠C=90°,AE 平分∠BAC 交BC 于E ,过E 做ED ⊥AB于D ,连接DC 交AE 于F ,其中BD=1.则在下列结论中: ①AE ⊥DC ;②AB=22+;③2=CDAE;④222+=⋅CD AE . 其中正确的结论是__________.三、解答题(本题共两小题,每小题8分,共16分)15、化简:x x x x x x -+-⋅-++1)1(112222. 16、解不等式组352732x x x +>⎧⎨+≥-⎩,并将它的解集在数轴上表示出来。

2019年最新安徽省中考第一次数学模拟试卷含答案解析

2019年最新安徽省中考第一次数学模拟试卷含答案解析

安徽省第一次中考(数学)模拟试卷(含答案)数 学本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1. 2-的倒数是)A ( 21-)B (21)C (2 )D (2-2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为)A ( 91021⨯. )B ( 71012⨯ )C ( 910120⨯. )D (81021⨯.3. 下列图形中,既是轴对称图形又是中心对称图形的是)A ( )B ( )C ( )D (4.含︒30角的直角三角板与直线1l 、2l 的位置关系如图1所示,已知21//l l ,A ACD ∠=∠,则1∠=)A (︒70 )B (︒60 )C (︒40 )D (︒305. 下列说法正确的是)A (打开电视,它正在播广告是必然事件)B (要考察一个班级中的学生对建立生物角的看法适合用抽样调查 )C (在抽样调查过程中,样本容量越大,对总体的估计就越准确)D (甲、乙两人射中环数的方差分别为2S 2=甲,4S 2=乙,说明乙的射击成绩比甲稳定6. 若02=-ab a ()0≠b ,则=+ba a)A (0 )B (21)C (0或21)D (1或 27. 图2是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,250.CD AB ==米,51.BD =米,且AB 、CD 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离 地面的距离是)A (2米 )B (52.米 )C (42.米)D (12.米8. 已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有)A ( 0个)B (1个)C ( 2个)D (3个图1图29. 已知二次函数mx x y 22-=(m 为常数),当21≤≤-x 时,函数值y 的最小值为2-,则m 的值是)A (23)B (2)C (23或2)D (23-或2 10. 如图3,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为()46,, 反比例函数xy 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将BDE ∆沿DE 翻折至DE B '∆处,点B '恰好落在正比例函数kx y =图象上,则k 的值是 )A ( 52-)B (211-)C (51-)D (241-第二部分(非选择题 共120分)注意事项1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤. 4.本部分共16小题,共120分.二、填空题:本大题共6小题,每小题3分,共18分.11.计算:=-23 ____. 12.二元一次方程组2322+=-=+x yx y x 的解是____. 13.如图4,直线b a 、垂直相交于点O ,曲线C 关于点O 成中心对称,点A 的对称点是点'A ,a AB ⊥于点B ,b D A ⊥'于点D .若3=OB ,2=OC , 则阴影部分的面积之和为____.14.点A 、B 、C 在格点图中的位置如图5所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是_____.15. 庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将 事物无限分割的思想,用图形语言表示为图6.1, 按此图分割的方法,可得到一个等式(符号语言):⋅⋅⋅++⋅⋅⋅+++=n 32212121211. 图6.2也是一种无限分割:在ABC ∆中, 90=∠C ,30=∠A ,过点C 作AB CC ⊥1于点1C ,再过点1C 作BC C C ⊥21于点2C ,又过点2C 作AB C C ⊥32于点3C ,如此无限继续下去,则可将利ABC ∆分割成1ACC ∆、21C CC ∆、321C C C ∆、432C C C ∆、…、n n n C C C 12--∆、….假设2=AC ,这些三角形的面积和可以得到一个等式是_________.16.对于函数m n x x y +=,我们定义11--+='m n mx nx y (n m 、为常数). 例如24x x y +=,则x x y 243+='. 已知:()x m x m x y 223131+-+=. (1)若方程0='y 有两个相等实数根,则m 的值为___________; (2)若方程41-='m y 有两个正数根,则m 的取值范围为__________. 三、本大题共3小题,每小题9分,共27分.17. 计算:272017316020-+-+︒sni .18. 求不等式组⎪⎩⎪⎨⎧≥--+<+02251,312x x x x 的所有整数解.19. 如图7, 延长□ABCD 的边AD 到点F ,使DC DF =,延长CB 到点E ,使BA BE =,分别连结点A 、E 和点C 、F . 求证:CF AE =.四、本大题共3小题,每小题10分,共30分.20. 化简:12121222222-÷⎪⎪⎭⎫ ⎝⎛+----+a aa a a a a a a .21. 为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图8所示.请根据图表信息解答下列问题: (1)在表中:=m ,=n ; (2)补全频数分布直方图;FEDCB A(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A 、C 两组学生的概率是多少?并列表或画树状图说明.22. 如图9,在水平地面上有一幢房屋BC 与一棵树DE ,在地面观测点A 处测得屋顶C 与树梢D 的仰角分别是︒45与︒60,︒=∠60CAD ,在屋顶C 处测得︒=∠90DCA .若房屋的高6=BC 米.求树高DE 的长度.五、本大题共2小题,每小题10分,共20分.23、某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:EDCBA律,给出理由,并求出其解析式; (2)按照这种变化规律,若已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).24.如图10,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且 60=∠ACP ,PD PA =.(1)试判断PD 与⊙O 的位置关系,并说明理由;(2)若点C 是弧AB 的中点,已知4AB =,求CP CE ⋅的值.六、本大题共2小题,第25题12分,第26题13分,共25分.25.在四边形ABCD 中,︒=∠+∠180D B ,对角线AC 平分BAD ∠.(1)如图11.1,若︒=∠120DAB ,且︒=∠90B ,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.A(2)如图11.2,若将(1)中的条件“︒=∠90B ”去掉,(1)中的结论是否成立?请说明理由. (3)如图11.3,若︒=∠90DAB ,探究边AD 、AB 与对角线AC 的数量关系并说明理由.26.如图12.1,抛物线1C :ax x y +=2与2C :bx x y +-=2相交于点O 、C ,1C 与2C 分别交x 轴于点B 、A ,且B 为线段AO 的中点.(1)求ba的值; (2)若AC OC ⊥,求OAC ∆的面积;(3)抛物线2C 的对称轴为l ,顶点为M ,在(2)的条件下:①点P 为抛物线2C 对称轴l 上一动点,当PAC ∆的周长最小时,求点P 的坐标; ②如图12.2,点E 在抛物线2C 上点O 与点M 之间运动,四边形OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点E 的坐标;若不存在,请说明理由.DCBAD CB ADCBA第一次中考(数学)模拟试卷数学参考答案及评分意见第一部分(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.1. )(A2. )(D3. )(D4. )(B5. )(C6. )(C7. )(B8. )(C9. )(D 10.)(B第二部分(非选择题 共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.91;12.⎩⎨⎧-=-=15y x ;13. 6; 14.553; 15.⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++= n434343431233232;16.(1)21=m ;(2)43≤m 且21≠m . 注:(1)第14题,若给出的是化简后正确的等式,也视为正确; (2)第16题,第(1)问1分,第(2)问2分.三、本大题共3小题,每小题9分,共27分.17.解:原式33113232-+-+⨯=……………………………………(8分) =3-.………………………………(9分)18.解:解不等式①得:1->x ……………………………………(3分)解不等式②得:4≤x ……………………………………(6分)所以,不等式组的解集为41≤<-x ……………………………………(8分) 不等式组的整数解为43210,,,,. ……………………………………(9分)19. 证明:□ABCD 中,CD AB =,BE AB =,DF CD =,∴DF BE =.BC AD =, ∴EC AF =………………(6分)又 AF ∥EC ,∴四边形AECF 是平行四边形. ………………(8分) ∴CF AE =………………………(9分)四、本大题共3小题,每小题10分,共30分.20. 解:原式=()()()()()121111122-÷⎥⎦⎤⎢⎣⎡----++a aa a a a a a a ………………(2分)=12112-÷⎪⎭⎫⎝⎛---a a a a a a………………(4分) =121-÷-a a a a ………………(6分) =aa a a 211-⋅-………………(8分) =21…………………………(10分) 21.解:(1)120=m ,30.n =………………(2分)(2);如图2 ………………(4分) (3)C ;………………(6分) (4)FED CBACB A D B A DC AD C B DC BA………………(9分)∴抽中A ﹑C 两组同学的概率为122=P =61…………(10分) 22.解:如图3,在ABC Rt ∆中,︒=∠45CAB ,m BC 6=, ∴26=∠=CABsin BCAC ()m ;…………………(3分)在ACD Rt ∆中,︒=∠60CAD , ∴212=∠=CADcos ACAD ()m ;…………………(6分)在DEA Rt ∆中,︒=∠60EAD ,()m sin AD DE 662321260=⋅=︒⋅=…………………(9分) 答:树DE 的高为66米.…………………(10分) 五、本大题共2小题,每小题10分,共20分 23.解:(1)设b kx y +=,(b k 、为常数,0≠k )∴⎩⎨⎧+=+=645436k .b k ,解这个方程组得⎩⎨⎧=-=51051.b .k ,∴51051.x .y +-=. 当52.x =时,4756≠=.y .∴一次函数不能表示其变化规律. ……………………………………(2分) 设x k y =,(k 为常数,0≠k ),∴5227.k.=, ∴18=k ,∴xy 18=. EDCBA当3=x 时,6=y ;当4=x 时,54.y =;当54.x =时,4=y ; ∴所求函数为反比例函数xy 18=……………………………………(5分) (2)①当5=x 时,63.y =; 40634..=-(万元)∴比2016年降低40.万元. ……………………………………(7分) ②当23.y =时,6255.x =; 630625056255...≈=-(万元) ∴还需要投入技改资金约630.万元. ……………………………………(9分)答:要把每件产品的成本降低到23.万元,还需投入技改资金约630.万元. …………………(10分)24.解:(1)如图4,PD 是⊙O 的切线.证明如下:……………………………………(1分)连结OP ,60=∠ACP ,∴120=∠AOP , OP OA = ,∴ 30=∠=∠OPA OAP ,PD PA =,∴ 30=∠=∠D PAO , ∴ 90=∠OPD ,∴PD 是⊙O 的切线. ……………………………………(4分) (2)连结BC ,AB 是⊙O 的直径, ∴90=∠ACB ,又C 为弧AB 的中点, ∴45=∠=∠=∠APC ABC CAB ,4=AB ,2245== sin AB AC .APC CAB C C ∠=∠∠=∠, ,∴CAE ∆∽CPA ∆,……………………………………(8分)∴CACECP CA =,∴82222===⋅)(CA CE CP .……………………………………(10分)六、本大题共2小题,第25题12分,第26题13分,共25分 25.解:(1)AB AD AC +=.证明如下:在四边形ABCD 中,︒=∠+∠180B D ,︒=∠90B , ∴ ︒=∠90D . ︒=∠120DAB ,AC 平分DAB ∠,∴ 60=∠=∠BAC DAC ,︒=∠90B ,∴AC AB 21=,同理AC AD 21=.∴AB AD AC +=.……………………………(4分) (2)(1)中的结论成立,理由如下:以C 为顶点,AC 为一边作60=∠ACE ,ACE ∠的另一边交AB 延长线于点E , 60=∠BAC ,∴AEC ∆为等边三角形,∴CE AE AC ==,︒=∠+∠180B D ,︒=∠120DAB ,∴60=∠DCB ,∴BEC DAC ∆≅∆,∴BE AD =,∴AB AD AC +=.……………………………………(8分) (3)AC AB AD 2=+.理由如下:过点C 作AC CE ⊥交AB 的延长线于点E ,︒=∠+∠180B D ,︒=∠90DAB ,∴ 90=DCB ,90=∠ACE ,∴BCE DCA ∠=∠,又AC 平分DAB ∠,∴ 45=∠CAB ,∴45=∠E .∴CE AC =.又︒=∠+∠180B D ,CBE D ∠=∠,ACC∴CBE CDA ∆≅∆,∴BE AD =,∴AE AB AD =+. 在ACE Rt ∆中, 45=∠CAB ,∴AC cos ACAE 245==,∴AC AB AD 2=+. ……………………………………(12分)26.解:(1)ax x y +=2,当0=y 时,02=+ax x ,01=x ,a x -=2,∴()0,a B -bx x y +-=2,当0=y 时,02=+-bx x ,01=x ,b x =2,∴()b ,A 0 ∵B 为OA 的中点,∴a b 2-=.∴21-=b a .……………………………………(2分) (2)解⎪⎩⎪⎨⎧--=+=axx y ax x y 222得:ax x ax x 222--=+ ,0322=+ax x , 01=x ,a x 232-=,当a x 23-=时,243a y =, ∴⎪⎭⎫ ⎝⎛-24323a ,a C . ……………………………(3分) 过C 作x CD ⊥轴于点D ,∴⎪⎭⎫⎝⎛-023,a D . ∵︒=∠90OCA ,∴OCD ∆∽CAD ∆,∴CDODAD CD =, ∴OD AD CD ⋅=2,即⎪⎭⎫ ⎝⎛-⋅-=⎪⎭⎫⎝⎛a a a 23214322,∴01=a (舍去),3322=a (舍去),3323-=a ……………………………(5分) ∴3342=-=a OA ,1432==a CD,∴33221=⋅=∆CD OA S OAC ……………………………………(6分) (3)①x x y C 334:22+-=,对称轴332:2=x l , 点A 关于2l 的对称点为)0,0(O ,)1,3(C ,则P 为直线OC 与2l 的交点,设OA 的解析式为kx y =,∴k 31=,得33=k ,则OA 的解析式为x y 33=,当332=x 时,32=y ,∴),(P 32332. ……………………………………(8分)②设)3320(),334,(2≤≤+-m m m E ,则m m m S OBE 3433)334(3322122+-=+-⋅⨯=∆, 而)0,332(B ,)1,3(C ,设直线BC 的解析式为b kx y +=,由⎪⎩⎪⎨⎧+=+=b k b k 332031,解得2,3-==b k , ∴直线BC 的解析式为23-=x y .分)过点E 作x 轴的平行线交直线BC 于点N ,则233342-=+-x m m , 即=x 33234332++-m m ,∴=EN 3323133332343322++-=-++-m m m m m ,∴336163332313312122++-=++-⋅⋅=∆m m )m m (S EBC∴EBC O BE O BCE S S S ∆∆+=四边形)336163()3433(22++-++-=m m m m 24317)23(2333232322+--=++-=m m m ,……………………………………(11分)3320≤≤m ,∴当23=m 时,24317=最大S ,当23=m 时,4523334)23(2=⋅+-=y ,∴),(E 4523,24317=最大S . ……………………………………(13分)。

2019年安徽省安庆市中考数学一模试卷

2019年安徽省安庆市中考数学一模试卷

2019年安徽省安庆市中考数学一模试卷一、选择题:本大题共10小题,每小题4分,满分40分1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4 B.2 C.﹣1 D.32.计算﹣a2•a3的结果是()A.a5B.﹣a5C.﹣a6D.a63.如图所示,该几何体的主视图是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.与2×的值最接近的正数是()A.3 B.4 C.5 D.66.如图,这是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.玉米产量和杂粮产量增长率相当C.2014年杂粮产量是玉米产量的约七分之一D.2014年和2015年的小麦产量基本持平7.某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,若4月份到6月份平均增长率为12%,则6月份商品房成交价是()A.a(1﹣8%)(1+12%)元B.a(1﹣8%)(1+12%)2元C.(a﹣8%)(a+12%)元D.a(1﹣8%+12%)元8.如图,MN与BC在同一条直线上,且MN=BC=2,点B和点N重合,以MN为底作高为2的等腰△PMN,以BC为边作正方形ABCD,若设△PMN沿射线BC方向平移的距离为x,两图形重合部分的面积为y,则y关于x的函数大致图象是()A.B.C.D.9.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE :S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:2110.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=﹣n2+14n﹣24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月二、填空题:本大题共4小题,每小题5分,满分20分11.﹣2x•(﹣x)3= .12.如图,在⊙O中,∠AOB+∠COD=70°,AD与BC交于点E,则∠AEB的度数为.13.按一定的规律排列的两行数:猜想并用关于n的代数式表示m= .14.某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元)的关系满足:y=﹣2x+400;(2)工商部门限制销售价x满足:70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是(把所有正确结论的序号都选上)三、本大题共2小题,每小题8分,满分16分15.计算:x(x+1)﹣(x﹣1)2.16.解方程: =.四、本大题共2小题,每小题8分,满分16分17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.18.如图,已知:长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).问:打通长江路后从A地道B地可少走多少路程?(参考数据:≈1.4,≈1.7)五、本大题共2小题,每小题10分,满分20分19.如图,AB是⊙O的一条弦,C,D是⊙O上的两个动点,且在AB弦的异侧,连接CD.(1)已知AC=BC,AB平分∠CBD,求证:AB=CD;(2)已知∠ADB=45°,⊙O的半径为1,求四边形ACBD面积的最大值.20.寒假结束了,为了了解九年级学生寒假体育锻炼情况,王老师调查了九年级所有学生寒假体育锻炼时间,并随即抽取10名学生进行统计,制作出如下统计图表:根据统计图表信息解答下列问题: (1)将条形统计图补充完整;(2)若用扇形统计图来描述10名学生寒假体育锻炼情况,分别求A ,B ,C 三个等级对应的扇形圆心角的度数;(3)已知这次统计中共有60名学生寒假体育锻炼时间是A 等,请你估计这次统计中B 等,C 等的学生各有多少名?六、本题满分12分21.已知A (﹣1,1),B (﹣,﹣2),C (﹣3,﹣)三个点中的两个点在反比例函数图象上.(1)求出这个反比例函数的解析式,并找出不在图象上的点;(2)设P 1(x 1,y 1),P 2(x 2,y 2)是这个反比例函数图象上任意不重合的两点,M=+,N=+,试判断M ,N 的大小,并说明理由.七、本题满分12分22.若两个二次函数的图象关于原点O 中心对称,则称这个二次函数为“关于原点中心对称二次函数”.(1)请直接写出二次函数y=2(x ﹣1)2+3“关于原点中心对称二次函数”y′的函数表达式;(2)当(1)中的二次函数y ,y′的函数值同时随x 的增大而减小时,求x 的取值范围; (3)若关于x 的两个二次函数y 1=a x x 2+b 1x+c 1和y 2=a 2x 2+b 2x+c 2为“关于原点中心对称二次函数”,已知a1=1,函数y3=y1+y2的图象与函数y4=(y1﹣y2)的图象交于点(1,2),试比较y3,y4的大小.八、本题满分14分23.如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF 于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).(1)求证: =;(2)求△AMN的面积(用a,b,c的代数式表示);(3)当∠MAN=45°时,求证:c2=2ab.2019年安徽省安庆市中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分1.在﹣4,0,﹣1,3这四个数中,最小的数是()A.﹣4 B.2 C.﹣1 D.3【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣1<0<3,在﹣4,0,﹣1,3这四个数中,最小的数是﹣4.故选:A.2.计算﹣a2•a3的结果是()A.a5B.﹣a5C.﹣a6D.a6【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则求解即可求得答案.【解答】解:﹣a2•a3=﹣a5故选:B.3.如图所示,该几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从几何体的左面看所得到的图形即可.【解答】解:从几何体的正面看所得到的视图是,故选:C.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,在数轴上表示不等式组的解集,即可得出选项.【解答】解:,∵解不等式①得:x≥1,解不等式②得:x<2,∴不等式组的解集为:1≤x<2,在数轴上表示不等式组的解集为:,故选D.5.与2×的值最接近的正数是()A.3 B.4 C.5 D.6【考点】二次根式的乘除法;估算无理数的大小.【分析】先利用二次根式的乘法法则得到2×=2,然后进行无理数的估算即可.【解答】解:2×=2=,∵16<24<25,∴4<<5,∴与2×的值最接近的正数为5.故选C.6.如图,这是某地2014年和2015年粮食作物产量的条形统计图,请你根据此图判断下列说法合理的是()A.2015年三类农作物的产量比2014年都有增加B.玉米产量和杂粮产量增长率相当C.2014年杂粮产量是玉米产量的约七分之一D.2014年和2015年的小麦产量基本持平【考点】条形统计图.【分析】根据条形的高低,来判断小麦、玉米、杂粮在不同年份的增长情况,分别对每一项进行分析,即可得出答案.【解答】解:A、根据统计图发现小麦有所下降,错误;B、玉米产量和杂粮产量增加的数量基本一样,但玉米的基数明显>杂粮的基数,所以两者增加的幅度不一样;C、2014年杂粮产量是玉米产量的约十分之一,错误;D、根据统计图的高低得出2014年和2015年的小麦产量基本持平,正确.故选:D.7.某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,若4月份到6月份平均增长率为12%,则6月份商品房成交价是()A.a(1﹣8%)(1+12%)元B.a(1﹣8%)(1+12%)2元C.(a﹣8%)(a+12%)元D.a(1﹣8%+12%)元【考点】列代数式.【分析】根据某楼盘商品房成交价今年3月份为a元/m3,4月份比3月份减少了8%,可以求得4月份的成交价,再根据4月份到6月份平均增长率为12%,可以求得6月份商品房成交价,本题得以解决.【解答】解:由题意可得,6月份商品房成交价是:a×(1﹣8%)(1+12%)2元,故选B.8.如图,MN与BC在同一条直线上,且MN=BC=2,点B和点N重合,以MN为底作高为2的等腰△PMN,以BC为边作正方形ABCD,若设△PMN沿射线BC方向平移的距离为x,两图形重合部分的面积为y,则y关于x的函数大致图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三种情况:①当0≤x<1时,由三角形的面积得出两图形y=x2;②当1≤x≤3时,y=﹣x2+x;③当3<x≤4时,y=(4﹣x)2;即可得出函数的图象.【解答】解:分三种情况:①当0≤x<1时,两图形重合部分的面积y=×x×x=x2;②当1≤x≤3时,两图形重合部分的面积y=×2×﹣×(2﹣x)2=﹣x2+ x;③当3<x≤4时,两图形重合部分的面积y=×(4﹣x)2=(4﹣x)2;故选:B.9.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE :S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S △BDE =BD•DE=×5×=,∴S △BCE :S △BDE =:=14:25.故选B .10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间函数关系式为y=﹣n 2+14n ﹣24,则该企业一年中应停产的月份是( )A .1月、2月、3月B .2月、3月、4月C .1月、2月、12月D .1月、11月、12月 【考点】二次函数的应用.【分析】根据解析式,求出函数值y 等于0时对应的月份,依据开口方向以及增减性,再求出y 小于0时的月份即可解答. 【解答】解:∵y=﹣n 2+14n ﹣24 =﹣(n ﹣2)(n ﹣12), 当y=0时,n=2或者n=12. 又∵图象开口向下,∴1月,y <0;2月、12月,y=0.∴该企业一年中应停产的月份是1月、2月、12月. 故选C .二、填空题:本大题共4小题,每小题5分,满分20分 11.﹣2x•(﹣x )3= 2x 4 . 【考点】整式的混合运算. 【专题】计算题.【分析】先计算乘方,再进行单项式的乘法即可. 【解答】解:原式=﹣2x•(﹣x 3) =2x 4. 故答案为2x 4.【点评】本题考查了整式的混合运算,注意乘方的运算符号.12.如图,在⊙O 中,∠AOB+∠COD=70°,AD 与BC 交于点E ,则∠AEB 的度数为 35° .【考点】圆周角定理.【分析】连接BD,根据圆周角定理得到∠ADB=AOB,∠CBD=COD,然后由三角形的外角的性质即可得到结论.【解答】解:连接BD,∵∠ADB=AOB,∠CBD=COD,∵∠AEB=∠CBD+∠ADB=(∠AOB+∠COD),∴∠AEB=×70°=35°,故答案为:35°.【点评】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.13.按一定的规律排列的两行数:猜想并用关于n的代数式表示m= m=(n2﹣1).【考点】规律型:数字的变化类.【分析】根据给定的数据分析m、n之间的关系,由此可得出结论.【解答】解:观察,发现规律:当n=3时,m=(32﹣1)=4;当n=5时,m=(52﹣1)=12;当n=7时,m=(72﹣1)=24;当n=9时,m=(92﹣1)=40;…,∴m=(n2﹣1).故答案为:m=(n2﹣1).【点评】本题考查了规律型中的数字的变化类,解题的关键是找出m、n之间的关系.本题属于基础题,解决该题型题目时,根据给定等式找出变化规律是关键.14.某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元)的关系满足:y=﹣2x+400;(2)工商部门限制销售价x满足:70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是①②③(把所有正确结论的序号都选上)【考点】二次函数的应用.【分析】当70≤x≤150时,根据一次函数的性质可得y的最大值与最小值即可判断①、②;根据:月利润=(售价﹣成本)×月销量,列出函数关系式并配方,结合x的取值范围可得其最值情况,从而判断③、④.【解答】解:由题意知,当70≤x≤150时,y=﹣2x+400,∵﹣2<0,y随x的增大而减小,∴当x=150时,y取得最小值,最小值为100,故①正确;当x=70时,y取得最大值,最大值为260,故②正确;设销售这种文化衫的月利润为W,则W=(x﹣60)(﹣2x+400)=﹣2(x﹣130)2+9800,∵70≤x≤150,∴当x=70时,W取得最小值,最小值为﹣2(70﹣130)2+9800=2600元,故③正确;当x=130时,W取得最大值,最大值为9800元,故④错误;故答案为:①②③.【点评】本题主要考查一次函数的性质与二次函数的实际应用,熟练掌握一次函数的性质及根据相等关系列出二次函数解析式是解题的关键.三、本大题共2小题,每小题8分,满分16分15.计算:x(x+1)﹣(x﹣1)2.【考点】完全平方公式;单项式乘多项式.【分析】根据完全平方公式,即可解答.【解答】解:x(x+1)﹣(x﹣1)2=x2+x﹣x2+2x﹣1=3x﹣1.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.16.解方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2=x2﹣3x+2,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要验根.四、本大题共2小题,每小题8分,满分16分17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.【考点】作图﹣位似变换;作图﹣旋转变换.【专题】作图题.【分析】(1)利用网格特点和旋转的性质画出点B、C、D的对应点B1、C1、D1即可得到四边形AB1C1D1;(2)延长BA到B2,使B2A=2BA,则点B2为点B的对应点,同样方法作出点C和D的对应点C2、D2,则四边形AB2C2D2满足条件.【解答】解:(1)如图,四边形AB1C1D1为所作;(2)如图,四边形AB2C2D2为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为,先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.18.如图,已知:长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).问:打通长江路后从A地道B地可少走多少路程?(参考数据:≈1.4,≈1.7)【考点】解直角三角形的应用.【分析】首先过点C作CD⊥AB于点D,分别求出DC,AD,BC,BD的长,进而得出答案.【解答】解:如图所示:过点C作CD⊥AB于点D,在Rt△ACD中,∠CAD=30°,AC=20km,则CD=10km,AD=10km,在Rt△BCD中,∠CBD=45°,CD=10km,故BD=10km,BC=10km,则AC+BC﹣AB=20+10﹣10﹣10≈7(km),答:打通长江路后从A地道B地可少走7km的路程.【点评】此题主要考查了解直角三角形的应用,根据题意熟练应用锐角三角函数关系是解题关键.五、本大题共2小题,每小题10分,满分20分19.如图,AB是⊙O的一条弦,C,D是⊙O上的两个动点,且在AB弦的异侧,连接CD.(1)已知AC=BC,AB平分∠CBD,求证:AB=CD;(2)已知∠ADB=45°,⊙O的半径为1,求四边形ACBD面积的最大值.【考点】圆周角定理;角平分线的性质.【分析】(1)证=,即可得,从而得证;(2)由S四边形ABCD =S△ADB+S△ACB,设△ADB和△ACB的公共边AB上的高为h1、h2,则h1+h2的最大值为⊙O的直径,即当点C在劣弧AB的中点、点D在优弧AB的中点时,四边形ABCD的面积最大,根据∠ADB=45°知∠AOB=90°,根据AO=BO=1得AB=,由S四边形ABCD=AB(h1+h2)可得答案.【解答】解:(1)∵AC=BC,∴,∵AB平分∠CBD,∴∠CBA=∠DBA,∴,∴,∴AB=CD;(2)∵S四边形ABCD =S△ADB+S△ACB,设△ADB和△ACB的公共边AB上的高为h1、h2,则h1+h2的最大值为⊙O的直径,即当点C在劣弧AB的中点、点D在优弧AB的中点时,四边形ABCD的面积最大,如图,连接OA、OB,∵∠ADB=45°,∴∠AOB=90°,∵AO=BO=1,∴AB=,∴S四边形ABCD =AB(h1+h2)=××2=.【点评】本题主要考查圆周角定理、角平分线的性质、勾股定理等知识点,由△ADB和△ACB的公共边AB上的高为h1、h2,则h1+h2的最大值为⊙O的直径时,四边形ABCD的面积最大是解题的关键.20.寒假结束了,为了了解九年级学生寒假体育锻炼情况,王老师调查了九年级所有学生寒假体育锻炼时间,并随即抽取10名学生进行统计,制作出如下统计图表:根据统计图表信息解答下列问题:(1)将条形统计图补充完整;(2)若用扇形统计图来描述10名学生寒假体育锻炼情况,分别求A,B,C三个等级对应的扇形圆心角的度数;(3)已知这次统计中共有60名学生寒假体育锻炼时间是A等,请你估计这次统计中B 等,C等的学生各有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据:C等人数=总人数﹣A等人数﹣B等人数可得;(2)根据:×360°可分别球儿的A、B、C三等级对应的扇形圆心角的度数;(3)根据有60名学生寒假体育锻炼时间是A等求出总人数,再将总人数分别乘以样本中B、C等级所占比例可得.【解答】解:(1)C等级的人数为:10﹣3﹣5=2(人),补全条形图如图:(2)A等级:360°×=108°,B等级:360°×=180°,C等级:360°×=72°;(3)总人数为:60÷=200(人),∴B 等级人数为:200×=100(人),C 等级人数为:200×=40(人),答:估计这次统计中B 等有100人,C 等的学生各有40人.【点评】本题主要考查了条形统计图、扇形统计图、用样本估计总体,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.六、本题满分12分21.已知A (﹣1,1),B (﹣,﹣2),C (﹣3,﹣)三个点中的两个点在反比例函数图象上.(1)求出这个反比例函数的解析式,并找出不在图象上的点;(2)设P 1(x 1,y 1),P 2(x 2,y 2)是这个反比例函数图象上任意不重合的两点,M=+,N=+,试判断M ,N 的大小,并说明理由.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征. 【分析】(1)直接根据反比例函数中k=xy 的特点进行解答即可.(2)根据点P 的坐标可求出反比例函数的解析式,从而得到y 1与x 1、y 2与x 2的关系,然后只需运用作差法就可解决问题.【解答】解:(1)∵A (﹣1,1),B (﹣,﹣2),C (﹣3,﹣), ∴﹣1×1=﹣1,(﹣)×(﹣2)=1,(﹣3)×(﹣)=1, ∴点A 不在这个反比例函数图象上. (2)M >N .理由如下∵P 1(x 1,y 1),P 2(x 2,y 2)是函数y=图象上的任意不重合的两点, ∴y 1=,y 2=,y 1≠y 2. ∵M=+,N=+,∴M ﹣N=(+)﹣(+)=+=(y1﹣y2)(﹣)=(y1﹣y2)2>0,∴M>N.【点评】本题主要考查了反比例函数图象上点的坐标特征,在解决问题的过程中用到了数形结合和作差法等重要的数学思想方法,应熟练掌握.七、本题满分12分22.若两个二次函数的图象关于原点O中心对称,则称这个二次函数为“关于原点中心对称二次函数”.(1)请直接写出二次函数y=2(x﹣1)2+3“关于原点中心对称二次函数”y′的函数表达式;(2)当(1)中的二次函数y,y′的函数值同时随x的增大而减小时,求x的取值范围;(3)若关于x的两个二次函数y1=axx2+b1x+c1和y2=a2x2+b2x+c2为“关于原点中心对称二次函数”,已知a1=1,函数y3=y1+y2的图象与函数y4=(y1﹣y2)的图象交于点(1,2),试比较y3,y4的大小.【考点】二次函数综合题.【分析】(1)把(﹣x,﹣y)代入y=2(x﹣1)2+3,即可得到解析式y′.(2)画出图象即可解决问题.(3)先求出y3,y4的解析式,画出图象即可解决问题.【解答】解:(1)二次函数y=2(x﹣1)2+3“关于原点中心对称二次函数”y′的函数表达式为y′=﹣2((x+1)2﹣3.(2)如图由图象可知,二次函数y,y′的函数值同时随x的增大而减小时,﹣1≤x≤1.(3)由题意,a2=﹣1,b1=b2,c1=﹣c2,∴y3=y1+y2=2b1x,y4=(y1﹣y2)=x2+c1,∵函数y3=y1+y2的图象与函数y4=(y1﹣y2)的图象交于点(1,2),∴b1=1,c1=1,∴y3=2x,y4=x2+1,∴由图象可知,y4≥y3..【点评】本题考查二次函数综合题、解题的关键是理解题意,学会利用函数图象解决问题,学会探究关于原点中心对称的二次函数的解析式的特征,利用探究得到规律解决问题,属于中考压轴题.八、本题满分14分23.如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF 于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).(1)求证: =;(2)求△AMN的面积(用a,b,c的代数式表示);(3)当∠MAN=45°时,求证:c2=2ab.【考点】四边形综合题.【分析】(1)首先过点N作NH⊥AB于点H,过点M作MI⊥AD于点I,可得△NHN和△DIM是等腰直角三角形,四边形AGNH和四边形AEMI是矩形,则可求得BN=b,DM= a,继而求得答案;(2)由S△AMN =S△ABD﹣S△ABM﹣S△ADN,可得S△AMN=c2﹣c(c﹣a)﹣c(c﹣b),继而求得答案;(3)易证得∴∠DMA=∠BAN,又由∠ABD=∠ADB=45°,可证得△ADM∽△NBA,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:过点N作NH⊥AB于点H,过点M作MI⊥AD于点I,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°,∴△NHN和△DIM是等腰直角三角形,四边形AGNH和四边形AEMI是矩形,∴BN=NH=AG=b,DM=MI=AE=a,∴:=;(2)S△AMN =S△ABD﹣S△ABM﹣S△ADN=AB•AD﹣AB•ME﹣AD•NG=c2﹣c(c﹣a)﹣c(c﹣b)=c(c﹣c+a﹣c+b)=c(a+b﹣c);(3)∵∠DMA=∠ABD+∠MAB=∠MAB+45°,∠BAN=∠MAB+∠MAN=∠MAB+45°,∴∠DMA=∠BAN,∵∠ABD=∠ADB=45°,∴△ADM∽△NBA,∴=,∵DM=a,BN=b,∴c2=2ab.【点评】此题属于四边形的综合题.考查了正方形的性质、等腰直角三角形的性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.。

2019年安庆市数学中考第一次模拟试题(带答案)

2019年安庆市数学中考第一次模拟试题(带答案)

9.B
解析:B 【解析】
【分析】
根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】
解:设温度为 x℃,
x 1
根据题意可知
x x
5 3
x 8
解得 3 x 5.
故选:B. 【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列
出不等式关系式即可求解.
10.C
解析:C 【解析】
【分析】
设第 n 个图形中有 an 个点(n 为正整数),观察图形,根据各图形中点的个数的变化可得
出变化规律“an= n2+ n+1(n 为正整数)”,再代入 n=9 即可求出结论.
【详解】 设第 n 个图形中有 an 个点(n 为正整数), 观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,
b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )
A.③④
B.②③
C.①④
D.①②③
3.如图,A,B,P 是半径为 2 的⊙O 上的三点,∠APB=45°,则弦 AB 的长为( )
A.2
B.4
C. 2 2
D. 2
4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含 30°
∴an=2n+1+2+3+…+(n+1)= n2+ n+1(n 为正整数),
∴a9= ×92+ ×9+1=73.

2019年安徽省安庆市中考数学一模试卷(含答案解析)

2019年安徽省安庆市中考数学一模试卷(含答案解析)

数学精品复习资料安徽省安庆市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)在每小题给出的A、B、C、D四个选项中,只有一项是正确的,把正确选项的代号填在答题卡上.1.﹣3的倒数是()A.B.﹣C.3 D.﹣32.下列图形中既是轴对称又是中心对称的图形是()A. B.C.D.3.2016年3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108 B.1.309×1010C.1.309×109 D.1309×1064.反比例函数y=图象的每条曲线上y都随x增大而增大,则k的取值范围是()A.k>1 B.k>0 C.k<1 D.k<05.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是()A.主视图的面积最大 B.左视图的面积最大C.俯视图的面积最大 D.三个视图的面积一样大6.某地4月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.19,19 B.19,19.5 C.21,22 D.20,207.不等式组:的解集在数轴上表示为()A.B.C.D.8.平面直角坐标系中,正六边形ABCDEF的起始位置如图1所示,边AB在x轴上,现将正六边形沿x轴正方向无滑动滚动,第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD 落在x轴上,如此继续下去.则第2016次滚动后,落在x轴上的是()A.边DE B.边EF C.边FA D.边AB9.如图,Rt△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.7:2 B.5:2 C.4:1 D.3:110.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x轴的直线l:x=t (0≤t≤a)从原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若y 关于t函数的图象大致如图,那么平面图形的形状不可能是()A. B.C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:x3﹣4x=.12.如图,一束平行太阳光照射到正方形上,若∠α=28°,则∠β=.13.据统计,2015年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2014年末我省私人轿车拥有量为x万辆,根据题意可列出的方程是.14.如图,O为正方形ABCD的重心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG、OC,OC交BG于点H.下面四个结论:①△BCE≌△DCF;②OG∥AD;③BH=GH;④以BG为直径的圆与DF相切于点G.其中正确的结论有.(把你认为正确结论的序号都填上)三、(本大题共2小题,每小题8分,满分16分)15.计算:+(﹣)﹣2﹣|1﹣|16.先化简,再求值:(﹣)÷,其中x=3.四、(本大题共2小题,每小题8分,满分16分)17.在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(0,﹣3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.18.某班开展安全知识竞赛活动,满分为100分,得分为整数,全班同学的成绩都在60分以上.班长将所有同学的成绩分成四组,并制作了所示的统计图表:根据图表信息,回答下列问题:(1)该班共有学生人;表中a=;(2)丁组的五名学生中有2名女生,3名男生,现从丁组中随机挑选两名学生参加学校的决赛,请借助树状图、列表或列举等方式,求参加决赛的两名学生是一男、一女的概率.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线C:y=x2﹣4x+3.(1)求该抛物线关于y轴对称的抛物线C1的解析式.(2)将抛物线C平移至C2,使其经过点(1,4).若顶点在x轴上,求C2的解析式.20.我国宣布划设东海防空识别区如图所示,具体范围为六点连线与我领海线之间空域.其A、B、C三点的坐标数据如表:(1)A点与B或C两点的经度差为(单位:度).(2)通过测量发现,∠BAC=95°,∠BCA=30°,已知北纬31°00′(即点A所在的纬度)处两条相差1°的经线之间的实际距离为96km.我空军一架巡逻机在该区域执行巡逻任务,飞行速度为30km/min,求飞机沿东经125°经线方向从B点飞往C点大约需要多少时间.(已知tan35°=0.7,tan55°=,结果保留整数)六、(本题满分12分)21.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB 上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.七、(本题满分12分)22.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,园林管理处还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年).年票分A、B、C三类:A 类年票每张120元,持票者进人园林时无需再购买门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购票方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,从以上4种购票方式中找出进入该园林次数最多的购票方式;(2)设一年中进园次数为x,分别写出购买B、C两类年票的游客全年的进园购票费用y与x的函数关系;当x≥10时,购买B、C两类年票,哪种进园费用较少?(3)求一年中进入该园林至少超过多少次时,购买A类门票进园的费用最少.八、(本题满分14分)23.如图①,平行四边形ABCD中,AB=AC,CE⊥AB于点E,CF⊥AC交AD的延长线于点F.(1)求证:△BCE∽△AFC;(2)连接BF,分别交CE、CD于G、H(如图②),求证:EG=CG;(3)在图②中,若∠ABC=60°,求.安徽省安庆市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)在每小题给出的A、B、C、D四个选项中,只有一项是正确的,把正确选项的代号填在答题卡上.1.﹣3的倒数是()A.B.﹣C.3 D.﹣3【考点】倒数.【分析】根据倒数的概念:乘积是1的两数互为倒数可得答案.【解答】解:﹣3的倒数是﹣,故选:B.【点评】此题主要考查了倒数,关键是掌握倒数的定义.2.下列图形中既是轴对称又是中心对称的图形是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.2016年3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108 B.1.309×1010C.1.309×109 D.1309×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13.09亿=13 0900 0000=1.309×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.反比例函数y=图象的每条曲线上y都随x增大而增大,则k的取值范围是()A.k>1 B.k>0 C.k<1 D.k<0【考点】反比例函数的性质.【分析】对于函数y=来说,当k<0时,每一条曲线上,y随x的增大而增大;当k>0时,每一条曲线上,y随x的增大而减小.【解答】解:∵反比例函数y=的图象上的每一条曲线上,y随x的增大而增大,∴1﹣k<0,∴k>1.故选:A.【点评】本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运用.易错易混点:学生对解析式y=中k的意义不理解,直接认为k<0,造成错误.5.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是()A.主视图的面积最大 B.左视图的面积最大C.俯视图的面积最大 D.三个视图的面积一样大【考点】简单组合体的三视图.【分析】首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.【解答】解:主视图有4个小正方形,左视图有4个小正方形,俯视图有5个小正方形,因此俯视图的面积最大,故选:C.【点评】此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中.6.某地4月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.19,19 B.19,19.5 C.21,22 D.20,20【考点】众数;条形统计图;中位数.【分析】根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.【点评】本题考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.也考查了条形统计图.7.不等式组:的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【解答】解:解不等式组得,再分别表示在数轴上为.故选C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.平面直角坐标系中,正六边形ABCDEF的起始位置如图1所示,边AB在x轴上,现将正六边形沿x轴正方向无滑动滚动,第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD 落在x轴上,如此继续下去.则第2016次滚动后,落在x轴上的是()A.边DE B.边EF C.边FA D.边AB【考点】正多边形和圆;坐标与图形性质;旋转的性质.【专题】规律型.【分析】由正六边形ABCDEF一共有6条边,即6次一循环;易得第2016次滚动后,与第六次滚动后的结果一样,继而求得答案.【解答】解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2016÷6=336,∵第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去,第六次滚动后,边AB落在x轴上,∴第2016次滚动后,落在x轴上的是:边AB.故选D.【点评】此题属于规律题,考查了正多边形与圆的知识.注意得到6次一循环,第2016次滚动后,与第六次滚动后的结果一样是关键.9.如图,Rt△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.7:2 B.5:2 C.4:1 D.3:1【考点】相似三角形的判定与性质;圆周角定理.【分析】利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【解答】解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=8,AC=6,∴BC=5=10,FO=AC=3,∴DO=5,∴DF=5﹣3=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴=3.故选:D.【点评】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.10.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x轴的直线l:x=t (0≤t≤a)从原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若y 关于t函数的图象大致如图,那么平面图形的形状不可能是()A. B.C. D.【考点】动点问题的函数图象.【专题】探究型.【分析】根据题干图象和函数的图象,可以判断出平面图形的形状不可能是哪一个,本题得以解决.【解答】解:由函数图象可知,阴影部分的面积随t的增大而增大,图象都是曲线,故选项A、B、D符合函数的图象,而C中刚开始的图象符合,到t到梯形上底边时图象符合一次函数的图象,故选C.【点评】本题考查动点问题的函数图象,解题的关键是利用数形结合的思想解答问题.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.12.如图,一束平行太阳光照射到正方形上,若∠α=28°,则∠β=62°.【考点】平行线的性质.【分析】如图,根据平行线的性质可以求出∠1的大小,再根据三角形内角和定理即可解决问题.【解答】解:如图,∵a∥b,∴∠α=∠1=28°,∵∠3=90°,∴∠1+∠2=90°,∴∠2=90°﹣∠1=62°,∵∠β=∠2,∴∠β=62°.故答案为62°.【点评】本题考查平行线的性质、正方形的性质、三角形内角和定理、对顶角相等等知识,解题的关键是利用两直线平行同位角相等解决问题,记住正方形的性质以及内角和定理,属于中考常考题型.13.据统计,2015年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2014年末我省私人轿车拥有量为x万辆,根据题意可列出的方程是(1+24.1%)x=254.6.【考点】由实际问题抽象出一元一次方程.【分析】2014年末我省私人轿车拥有量×(1+增长率)=2015年末我省私人轿车拥有量,把相关数值代入即可.【解答】解:设2014年末我省私人轿车拥有量为x万辆,根据题意得(1+24.1%)x=254.6.故答案为(1+24.1%)x=254.6.【点评】此题主要考查了由实问题抽象出一元一次方程;得到2015年末我省私人轿车拥有量的等量关系是解决本题的关键.14.如图,O为正方形ABCD的重心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG、OC,OC交BG于点H.下面四个结论:①△BCE≌△DCF;②OG∥AD;③BH=GH;④以BG为直径的圆与DF相切于点G.其中正确的结论有①,②,④.(把你认为正确结论的序号都填上)【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据SAS可知△BCE≌△DCF,①正确;则∠CDF=∠DBG,从而可得∠BGD=∠CDG+∠F=90°,则BG垂直平分DF,OG为△BDF的中位线,②正确;根据切线的判定可知④正确.【解答】解:①∵在△BCE与△DCF中,BC=DC,∠BCE=∠DCF,CE=CF,∴△BCE≌△DCF,正确;②∵△BCE≌△DCF,∴∠F=∠BEC,又∵∠BEC+∠CBE=90°,∴∠F+∠CBE=90°,∴BG⊥DF,又∵BE平分∠DBC,∴BG垂直平分DF,∴所以G为中点.∵O为正方形中心即为重心,∴OG为△BDF的中位线,∴OG∥BC∥AD,正确;③∵C不是BF中点,∴OC与DF不平行,而O为BD中点,∴BH≠GH,错误;④∵BG⊥DF,∴以BG为直径的圆与DF相切于点G,正确.故正确的结论有①,②,④.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、(本大题共2小题,每小题8分,满分16分)15.计算:+(﹣)﹣2﹣|1﹣|【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】原式第一项化为最简二次根式,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=3+4﹣+1=2+5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=,当x=3时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、(本大题共2小题,每小题8分,满分16分)17.在同一平面直角坐标系中有5个点:A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(0,﹣3).(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(﹣2,﹣2),E(0,﹣3),判断直线l与⊙P的位置关系.【考点】直线与圆的位置关系;点与圆的位置关系;作图—复杂作图.【专题】压轴题;探究型.【分析】(1)在直角坐标系内描出各点,画出△ABC的外接圆,并指出点D与⊙P的位置关系即可;(2)连接PE,用待定系数法求出直线PD与PE的位置关系即可.【解答】解:(1)如图所示:△ABC外接圆的圆心为(﹣1,0),点D在⊙P上;(2)方法一:连接PD,设过点P、D的直线解析式为y=kx+b,∵P(﹣1,0)、D(﹣2,﹣2),∴,解得,∴此直线的解析式为y=2x+2;设过点D、E的直线解析式为y=ax+c,∵D(﹣2,﹣2),E(0,﹣3),∴,解得,∴此直线的解析式为y=﹣x﹣3,∵2×(﹣)=﹣1,∴PD⊥DE,∵点D在⊙P上,∴直线l与⊙P相切.方法二:连接PE,PD,∵直线l过点D(﹣2,﹣2 ),E (0,﹣3 ),∴PE2=12+32=10,PD2=5,DE2=5,..∴PE2=PD2+DE2.∴△PDE是直角三角形,且∠PDE=90°.∴PD⊥DE.∵点D在⊙P上,∴直线l与⊙P相切.【点评】本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键.18.某班开展安全知识竞赛活动,满分为100分,得分为整数,全班同学的成绩都在60分以上.班长将所有同学的成绩分成四组,并制作了所示的统计图表:根据图表信息,回答下列问题:(1)该班共有学生40人;表中a=20;(2)丁组的五名学生中有2名女生,3名男生,现从丁组中随机挑选两名学生参加学校的决赛,请借助树状图、列表或列举等方式,求参加决赛的两名学生是一男、一女的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由两个统计图可求得该班学生数与a的值;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与参加决赛的两名学生是一男、一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班共有学生:10÷25%=40(人),a=40×50%=20(人);故答案为:40,20;(2)画树状图得:∵共有20种等可能的结果,参加决赛的两名学生是一男、一女的有12种情况,∴参加决赛的两名学生是一男、一女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线C:y=x2﹣4x+3.(1)求该抛物线关于y轴对称的抛物线C1的解析式.(2)将抛物线C平移至C2,使其经过点(1,4).若顶点在x轴上,求C2的解析式.【考点】二次函数图象与几何变换.【分析】(1)利用原抛物线上的关于y轴对称的点的特点:纵坐标相同,横坐标互为相反数就可以解答.(2)设平移后的解析式为:y=(x﹣h)2,代入点(1,4)求得h的值即可.【解答】解:(1)配方,y=x2﹣4x+3=(x﹣2)2﹣1.∴抛物线C:顶点(2,﹣1),与y 轴交点(0,3)∵C1与C关于y轴对称,∴C1顶点坐标是(﹣2,﹣1),且与y轴交点(0,3).设C1的解析式为y=a(x+2)2﹣1、把(0,3)代入,解得:a=1,∴C1的解析式为y=x2+4x+3.(2)由题意,可设平移后的解析式为:y=(x﹣h)2,∵抛物线C2经过点(1,4),∴(1﹣h)2=4,解得:h=﹣1或h=3,∴C2的解析式为:y=(x+1)2或y=(x﹣3)2,即y=x2+2x+1或y=x2﹣6x+9.【点评】本题考查了二次函数的图象与几何变换,解决本题的关键是抓住关于y轴对称的坐标特点和平移的规律.20.我国宣布划设东海防空识别区如图所示,具体范围为六点连线与我领海线之间空域.其A、B、C三点的坐标数据如表:(1)A点与B或C两点的经度差为(单位:度).(2)通过测量发现,∠BAC=95°,∠BCA=30°,已知北纬31°00′(即点A所在的纬度)处两条相差1°的经线之间的实际距离为96km.我空军一架巡逻机在该区域执行巡逻任务,飞行速度为30km/min,求飞机沿东经125°经线方向从B点飞往C点大约需要多少时间.(已知tan35°=0.7,tan55°=,结果保留整数)【考点】解直角三角形的应用-方向角问题.【分析】(1)用A点的经度值减去B点的经度值即可;(2)过点A作AD⊥BC于D,则AD=×96=320(km),解直角△ABD,求出BD,解直角△ACD,求出CD,那么BC=BD+CD,再根据时间=路程÷速度即可求解.【解答】解:(1)128°20′﹣125°=3°20′=()°.故答案为;(2)过点A作AD⊥BC于D.则AD=×96=320(km).∵在△ABD中,∠B=180°﹣95°﹣30°=55°,∴BD=AD÷tan∠B=320×0.7=224(km),∵在△ACD中,CD=AD÷tan∠C==320≈554(km),∴BC=BD+CD≈778(km),∴778÷30≈26(min).【点评】此题考查了解直角三角形的应用﹣方向角问题,路程、速度与时间的关系,三角函数定义.对于解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.六、(本题满分12分)21.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB 上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连接A1B,当点E在边AB上移动时,求A1B长的最小值.【考点】翻折变换(折叠问题);全等三角形的判定与性质;勾股定理;三角形中位线定理.【分析】(1)点A1落在边BC即点A1与点C重合,可知此时DE为△ABC的中位线,得DE=BC;(2)Rt△BCD中求出BD的长,由折叠可得A1D=AD=1,根据A1B+A1D≥BD可得A1B长的最小值.【解答】解:(1)∵点D到边BC的距离是DC=DA=1,∴点A1落在边BC上时,点A1与点C重合,如图1所示.此时,DE为AC的垂直平分线,即DE为△ABC的中位线,∴DE=BC=1;(2)连接BD,DE,在Rt△BCD中,BD==,由折叠知△A1DE≌△ADE,∴A1D=AD=1,由A1B+A1D≥BD,得:A1B≥BD﹣A1D=﹣1,∴A1B长的最小值是﹣1.【点评】本题考查了折叠的性质、勾股定理及三角形全等的判定与性质,关键是熟练掌握折叠变换的性质.七、(本题满分12分)22.某园林门票每张10元,只供一次使用,考虑到人们的不同需求,园林管理处还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年).年票分A、B、C三类:A 类年票每张120元,持票者进人园林时无需再购买门票;B类年票每张60元,持票者进入园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购票方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,从以上4种购票方式中找出进入该园林次数最多的购票方式;(2)设一年中进园次数为x,分别写出购买B、C两类年票的游客全年的进园购票费用y与x的函数关系;当x≥10时,购买B、C两类年票,哪种进园费用较少?(3)求一年中进入该园林至少超过多少次时,购买A类门票进园的费用最少.【考点】一次函数的应用.【分析】(1)根据题意分别求出不购年票和购买年票一年进入园林的次数,再进行比较就可以求出结论;(2)设一年去园林的次数为x次,购买年票的一年的费用为y B元,不购卖年票的一年的费用为y C 元,由W B>W C建立不等式求出其解即可;(3)设一年中进入该园林x次,根据题意列出不等式组解答即可.【解答】解:(1)若不购买年票,则能够进入该园林80÷10=8(次);因为80<120,所以不可能选择A类年票;若只选择购买B类年票,则能够进入该园林(80﹣60)÷2=10(次);若只选择购买C类年票,则能够进入该园林(80﹣40)÷3≈13(次).所以,一年中用80元购买门票,进园次数最多的购票方式是购买C类年票.(2)由题意得y B=2x+60;y C=3x+40;由2x+60>3x+40,解得x<20,又∵x≥10,∴一年中进园次数10≤x<20时,选择C类年票花费较少;当x=20时,选择B、C两种方式花费一样多;当x>20时,选择B类年票花费较少.(3)设一年中进入该园林x次,根据题意,得:,解得x>30.答:一年中进入该园林至少超过30次时,购买A类年票比较合算.【点评】此题主要考查了一次函数的实际运用,一元一次不等式组的应用,关键是正确理解题意,找出题目中的数量关系,列出函数解析式与不等式组解决问题.八、(本题满分14分)23.如图①,平行四边形ABCD中,AB=AC,CE⊥AB于点E,CF⊥AC交AD的延长线于点F.(1)求证:△BCE∽△AFC;(2)连接BF,分别交CE、CD于G、H(如图②),求证:EG=CG;(3)在图②中,若∠ABC=60°,求.【考点】相似形综合题.【分析】(1)根据垂直的定义得到∠BEC=∠ACF=90°,由四边形ABCD是平行四边形,得到AB∥CD,根据等腰三角形的性质即可得到结论;(2)根据相似三角形的性质得到,根据平行线分线段成比例定理得到,推出△BGE≌△HGC,根据全等三角形的性质即可得到结论;(3)根据等边三角形的判定定理得到△ABC是等边三角形,由全等三角形的性质得到BE=CH,等量代换得到CH=DH,于是得到结论.【解答】(1)证明:∵CE⊥AB,CF⊥AC,∴∠BEC=∠ACF=90°,∵四边形ABCD是平行四边形,∴AB∥CD,又∵AB=AC,∴∠EBC=∠ACB=∠CAF,∴△BCE∽△AFC;(2)证明:∵△BCE∽△AFC,∴,∵AD∥BC,AB∥CD,∴,∴BE=CH,∵AB∥CD,∴∠BEG=∠HCG,∠EBG=∠CHG,在△BGE与△HGC中,,∴△BGE≌△HGC,∴EG=CG;(3)解:∵∠ABC=60°,∴△ABC是等边三角形,∵CE⊥AB,∴BE=AE,∵△BGE≌△HGC,∴BE=CH,∴CH=DH,∵AD∥BC,∴BH=FH,∵BG=GH,∴BG:GF=1:3.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的判定和性质,平行线的性质,平行线分线段成比例,平行四边形的性质,证得△BGE≌△HGC是解题的关键.。

2019安徽省安庆市中考一模数学试卷含答案

2019安徽省安庆市中考一模数学试卷含答案

五、(本大题共 2 小题,每小题 10 分,满分 20 分) 19.近年来,全民运动在加强,除了室外的篮球场,也出现了室内的篮球机,下图是篮球
机的侧面图.已知 BF∥B1F1,A1D⊥B1F1,CB1⊥B1F1,EE1⊥B1F1,在 E 处测得点 D 的 仰角为 53°,在 A 处测得篮筐 C 的仰角为 37°,BB1=EE1=80cm, B1E1=203cm,A1D=236cm, 求篮框 C 距地面 B1F1 的高度. (参考数据:sin53°≈0.8, cos53°≈0.6, sin37°≈0.6, cos37°≈0.8,tan37°≈0.75)
324 18b c 160 可得: 400 20b c 180
b 48 解得: c 380
……………4 分
∴ y x2 48x 380 (x 24)2 196
∴当售价定为 24 元时,可使每天获得最大利润,最大利润是 196 元。…………6 分
(2)当每天利润为 0 元时,售价即为成本价。令 y x2 48x 380 =0,
成绩(m)
2.3
2.4
则下列关于这组数据的说法,正确的是
A.众数是 2.3
B.平均数是 2.4
2.5
2.4
C.中位数是 2.5
2.4 D. 方差是 0.01
8.已知关于 x 的一元二次方程 x2 (m 1)x m 0 有两个相等的实数根,则 m 的值为
A. 1
B. 1 或-1
C. -1
D. 2
9.如图,在平面直角坐标系中,直线 y=-3x+3 交 x 轴于 A 点,交 y 轴于 B 点,以 AB 为边
……………4 分
补全图形
……………6 分
(3)树状图如下:

2019安庆中考一模数学

2019安庆中考一模数学

2019年安庆市中考模拟考试数 学 试 题(满分为150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分) 1.2-的倒数是 A .2B .-2C .21D .21-2.下列运算正确的是A .632a a a =⋅ B .632)(a a =-C.628a a a=÷D .222)(b a b a +=+3.党的十八大以来,中央提出开展脱贫攻坚,经过五年来的努力,近6000万贫困人口实现脱贫,6000万用科学记数法表示为 A .6000×104B .60×106C .0.6×108D .6×1074.下图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是5. 不等式组⎩⎨⎧≤->+04214x x 的解集在数轴上表示为6.随着人民生活水平的提高,中国春节已经成为中国公民旅游黄金周.国家旅游局数据显示,2017年春节中国公民出境旅游约615万人次,2018,2019两年出境旅游人数持续增长,在2019年春节出境旅游达到700万人次,设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为x ,则下列方程正确的是A .7001615=+)(x B .70021615=+)(x C .70016152=+)(xD .700161516152=+++)()(x x7.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如下表:则下列关于这组数据的说法,正确的是A .众数是2.3B .平均数是2.4C .中位数是2.5D . 方差是0.018.已知关于x 的一元二次方程012=+++m x m x )(有两个相等的实数根,则m 的值为 A . 1 B . 1或-1C . -1D . 29.如图,在平面直角坐标系中,直线y =-3x +3交x 轴于A 点,交y 轴于B 点,以AB 为边在第一象限作正方形ABCD ,其中顶点D 恰好落在双曲线xky =上,现将正方形ABCD 向下平移a 个单位,可以使得顶点C 落在双曲线上,则a 的值为 A .2 B .37C .38D . 310.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为 A . 415 B .524C .5D .320二、填空题(本大题共4小题,每小题5分,满分20分) 11.=327- .12.因式分解:=+-2422a a.第10题图CAPB13.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =6,D 为⊙O 上一点,∠ADC =30°,则劣弧BC 的长为 .14.如图,△ABC 是一张等腰三角形纸片,且AB =AC =6,BC =4,将△ABC 沿着某条过一个顶点的直线折叠,打开后再沿着所得到的折痕剪开,若剪开后的两个三角形能够拼成一个与原△ABC 不全等的新三角形,则折痕的长为 . 三、(本大题共2小题,每小题8分,满分16分)15.计算1221°30cos 33-⎪⎭⎫ ⎝⎛--+-)(16.《九章算术》中有这样一道题,原文如下:“今有人共买鸡,人出九,盈十一;人出六,不足十六。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎩ 2019 年安庆市中考模拟考试数 学 试 题(满分为 150 分,考试时间 120 分钟)一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分) 1. - 2 的倒数是 A . 2B .-2C . 12 2. 下列运算正确的是D . - 12A . a 2 ⋅ a 3 = a6B . (-a 2 )3 = a6C. a8÷ a 2 = a 6D . (a + b )2 = a 2 + b23. 党的十八大以来,中央提出开展脱贫攻坚,经过五年来的努力,近 6000 万贫困人口实现脱贫,6000 万用科学记数法表示为 A .6000×104B .60×106C .0.6×108D .6×1074. 下图分别是某校体育运动会的颁奖台和它的主视图,则其俯视图是⎧x + 4 > 1 5. 不等式组⎨2x - 4 ≤ 0 的解集在数轴上表示为6. 随着人民生活水平的提高,中国春节已经成为中国公民旅游黄金周.国家旅游局数据显示,2017 年春节中国公民出境旅游约 615 万人次,2018,2019 两年出境旅游人数持续增长,在 2019 年春节出境旅游达到 700 万人次,设 2018 年与 2019 年春节出境旅游总量较上一年春节的平均增长率为 x ,则下列方程正确的是 A . 61(5 1+ x )= 700 C . 61(5 1+ x )2= 700B . 61(5 1+ 2x )= 700D . 61(5 1+ x )+ 61(5 1+ x )2= 700Dk 7. 立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如 下表:则下列关于这组数据的说法,正确的是 A .众数是 2.3B .平均数是 2.4C .中位数是 2.5D . 方差是 0.018.已知关于 x 的一元二次方程 x 2+(m +1)x + m = 0 有两个相等的实数根,则m 的值为 A . 1B . 1 或-1C . -1D . 29. 如图,在平面直角坐标系中,直线 y =-3x +3 交 x 轴于 A 点,交 y 轴于 B 点,以 AB 为边在第一象限作正方形 ABCD ,其中顶点 D 恰好落在双曲线 y =上,现将正方形ABCDx向下平移 a 个单位,可以使得顶点 C 落在双曲线上,则 a 的值为 7 A .2B .38 C .D . 33APBC10. 如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点 P 为 AC 边上的动点,过点 P 作 PD⊥AB 于点 D ,则 PB +PD 的最小值为 15 24 A.B .45C.5D.203二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11.3 - 27 = .12.因式分解: 2a 2- 4a + 2 = .第 10 题图yCBDOAx第 9 题图成绩(m ) 2.3 2.4 2.5 2.4 2.4C.O13. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =6,D 为⊙O 上一点,∠ADC =30°,则劣弧 BC 的长为.AABDBC第 14 题图14. 如图,△ABC 是一张等腰三角形纸片,且 AB =AC =6,BC =4,将△ABC 沿着某条过一个顶点的直线折叠,打开后再沿着所得到的折痕剪开,若剪开后的两个三角形能够拼成一个与原△ABC 不全等的新三角形,则折痕的长为 .三、(本大题共 2 小题,每小题 8 分,满分 16 分)15.计算(- 3)2 + 3 cos 30°- ⎛- ⎝ 1 ⎫-1⎪ 2 ⎭16. 《九章算术》中有这样一道题,原文如下:“今有人共买鸡,人出九,盈十一;人出六,不足十六。

问人数、鸡价各几何?” 大意为:有几个人共同出钱买鸡,每人出九钱,则多了十一钱;每人出六钱,则少了十六钱.那么几个人共同买鸡?鸡的价钱是多少? 请解答上述问题.四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. 如图所示,在边长为 1 个单位长度的小正方形组成的网格中,△ABC 的顶点 A ,B ,C 在格点 (网格线的交点)上.(1) 将△ABC 绕点 B 逆时针旋转 90°,得到△ A 1BC 1,画出△A 1BC 1;(2) 以点 A 为位似中心放大△ ABC , 得到△AB 2C 2 ,使放大前后的三角形面积之比为1∶4,请你在网格内画出△AB 2C 2.第 13 题图1 18. 有下列等式:第 1 个等式:1+1 1⨯ 2= 1+ 1 ;2 第 2 个等式: 1 + 1= 1 + 12 第3 个等式: + 33⨯ 4 1 = 5⨯ 6 3 4 1 + 1 5 6 ……请你按照上面的规律解答下列问题:(1) 第 4 个等式是;(2) 用含 n (n 为正整数)的代数式表示第 n 个等式,并证明其正确性.五、(本大题共 2 小题,每小题 10 分,满分 20 分)19. 近年来,全民运动在加强,除了室外的篮球场,也出现了室内的篮球机,下图是篮球机的侧面图.已知 BF ∥B 1F 1,A 1D ⊥B 1F 1,CB 1⊥B 1F 1,EE 1⊥B 1F 1,在 E 处测得点 D 的仰角为 53°,在 A 处测得篮筐 C 的仰角为 37°,BB 1=EE 1=80cm , B 1E 1=203cm ,A 1D =236cm ,求篮框 C 距地面 B 1F 1 的高度.(参考数据:sin53°≈0.8, cos53°≈0.6, sin37°≈0.6, cos37°≈0.8,tan37°≈0.75)20.如图,已知⊙O 的半径为5,AB 为⊙O 的弦,C 为弧AB 上一点,过点C 作MN∥AB.(1)若AB=8,MN 与⊙O 相切于点C,求弦AC 的长;(2)连接OB,CB,若四边形OACB 是平行四边形,求证:MN 是⊙O 的切线.六、(本题满分 12 分)21.某学校开展了以下四项课外活动课程:A.计算机编程;B.绘画摄影;C.民乐演奏;D.面点制作.为了解学生最喜欢哪一项课外活动课程,随机抽取了部分学生进行调查,要求被调查的学生每人从中选取一项最喜欢的课程,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有多少人?(2)请你将条形统计图②补充完整;(3)在平时的计算机编程的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加安徽省计算机编程大赛,求恰好同时选中甲、乙两位同学的概率.七、(本题满分 12 分)22.为了早日完成祖国和平统一,实现中华民族伟大复兴,国家出台一系列惠台政策,今年春节过后,大批台湾水果进入大陆市场,一名在校大学生抓住机会,利用“互联网+” 自主创业,销售某种台湾凤梨.网店市场信息显示,销售此种台湾凤梨,每天所获的利润y(元)与售价x(元/kg)之间关系式满足y = -x2 +bx +c ,该大学生第一天将售价定为 18 元/kg,当天获利 160 元,第二天将售价定为 20 元/kg,当天获利 180 元.(1)求当售价定为多少时,可使每天获得最大利润,最大利润是多少?(2)求此种台湾凤梨的成本价是多少元/kg?【单位利润=售价-成本价】(3)该大学生发现每天的销售量w (kg)与售价x (元/kg)之间存在一次函数关系,请你直接写出w 与x 之间的函数关系式.八、(本题满分 14 分)23.如图所示,△ABC 都是等腰直角三角形,∠ACB=90º,AC=BC,点P 是△ABC 内一动点,连接PA,PB,PC.(1)在图 1 中,若∠3=∠4,求证:∠5=∠6;(2)在图2中,若∠2=∠3,∠APC=90º,求证:PB2=PA·PC;(3)在图 3 中,若∠3=30º,∠4=∠6,①求证:AP=BC;②求S△PBC:S△P AB的值(直接写出计算结果,不需要写过程).C5 63 P 41 2 AC5 63 P 4B A 1 2C5 63 P 4B A1 2 B图1 图2 图33 ⎩ ⎨安庆市 2019 年中考模拟数学试题参考答案及评分标准一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分)题号 1 2 3 4 5 6 7 8 9 10 答案DCDACCBACB二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11. -3 . 12. 2(a -1)213. 2π 【第 14 题答对 1 个得 3 分,答对 2 个得 5 分】三、(本大题共 2 小题,每小题 8 分,满分 16 分)15.(- 3)2 + 3 cos 30o- ⎛- ⎝ 1 ⎫-1⎪ ⎭解:原式= 9 + 3 ⨯- (-2) 2………………3 分= 9 + 3+ 22 =12 12………………6 分………………8 分16. 解:设有 x 人共同买鸡,鸡的价格为 y 钱,⎧9x = y +11根据题意得:⎧x = 9 解得: ⎨y = 70⎩6x = y -16 ………………4 分………………7 分答:共有 9 人共同买鸡,鸡的价格为 70 钱。

........................ 8 分四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. (1)如图 ................... 4 分(2)如图 ................... 8 分14. 17或4 2 21 18.(1)第4 个等式是:+41=7 ⨯ 81+17 8……………2 分1(2)第n 个等式是:n +1(2n -1) ⨯2n=1+12n -1 2n……………4 分证明:左边=(22n-1)+(2n -1) ⨯ 2n=4n -1(2n -1) ⨯2n1(2n -1) ⨯ 2n右边==2n(2n -1) ⨯2n4n -1(2n -1) ⨯2n+2n -1(2n -1) ⨯ 2n∴左边=右边∴等式成立................................................... 8 分五、(本大题共 2 小题,每小题 10 分,满分 20 分)19. 解:由题知:AD=A1D-AA1=236-80=156 cm在Rt△ADE 中,BF∥B1F1,A1D⊥B1F1,∠DEA=53°,∴∠D=37°tan 37︒= AE≈ 0.75 AD∴AE=117cm ............................................................. 4 分AB=BE-AE =B1E1-AE =203-117=86 cm在Rt△ACB 中,∠CAB=37°,tan 37︒=CB≈ 0.75 AB∴CB=64.5cm∴CB1=CB+BB1=64.5+80=144.5cm ......................... 9 分答:篮框距地面的高度为144.5cm。

相关文档
最新文档