【中考精选】安徽省中考数学一模试卷(含答案解析)
2022年安徽省马鞍山市中考数学一模试卷(有答案)

2021-2022学年度第二学期九年级数学一模试题卷一、选择题(本大题共10小题,每小题4分,满分40分)1.实数﹣2022是2022的()A.绝对值B.相反数C.倒数D.以上都不正确2.截至2021年12月中国已向国际社会提供新冠疫苗超过18亿剂,将数据1800000000用科学记数法表示为()A.0.18×1010B.1.8×108C.18×108D.1.8×1093.如图中,与图中几何体对应的三视图是()4.一副三角板按如图所示的位置摆放,若BC∥DE,则∠1的度数是()A.65°B.70°C.75°D.80°5.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C.a,D.,6.电影《长津湖》真实生动地诠释了中国人民伟大的抗美援朝精神,一上映就受到观众的追捧,第一天票房收入2.05亿元,前三天的票房累计收入达到10.53亿元.若每天票房收入的增长率都为x,依题意可列方程()A.2.05(1+x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.537.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4B.x<﹣2或0<x<4C.x<﹣2或x>4D.﹣2<x<0或x>48.如图,在△ABC中,AB=4,AC=3,BC=5.将△ABC沿着点A到点C的方向平移到△DEF的位置,图中阴影部分面积为4,则平移的距离为()A.3﹣B.C.3+D.29.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A 重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()10.如图1,在平行四边形ABCD中,∠B=60°,BC=2AB,动点P从点A出发,以每秒1个单位的速度沿线段AB运动到点B停止,同时动点Q从点B出发,以每秒4个单位的速度沿折线B﹣C﹣D运动到点D停止.图2是点P、Q运动时,△BPQ的面积S与运动时间t函数关系的图象,则a的值是()A.6B.9C.6D.12二.填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:2x3﹣8xy2=.12.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=°.13.不透明的盒子中装有除标号外完全相同的4个小球,小球上分别标有数﹣4,﹣2,3,5,从盒子中随机抽取一个小球,数记为a,再从剩下的球中随机抽取一个小球,数记为b,则使得点(a,a﹣b)在第四象限的概率为.14.如图,AC垂直平分线段BD,相交于点O,且OB=OC,∠BAD=120°.(1)∠ABC=.(2)E为BD边上的一个动点,BC=6,当最小时BE=.三.解答题(本大题共2小题,每小题8分,满分16分)15.计算:.16.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)及平面直角坐标系xOy.(1)将△ABC绕O点逆时针旋转90°得到△A1B1C1,请画出△A1B1C1;(2)以点O为位似中心,在第四象限将△ABC放大2倍得到△A2B2C2,请画出△△A2B2C2并求出△A2B2C2的面积.四.解答题(本大题共2小题,每小题8分,满分16分)17.2022年冬奥会吉祥物冰墩墩一夜之间火遍全球,各种冰墩墩的玩偶,挂件,灯饰等应运而生.某学校决定购买A,B两种型号的冰墩墩饰品作为纪念品,已知A种比B种每件多25元,预算资金为1700元∶(1)其中800元购买A种商品,其余资金购买B种商品,且购买B种的数量是A种的3倍.求A,B两种饰品的单价.(2)购买当日,正逢开学季搞促销,所有商品均按原价八折销售,学校调整了购买方案∶在不超过预算资金的前提下,准备购买A;B两种饰品共100件∶问最多购买A种商品多少件?18.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为,A n的坐标(用n的代数式表示)为.(2)2020米长的护栏,则需要小正方形个,需要大正方形个.五.解答题(本大题共2小题,每小题10分,满分20分)19.如图,小明在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到D 处再测得该建筑物顶点A的仰角为30°,已知山坡的坡比为1:3,BC=45米.(1)求该建筑物的高度;(结果保留根号)(2)求小明所在位置点D的铅直高度.(结果精确到1米,参考数据≈1.414,≈1.732)20.如图,已知AB是圆O直径,过圆上点C作CD⊥AB,垂足为点D.连结OC,过点B 作BE∥OC,交圆O于点E,连结AE,CE,BD=1,AB=6.(1)求sin∠ABE的值.(2)求CE的长.六.(本题满分12分)21.某学校组织了一次知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表.学校若干名学生成绩分布统计表请你根据统计图表解答下列问题:(1)此次抽样调查的样本容量是,a=,b=,c=.(2)请补全学生成绩分布直方图.(3)比赛按照分数由高到低共设置一、二、三等奖,如果有25%的参赛学生能获得一等奖,那么一等奖的分数线是多少?七.(本题满分12分)22.如图,已知抛物线y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一点,且点P的横坐标为m.当点P在直线AC下方时,过点P作PE∥x轴,交直线AC于点E,作PF∥y轴.交直线AC于点F,求PE+PF的最大值;八.(本题满分14分)23.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,当AD=25,且AE<DE时,求的值;(3)如图3,当BE•EF=84时,求BP的值.2021-2022学年度第二学期九年级数学一模试题卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.实数﹣2022是2022的()A.绝对值B.相反数C.倒数D.以上都不正确【分析】根据绝对值,相反数,倒数的定义判断即可.【解答】解:﹣2022和2022互为相反数,故选:B.2.截至2021年12月中国已向国际社会提供新冠疫苗超过18亿剂,将数据1800000000用科学记数法表示为()A.0.18×1010B.1.8×108C.18×108D.1.8×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.对于较大数n为原整数位减1.【解答】解:1800000000=1.8×109,故选:D.3.如图中,与图中几何体对应的三视图是()【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此判断即可.【解答】解:该几何体的主视图的底层是一个较大的矩形,上层的右边是一个较小的矩形;它的左视图的底层是一个较大的矩形,上层的左边是一个较小的矩形;它的俯视图是一个较大的正方形,正方形内部的右上角是一个较小的正方形.故选:C.4.一副三角板按如图所示的位置摆放,若BC∥DE,则∠1的度数是()A.65°B.70°C.75°D.80°【分析】由平行线的性质可得∠2=∠B=45°,再由三角形的外角性质可得∠1=∠2+∠D即可求解.【解答】解:如图所示:∵BC∥DE,∴∠2=∠B=45°,∴∠1=∠2+∠D=45°+30°=75°.故选:C.5.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C.a,D.,【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.【解答】解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.∴其中位数为.故选:D.6.电影《长津湖》真实生动地诠释了中国人民伟大的抗美援朝精神,一上映就受到观众的追捧,第一天票房收入2.05亿元,前三天的票房累计收入达到10.53亿元.若每天票房收入的增长率都为x,依题意可列方程()A.2.05(1+x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.53【分析】设增长率为x,根据第一天的票房收入及前三天的票房收入,即可得出关于x 的一元二次方程,此题得解.【解答】解:设增长率为x,依题意,得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.7.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4B.x<﹣2或0<x<4C.x<﹣2或x>4D.﹣2<x<0或x>4【分析】根据两函数图象的上下位置关系结合交点横坐标即可找出不等式的解集,此题得解.【解答】解:观察函数图象可发现:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是x<﹣2或0<x<4.故选:B.8.如图,在△ABC中,AB=4,AC=3,BC=5.将△ABC沿着点A到点C的方向平移到△DEF的位置,图中阴影部分面积为4,则平移的距离为()A.3﹣B.C.3+D.2【分析】根据勾股定理的逆定理求出△ABC是直角三角形,求出△ABC的面积,根据平移的性质得出AC=DF=3,△DEF的面积=△ABC的面积=6,再根据面积比等于相似比的平方得出即可.【解答】解:∵AB=4,AC=3,BC=5,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠A=90°,∵将△ABC沿着点A到点C的方向平移到△DEF的位置,∴△DEF的面积=△ABC的面积==6,DF=AC=3,∵图中阴影部分面积为4,∴=,∴=,解得:DC=,即平移的距离是CF=AC﹣DC=3﹣,故选:A.9.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A 重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;【解答】解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1,当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.10.如图1,在平行四边形ABCD中,∠B=60°,BC=2AB,动点P从点A出发,以每秒1个单位的速度沿线段AB运动到点B停止,同时动点Q从点B出发,以每秒4个单位的速度沿折线B﹣C﹣D运动到点D停止.图2是点P、Q运动时,△BPQ的面积S与运动时间t函数关系的图象,则a的值是()A.6B.9C.6D.12 【分析】由点P和点Q的运动可知,AB=1×6=6,BC=12,当点Q在BC上时,即0≤t<3时,BQ=4t,当点Q在CD上时,即3≤t≤6时,分别表达出△BPQ的面积,分析可知当点Q到达点C时,S=a,此时t=3,再结合△BPQ的面积公式求解即可.【解答】解:由题图2得,t=6时点P停止运动,∴点P以每秒1个单位速度从点A运动到点B用了6秒,∴AB=1×6=6,∴BC=2AB=12,由点P和点Q的运动可知,AP=t,BP=6﹣t,当点Q在BC上时,即0≤t<3时,BQ=4t,过点P作PM⊥BC于点M,∵∠B=60°,∴PM=BP•sin B=(6﹣t),此时△BPQ的面积=BQ•PM=•4t•(6﹣t)=﹣t2+6t,当点Q在CD上时,即3≤t≤6时,∵四边形ABCD是平行四边形,∴AB∥CD,∴S△BPQ=S△BPC=BC•PM=×12×(6﹣t)=﹣3t+18,由上可知,当点Q到达点C时,S=a,即当t=3时,a=﹣3×3+18=9,故选:B.二.填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:2x3﹣8xy2=.【分析】首先提取公因式ab,然后再利用平方差公式继续分解,即可求得答案.【解答】解:2x3﹣8xy2=2x(x2﹣y2)=2x(x+y)(x﹣y).故答案为:2x(x+y)(x﹣y).12.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=°.【分析】连接OC,根据切线的性质和圆内接四边形的性质即可得到结论.【解答】解:连接OC,∵PC是⊙O的切线,∴∠OCP=90°,∵∠P=40°,∴∠COB=50°,∵OC=OB,∴∠ABC=(180°﹣50°)=65°,∴∠ADC=180°﹣∠ABC=115°,故答案为:115.13.不透明的盒子中装有除标号外完全相同的4个小球,小球上分别标有数﹣4,﹣2,3,5,从盒子中随机抽取一个小球,数记为a,再从剩下的球中随机抽取一个小球,数记为b,则使得点(a,a﹣b)在第四象限的概率为.【分析】画树状图展示所有12种等可能的结果,找出点(a,a﹣b)在第四象限的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果,其中点(a,a﹣b)在第四象限的结果数为1,所以使得点(a,a﹣b)在第四象限的概率=.故答案为.14.如图,AC垂直平分线段BD,相交于点O,且OB=OC,∠BAD=120°.(1)∠ABC=.(2)E为BD边上的一个动点,BC=6,当最小时BE=.【分析】(1)根据垂直平分线的性质以及等腰三角形的性质即可求得∠ABC;(2)作A关于OB的对称点A',过A作AG⊥A'B于G,过点E作EF⊥A'B于F,将BE 转化为EF,再根据AE+BE=AE+FE≥AG,设AG与OB交于E',BE'即为当最小时的BE,求出BE'即可.【解答】解:(1)∵AC垂直平分线段BD,∴AB=AC,∴∠ABD=∠ADB,∵∠BAD=120°,∴∠ABD=(180°﹣120°)÷2=30°,∵OB=OC,OB⊥OC,∴∠OBC=45°,∴∠ABC=30°+45°=75°,故答案为:75°;(2)作A关于OB的对称点A',过A作AG⊥A'B于G,过点E作EF⊥A'B于F,∵∠ABO=30°,∴∠A'BO=30°,∴FE=BE,∴AE+BE=AE+FE≥AG,设AG与OB交于E',BE'即为当最小时的BE,∵BC=6,∠OBC=45°,∴OB=OC=BC cos45°=,∵cos∠A'BO===,∴BA'=,∵∠A'BA=60°,AB=A'B,∴△ABA'为等边三角形,∴BG=BA'=,∵cos∠A'BO===,∴BE'=2.故答案为:2.三.解答题(本大题共2小题,每小题8分,满分16分)15.计算:.【分析】首先计算特殊角的三角函数值、负整数指数幂、开方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:=﹣27+8××﹣3=﹣27+2﹣3=﹣27﹣.16.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)及平面直角坐标系xOy.(1)将△ABC绕O点逆时针旋转90°得到△A1B1C1,请画出△A1B1C1;(2)以点O为位似中心,在第四象限将△ABC放大2倍得到△A2B2C2,请画出△△A2B2C2并求出△A2B2C2的面积.【分析】(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1即可;(2)把A、B、C点的坐标都乘以2得到A2、B2、C2的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△A2B2C2的面积为14.四.解答题(本大题共2小题,每小题8分,满分16分)17.2022年冬奥会吉祥物冰墩墩一夜之间火遍全球,各种冰墩墩的玩偶,挂件,灯饰等应运而生.某学校决定购买A,B两种型号的冰墩墩饰品作为纪念品,已知A种比B种每件多25元,预算资金为1700元:(1)其中800元购买A种商品,其余资金购买B种商品,且购买B种的数量是A种的3倍.求A,B两种饰品的单价.(2)购买当日,正逢开学季搞促销,所有商品均按原价八折销售,学校调整了购买方案∶在不超过预算资金的前提下,准备购买A;B两种饰品共100件:问最多购买A种商品多少件?【分析】(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,由题意:预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A 奖品的3倍.列出分式方程,解方程即可;(2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,由题意:不超过预算资金且购买A奖品的资金不少于720元,列出一元一次不等式组,解不等式组即可.【解答】解:(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,由题意得:=,解得:x=40,经检验,x=40是原方程的解,则x﹣25=15,答:A奖品的单价为40元,则B奖品的单价为15元;(2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,由题意得:,解得:22.5≤m≤25,∵m为正整数,∴m的值为23,24,25,∴有三种方案:①购买A种奖品23件,B种奖品77件;②购买A种奖品24件,B种奖品76件;③购买A种奖品25件,B种奖品75件.18.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为,A n的坐标(用n的代数式表示)为.(2)2020米长的护栏,则需要小正方形个,需要大正方形个.【分析】(1)根据已知条件与图形可知,大正方形的对角线长为2,由此可得规律:A1,A2,A3,…,A n各点的纵坐标均为2,横坐标依次大3,由此便可得结果;(2)先求出一个小正方形与一个大正方形所构成的护栏长度,再计算2020米包含多少这样的长度,进而便可求出结果.【解答】解:(1)∵A1的坐标为(2,2)、A2的坐标为(5,2),∴A1,A2,A3,…,A n各点的纵坐标均为2,∵小正方形的边长为1,∴A1,A2,A3,…,A n各点的横坐标依次大3,∴A3(5+3,2),A n(,2),即A3(8,2),A n(3n﹣1,2),故答案为(8,2);(3n﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.五.解答题(本大题共2小题,每小题10分,满分20分)19.如图,小明在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到D 处再测得该建筑物顶点A的仰角为30°,已知山坡的坡比为1:3,BC=45米.(1)求该建筑物的高度;(结果保留根号)(2)求小明所在位置点D的铅直高度.(结果精确到1米,参考数据≈1.414,≈1.732)【分析】(1)由锐角三角函数定义即可得出答案;(2)设PD=BF=x米,则CP=3x(米),DF=BP=(45+3x)米,由锐角三角函数定义得AF=(45+3x)米,再由AF=(45﹣x)米,得出方程,解方程即可.【解答】解:(1)在Rt△ABC中,BC=45米,∠ACB=60°,∴AB=BC•tan60°=45(米),答:建筑物的高度为45米;(2)过点D作DF⊥AB于F,DP⊥BC于P,则四边形BDPF是矩形,∴PD=BF,DF=BP,设PD=BF=x米,在Rt△PCD中,i=tan∠PCD==,∴CP=3x(米),∴DF=BP=(45+3x)(米),在Rt△P AF中,∠ADF=30°,∴AF=DF•tan30°=(45+3x)(米),又∵AF=AB﹣BF=(45﹣x)(米),∴(45+3x)=45﹣x,解得:x=45﹣15,即PD=(45﹣15)≈19(米),答:人所在的位置点P的铅直高度约为19米.20.如图,已知AB是圆O直径,过圆上点C作CD⊥AB,垂足为点D.连结OC,过点B 作BE∥OC,交圆O于点E,连结AE,CE,BD=1,AB=6.(1)求sin∠ABE的值.(2)求CE的长.【分析】(1)用勾股定理求出CD的长,再根据sin,∠BOC=∠ABE,可得答案;(2)连接OE并延长交⊙O于点F,连接FC,AC,BC,通过导角可证明△ADC∽△ECF,得,代入可解决问题.【解答】(1)解:∵AB=6,∴OA=OB=OC=3,∵BD=1,∴OD=OB﹣BD=3﹣1=2,AD=AB﹣BD=5,∴CD==,∴sin,∵∠BOC=∠ABE,∴sin∠ABE=sin∠BOC=;(2)解:连接OE并延长交⊙O于点F,连接FC,AC,BC,则EF=AB=6,∴∠ECF=90°,∠CAB=∠CEB,∴∠ADC=∠ECF=90°,∵BE∥OC,∴∠OCE=∠CEB,∴∠CAB=∠OCE,∵OE=OC,∴∠OEC=∠OCE,∴∠CAB=∠OEC,∴△ADC∽△ECF,∴,∴,解得:EC=,∴CE=.六.(本题满分12分)21.某学校组织了一次知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表.学校若干名学生成绩分布统计表请你根据统计图表解答下列问题:(1)此次抽样调查的样本容量是,a=,b=,c=.(2)请补全学生成绩分布直方图.(3)比赛按照分数由高到低共设置一、二、三等奖,如果有25%的参赛学生能获得一等奖,那么一等奖的分数线是多少?【分析】(1)根据统计图中的数据可以求得此次抽样调查的样本容量;根据统计图中的数据可以求得a、b、c的值;(2)根据(1)中a、c的值可以将统计图补充完整;(3)根据表格中的数据可以求得一等奖的分数线.【解答】解:(1)16÷0.08=200,故答案为:200;a=200×0.31=62,b=12÷200=0.06,c=200﹣16﹣62﹣72﹣12=38,故答案为:62,0.06,38;(2)由(1)知a=62,c=38,补全的条形统计图如右图所示;(3)d=38÷200=0.19,∵b=0.06,0.06+0.19=0.25=25%,∴一等奖的分数线是80.七.(本题满分12分)22.如图,已知抛物线y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一点,且点P的横坐标为m.当点P在直线AC下方时,过点P作PE∥x轴,交直线AC于点E,作PF∥y轴.交直线AC于点F,求PE+PF的最大值;【分析】(1)把点A、B的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答即可;(2)①运用待定系数法求得直线AC解析式y=﹣x﹣3,应用平行线性质及三角函数定义可求得PE=PF,再根据点P的横坐标为m,表示出PE+PF=﹣2(m+)2+,运用二次函数最值即可得到答案.【解答】解:(1)∵抛物线y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),与y轴交于点C.∴,解得:,∴抛物线的解析式为y=x2+2x﹣3;(2)在y=x2+2x﹣3中,令x=0,得y=﹣3,∴C(0,﹣3),设直线AC解析式y=kx+n,∵A(﹣3,0)、C(0,﹣3),∴,解得:,∴直线AC解析式y=﹣x﹣3,∵OA=OC=3,∠AOC=90°,∴tan∠ACO===1,∴∠ACO=45°,∵点P为该抛物线上一点,且点P的横坐标为m,∴P(m,m2+2m﹣3),∵PE∥x轴,PF∥y轴,∴F(m,﹣m﹣3),∠PFE=∠ACO=45°,∠EPF=90°,∴=tan∠PFE=tan45°=1,∴PE=PF=﹣m﹣3﹣(m2+2m﹣3)=﹣m2﹣3m,∴PE+PF=2(﹣m2﹣3m)=﹣2(m+)2+,∵﹣2<0,∴当m=﹣时,PE+PF的最大值=;八.(本题满分14分)23.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,当AD=25,且AE<DE时,求的值;(3)如图3,当BE•EF=84时,求BP的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)证明△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,即可得出结论;(3)判断出△GEF∽△EAB,得出BE•EF=AB•GF,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);(2)∵BE⊥CG,∴∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BC=CG=25,在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴△ECF∽△GCP,∴,∴=.(3)如图,连接FG,∵BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;∵BP=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF,∵BE•EF=84,AB=12,∴GF=7,∴BP=GF=7.。
安徽省芜湖市中考数学一模试卷(含答案解析)

安徽省芜湖市中考数学一模试卷一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:94.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.165.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:29.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为.12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.安徽省芜湖市中考数学一模试卷参考答案与试题解析一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A、=,则5y=6x,故此选项错误;B、=,则5x=6y,故此选项正确;C、=,则5y=6x,故此选项错误;D、=,则xy=30,故此选项错误;故选:B.【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°【分析】根据相似多边形对应角的比相等,就可以求解.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.【点评】主要考查了相似多边形的性质和四边形的内角和是360度的实际运用.3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC 是解题关键.5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒【分析】已知函数式为二次函数解析式,最高点即为抛物线顶点,求达到最高点所用时间,即求顶点的横坐标.【解答】解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.【点评】本题考查的是二次函数在实际生活中的应用,比较简单.7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率为=,故选:C.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:2【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB =2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q 点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选:D.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y =x 2向左平移1个单位,所得的新抛物线的解析式为 y =(x +1)2 .【分析】先确定抛物线y =x 2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y =x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(﹣1,0),所以新抛物线的解析式为y =(x +1)2. 故答案为y =(x +1)2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是 8﹣2π (结果保留π).【分析】根据S 阴=S △ABD ﹣S 扇形BAE 计算即可; 【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为4.【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(﹣a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(a,),∴点B的坐标为(0,),∴=1,解得,k=4,故答案为:4.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=或2或6.【分析】由AD∥BC,∠ABC=90°,易得∠PAD=∠PBC=90°,又由AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,然后分别从△APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.所以AP=或AP=2或AP=6.故答案是:或2或6.【点评】此题考查了相似三角形的性质.注意利用分类讨论思想求解是关键.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.【分析】原方程转化为x=0或x+2=0,然后解一次方程即可.【解答】解:∵x=0或x+2=0,∴x1=0,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【解答】解:(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.【分析】一般用增长后的量=增长前的量×(1+增长率),要投入教育经费是2500(1+x)万元,在的基础上再增长x,就是的教育经费数额,即可列出方程求解.【解答】解:设增长率为x,根据题意为2500(1+x)万元,为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【解答】解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.【分析】(1)根据圆周角定理得到∠D=∠B,证明△DMA∽△BMC,根据相似三角形的性质列出比例式,即可证明结论;(2)连接OA,OC,过O作OH⊥AC于H点,根据圆周角定理、垂径定理计算即可.【解答】(1)证明:∵=,∴∠D=∠B,又∵∠DMA=∠BMC,∴△DMA∽△BMC,∴=,∴DM•MC=BM•MA;(2)连接OA,OC,过O作OH⊥AC于H点,∵∠D=60°,∴∠AOC=120°,∠OAH=30°,AH=CH,∵⊙O半径为2,∴AH=∵AC=2AH,∴AC=2.【点评】本题考查的是相似三角形的判定和性质、圆周角定理、垂径定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.【分析】(1)根据抛物线与x轴有两个交点,得到△>0,由此求得m的取值范围.(2)利用(1)中m的取值范围确定m=2,然后根据抛物线解析式求得点A、B的坐标,利用三角形的面积公式解答即可.【解答】解:(1)∵抛物线y=x2﹣4x+2m﹣1与x轴有两个交点,令y=0.∴x2﹣4x+2m﹣1=0.∵与x轴有两个交点,∴方程有两个不等的实数根.∴△>0.即△=(﹣4)2﹣4•(2m﹣1)>0,∴m<2.5.(2)∵m<2.5,且m取最大整数,∴m=2.当m=2时,抛物线y=x2﹣4x+2m﹣1=x2﹣4x+3=(x﹣2)2﹣1.∴C坐标为(2,﹣1).令y=0,得x2﹣4x+3=0,解得x1=1,x2=3.∴抛物线与x轴两个交点的坐标为A(1,0),B(3,0),∴△ABC的面积为=1.【点评】考查了抛物线与x轴的交点坐标,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点,解题时,注意二次函数与一元二次方程间的转化关系.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出点(x,y)落在反比例函数y=的图象上的情况数,即可求出所求的概率;(3)找出所确定的数x,y满足y的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);(2)其中点(x,y)落在反比例函数y=的图象上的情况有:(2,3);(3,2)共2种,则P(点(x,y)落在反比例函数y=的图象上)==;(3)所确定的数x,y满足y的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,则P(所确定的数x,y满足y)==.【点评】此题考查了列表法与树状图法,以及反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=3;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.【分析】(1)由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;(2)设A点坐标为(a,),则D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合∠P=∠P 可得出△PDC∽△PAB,由相似三角形的性质可得出∠CDP=∠A,再利用“同位角相等,两直线平行”可证出CD∥AB;(3)由四边形ABCD的面积和△PCD的面积相等可得出S△PAB =2S△PCD,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.【解答】(1)解:∵B点(1,3)在反比例函数y=的图象,∴k=1×3=3.故答案为:3.(2)证明:∵反比例函数解析式为,∴设A点坐标为(a,).∵PB⊥x轴于点C,PA⊥y轴于点D,∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,∴,,∴.又∵∠P=∠P,∴△PDC∽△PAB,∴∠CDP=∠A,∴CD∥AB.(3)解:∵四边形ABCD的面积和△PCD的面积相等,∴S△PAB =2S△PCD,∴×(3﹣)×(1﹣a)=2××1×(﹣),整理得:(a﹣1)2=2,解得:a1=1﹣,a2=1+(舍去),∴P点坐标为(1,﹣3﹣3).【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)利用相似三角形的判定定理找出△PDC∽△PAB;(3)由三角形的面积公式,找出关于a的方程.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.【分析】(1)由余角的性质可得∠ABE=∠BCF,即可证△ABE∽△BCF;(2)由相似三角形的性质可得==,由等腰三角形的性质可得BP=2BE,即可求的值;(3)由题意可证△DPH∽△CPB,可得==,可求AE=,由等腰三角形的性质可得AE平分∠BAP,可证∠EAG=∠BAH=45°,可得△AEG是等腰直角三角形,即可求AG 的长.【解答】证明:(1)∵AB⊥BC,∴∠ABE+∠FBC=90°又∵CF⊥BF,∴∠BCF+∠FBC=90°∴∠ABE=∠BCF又∵∠AEB=∠BFC=90°,∴△ABE∽△BCF(2)∵△ABE∽△BCF,∴==又∵AP=AB,AE⊥BF,∴BP=2BE∴==(3)如图,延长AD与BG的延长线交于H点∵AD∥BC,∴△DPH∽△CPB∴==∵AB=BC,由(1)可知△ABE≌△BCF∴CF=BE=EP=1,∴BP=2,代入上式可得HP=,HE=1+=∵△ABE∽△HAE,∴=,=,∴AE=∵AP=AB,AE⊥BF,∴AE平分∠BAP又∵AG平分∠DAP,∴∠EAG=∠BAH=45°,∴△AEG是等腰直角三角形.∴AG=AE=3【点评】本题是相似综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.。
2024年安徽省合肥市经开区中考数学一模试卷及答案解析

2024年安徽省合肥市经开区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)在0,3,,﹣3四个数中,最小的数是()A.﹣3B.3C.D.02.(4分)某物体如图所示,它的俯视图是()A.B.C.D.3.(4分)2023年合肥经开区GDP达到1409.9亿元,连续四年每年跨越一个百亿台阶,其中1409.9亿用科学记数法表示为()A.1.4099×103B.14.099×1010C.1.4099×1011D.1.4099×10124.(4分)下列各式计算正确的是()A.x2•x4=x2B.(x﹣y)2=x2﹣y2C.x7÷x4=x3D.3x4﹣x4=25.(4分)将一副直角三角板作如图所示摆放,∠GEF=60°,∠MNP=45°,AB∥CD,则下列结论不正确的是()A.GE∥MP B.∠EFN=150°C.∠BEF=60°D.∠AEG=∠PMN6.(4分)某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.B.C.D.7.(4分)2023年以来,某厂生产的电子产品处于高速上升期,该厂生产一件产品起初的成本为225元,经过两次技术改进,现生产一件这种产品的成本比起初下降了30.2元,设每次技术改进产品的成本下降率均为x ,则下列方程正确的是()A .225(1﹣2x )=225﹣30.2B .30.2(1+x )2=225C .225(1﹣x )2=30.2D .225(1﹣x )2=225﹣30.28.(4分)如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,∠ACD =60°,∠ADC =40°,则∠AED 的度数为()A .110°B .115°C .120°D .105°9.(4分)如图,直线与坐标轴交于点A 、B ,过点B 作AB 的垂线交x 轴于点C ,则点C 的坐标为()A .B .(﹣6,0)C .D .10.(4分)如图,在△ABC 中,∠B =45°,∠C =60°,BC =6,点P 为AC 边上一动点,PE ⊥AB 于点E ,PF ⊥BC 于点F ,连接EF ,则EF 的最小值为()A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)分解因式:ax 2﹣16a =.12.(5分)若一元二次方程x 2+6x ﹣m =0有两个实数根,则m 的取值范围为.13.(5分)如图,▱OABC 的顶点A 在x 轴的正半轴上,点D (2,2)在对角线OB 上,反比例函数y =(k >0,x >0)的图象经过C 、D 两点.已知▱OABC 的面积是5,则点B 的坐标为.14.(5分)在矩形ABCD中,AB=6,BC=8,点E为线段BC上的动点,将△ABE沿AE折叠,使点B 落在点F处.(1)当点F落在矩形对角线AC上时,则BE的长为;(2)当△CDF是以DF为腰的等腰三角形时,则BE的长为.三、解答题(本大题共2小题,每小题8分,共16分)15.(8分)计算:+(2﹣)0﹣(1﹣sin60°).16.(8分)某校组织七年级学生到合肥市园博园研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求参加研学的学生人数.四、本大题共2小题,每小题8分,共16分。
2024年安徽省合肥四十五中本部中考数学一模试卷及答案解析

2024年安徽省合肥四十五中本部中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是符合题目要求的。
1.(4分)下列各数中,属于有理数的是()A.B.πC.D.﹣22.(4分)据了解,合肥园博会自2023年9月26日开幕,三个月以来累计接待国内外游客632万人次,上榜国庆假期国内热门旅游目的地TOP20,请用科学记数法表示632万()A.6.32×105B.6.32×106C.63.2×105D.0.632×1073.(4分)如图,该几何体的俯视图是()A.B.C.D.4.(4分)下列运算正确的是()A.3a+2a=5a2B.(2a)2=2a2C.a8÷a4=a2D.3a•2a2=6a35.(4分)使得式子有意义的x的取值范围在数轴上表示正确的是()A.B.C.D.6.(4分)如图,烧杯内液体表面AB与烧杯下底部CD平行,光线EF从液体中射向空气时会发生折射,光线变成FH,点G在射线EF上,已知∠GFH=40°,∠CEF=120°,则∠HFB的度数为()A.10°B.20°C.40°D.50°7.(4分)如图,已知AB是⊙O的弦,C为⊙O上的一点,OC⊥AB于点D,若⊙O的半径为3,∠ABC =25°,则弧BC长为()A.B.C.D.8.(4分)毕业典礼上,甲、乙、丙三人合影留念,3人随机站成一排,那么甲和丙位置不相邻的概率()A.B.C.D.9.(4分)若实数x,y,m满足x+y+m=6,3x﹣y+m=4,则代数式1﹣2xy的值可以是()A.1B.2C.3D.410.(4分)如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D的对称点为点F,EF交AD于点G,连接CG交PQ于点H,连接CE,AB=6,下列说法错误的是()A.△PBE∽△QFG B.当BE=2时,C.当EG=5时,BE=2或3D.EG2﹣CH2=GQ•GD二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)计算:=.12.(5分)已知m,n是一元二次方程x2﹣2x﹣4=0的两个根,则m+n﹣mn的值为.13.(5分)如图,四边形ABCD中,AB=6cm,AC⊥BC于点C,∠ABC=∠ACD=∠ADC=60°,则BD 的长为cm.14.(5分)如图,Rt△ABO中,∠OBA=90°,OB=AB,点A和点B都在反比例函数图象上,过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N.(1)若△ONB的面积为4时,则k的值为;(2)当k取任意正数时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:.16.(8分)如图,在平面直角坐标系中,单位长度为1,△ABC的顶点均在正方形网格的格点上,其中A (0,1).(1)画出△ABC绕点O逆时针旋转90°的图形△A1B1C1;(2)在x轴上画出一个格点D,使∠BDC=90°;(3)在线段BC上画出点E,使DE的长度最短.(要求:借助网格,只用无刻度的直尺,不要求写出画法,保留作图痕迹)四、(本大题共2小题,每小题8分,满分16分)17.(8分)“道路千万条,安全第一条”.公安交警部门提醒市民,骑行必须严格遵守“一盔一带”的法规.某安全头盔经销商统计了某品牌头盔1月份和2月份的销量,该品牌头盔1月份销售300个,2月份销售360个,若从1月份到3月份销售量的月增长率相同.求该品牌头盔3月份的销售量.18.(8分)某班数学小组在研究个位数字为5的两位数的平方的规律时,得到了下列等式:第1个等式:152=15×15=225=(1×2)×100+25;第2个等式:252=25×25=625=(2×3)×100+25;第3个等式:352=35×35=1225=(3×4)×100+25;按照以上规律,解决下列问题:(1)填空:652=65×65==;(2)已知1≤n≤9且n为整数,猜想第n个等式(用含n的等式表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)华为手机自带AR测量工具,用手机就能测量长度和身高,测距的原理可以简单概括为三角形测量法.如图①为学校外墙上的浮雕像,打开手机软件后将手机摄像头的屏幕准星对准浮雕像底部按键,再对准顶部按键即可测量出浮雕像的高度,其数学原理如图②所示,测量者AB与浮雕像CD垂直于地面BE,若手机显示AC=1.75m,AD=2.45m,∠CAD=53°,求浮雕像CD的高度.(结果精确到0.1,参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,≈1.41)20.(10分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且CF是⊙O的切线.(1)求证:∠DCF=∠CAD;(2)若,DF=4,求⊙O的半径.六、(本大题满分12分)21.(12分)教育部办公厅印发了《关于加强中小学生手机管理的工作通知》,要求中小学生原则上不得将个人手机带入校园,确有需求的,须经家长同意、书面提出申请,进校后应将手机由学校统一保管,禁止带入课堂.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机的目的”和“每周使用手机的时间”的问卷调查,并绘制成如图(1),图(2)所示的统计图,已知“查资料”的人数是48人.解答下列问题:(1)在扇形统计图中,表示“玩游戏”的扇形圆心角度数为,补全条形统计图;(2)该校共有学生1300人,估计每周使用手机时间在2h以上(不含2h)的人数;(3)请写出一条学生健康使用手机的建议.七、(本大题满分12分)22.(12分)如图,直线y=x﹣3与x轴交于点B,与y轴交于点C,抛物线y=x2+bx+c经过B、C两点,抛物线与x轴负半轴交于点A.(1)求抛物线的函数表达式;(2)直接写出当x﹣3>x2+bx+c时,x的取值范围;(3)点P是位于直线BC下方抛物线上的一个动点,过点P作PE⊥BC于点E,连接OE.求△BOE面积的最大值及此时点P的坐标.八、(本大题满分14分)23.(14分)如图,△ABC中,BC边上的中线AE与∠ABC的平分线BD交于F点,AD=AF.(1)求证:△ABF∽△CBD;(2)求证:CD=2EF;(3)若DF=2,求BF.2024年安徽省合肥四十五中本部中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是符合题目要求的。
2020年安徽省中考数学一模试卷(含答案解析)

2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。
2024年中考数学第一次模拟考试(安徽卷)(全解全析)

2024年中考第一次模拟考试(安徽卷)数学·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与2相加结果为0的数是()A .12B .12C .2D .2【答案】C【详解】∵ 220 ,∴与2相加结果为0的数是2 .故选:C .2.数据0.0000037用科学记数法表示成3.710n ,则3.710n 表示的原数为().A .3700000B .370000C .37000000D .3700000 【答案】A【详解】∵数据0.0000037用科学记数法表示成3.710n ,∴6n ,∴3.710n 即为63.710 ,∴3.710n 表示的原数为3700000.故选A .3.计算 24a 的结果是()A .6a B .8a C .62a D .82 a【答案】B【详解】解: 22448a a a ,故选:B .4.如图所示的钢块零件的左视图为()A .B .C .D .【答案】B 【详解】解:从左面看是一个长方形,中间看不到的水平的棱为虚线,故选:B .5.如图,直尺一边BC 与量角器的零刻度线AD 平行,已知EOD 的读数为65 ,设OE 与BC 交于点F ,则BFE 的度数等于()A .135B .115C .105D .100【答案】B 【详解】解:如图,BC AD ∵ ,65BFO EOD ,180115BFE BFO .故选:B .6.已知点 A a b ,, 4B c ,在直线2y x k (k 为常数,0k )上,则ab 的最大值为2,则c 的值为()A .4或12B .4 或12 C .4 D .12【答案】B【详解】解:把 A a b ,代入2y x k 得:2b a k∴2ab a a k 22a ka22248k k a ,∵20 ,∴当4k a 时,ab 有最大值为28k ,∵ab 的最大值为2,∴228k 解得4k ∴直线解析式为24y x 或y x 24,把 4B c ,代入24y x 得4c ,把 4B c ,代入y x 24得12c ,故选:B .7.一个矩形的长和宽恰好是方程2430x x 的两个根,则矩形的周长和面积分别是()A .4,3B .4 1C .8,3D .8,1【答案】C【详解】解:∵2430x x ,∴ 130x x ,∴11x ,23x ,∵矩形的长和宽恰好是方程2430x x 的两个根,∴矩形的长为3,宽为1,∴矩形的周长为 2138 ,面积为133 ,故选:C .8.如图,正方形ABCD 的边长为8,E 为CD 边上一点,连接BE ,13DE EC ,取BE 中点F ,连接CF ,则CF 的长为()A .3B .4C .5D .6【答案】C 【详解】解:∵四边形ABCD 是正方形,∴8,90BC CD BCD ,∵13DE EC ,∴34EC CD ∴364EC CD ;在Rt BCE 中,222BC CE BE ,10BE ∵点F 是BE 的中点,∴CF 是Rt BCE 斜边BE 上的中线,∴152CF BE ,故选:C .9.把一元二次方程2540y y 和2560y y 的根写在四张背面无差别的卡片上(一张卡片上写一个根),将这些卡片背面朝上放在桌面上,小李从中随机抽取一张记下数字作为点N 的横坐标a ,放回重新洗匀后再随机抽出一张记下数字作为点N 的纵坐标b ,则点N 在以原点为圆心,5为半径的圆上的概率是()A .38B .58C .78D .18【答案】D【详解】解:一元二次方程2540y y 整理得 140y y ,∴10y 或40y ,解得11y ,24y ;一元二次方程2560y y 整理得 230y y ,∴20y 或30y ,解得32y ,43y ;画树状图如下:,故坐标有 1,1,1,21,31,4, 2,1,2,22,32,4, 3,1,3,23,33,4, 4,1,4,24,34,4,共16种等可能性.符合点N 在以原点为圆心,5为半径的圆上的的情况只有 4,3和 3,4两种情况,∴点N 在以原点为圆心,5为半径的圆上的概率是21168.故选:D .10.在ABC 中,4AB ,3sin 4BAC ,点D 是点B 关于AC 的对称点,连接AD ,CD ,E ,F 是AD ,BC 上两点,作EM BD ,FN BD ,垂足分别为M ,N ,若AD BC ∥,AE BF ,则EM FN 的值是()AB .5C .D .10【答案】A 【详解】解:如图,∵点D 是点B 关于AC 的对称点,4AB ,∴4AD AB ,AC BD ,BO DO ,∵3sin 4BAC ,∴34BO AB ,即344BO ,解得:3BO ,∴AO ∵AD BC ∥,∴CB ADO ,在BCO 和DAO 中,CBO ADO BO DO BOC DOA,∴ BCO DAO ASA ≌,∴4BC AD,AO CO ,∵EM BD ,FN BD ,∴EM AO ∥,FN CO ∥,∴DE EM AD AO ,BF NF BC CO,∴44AE4BF ,∵AE BF ,∴44BF即14BF∴1,1 ,即EM NF 故选:A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分11.计算112 的结果是.【答案】4【详解】解:112242,故答案为:4.12.如图,从一个大正方形中裁去面积为27和48的两个小正方形,则剩下阴影部分的面积是.【答案】72【详解】解:∵两个小正方形面积为27和48,∴ ,∴大正方形面积为 2147 ,∴留下的阴影部分面积和为:147274872故答案为:72.13.如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC .【答案】60【详解】解:∵四边形OABC 是平行四边形,∴ABC AOC ,由圆周角定理可知,2AOC ADC ,则2ABC ADC ,又∵四边形ABCD 是圆的内接四边形,∴180ADC ABC ,即:3180ADC ,∴60ADC ,故答案为:60 .14.已知二次函数2y ax bx c 的图像过点(1,0)A 和(0,1)C .(1)若此抛物线的对称轴是直线12x ,点C 与点P 关于直线12x 对称,则点P 的坐标是.(2)若此抛物线的顶点在第一象限,设t a b c ,则t 的取值范围是.【答案】(1,1)02t 【详解】解:(1)∵点C 与点P 关于直线12x对称,∴点P 的纵坐标为1;设点P 的横坐标为x ,则11022x,∴1x ,即点P 的坐标为(1,1);故答案为:(1,1);(2)∵二次函数2y ax bx c 的图像过点(1,0)A 和(0,1)C ,∴01a b c c ,则11c b a ,,即2(1)1y ax a x ;上式中,令1x ,则22t a b c a ;∵抛物线的顶点在第一象限,∴102a a ,24(1)04a a a,由后一式得2(1)04a a,则a<0,∴由前一式得10a ,∴0222a ,即02t ,故答案为:02t .三、(本大题共2小题,每小题8分,满分16分)15.(本题满分8分)解不等式组: 5241113x x x x .【详解】解: 5241113x x x x ①②解不等式①可得:1x ;……3分解不等式②可得:32x ;……6分所以不等式组的解集为32x.……8分16.(本题满分8分)如图,在88 的网格中,点O 及ABC 的顶点、、A B C 均在网格的格点上.(1)将ABC 绕点A 逆时针旋转90 得到11AB C △,请画出11AB C △;(2)若ABC 与222A B C △关于点O 成中心对称,请画出222A B C △.【详解】(1)解:如图,11AB C △即为所求;……4分(2)解:如图,222A B C △即为所求.……8分四、(本大题共2小题,每小题8分,满分16分)17.(本题满分8分)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸人树AB 的高度,他在点C 处测得大树顶端A 的仰角为45 ,再从C点出发沿斜坡走D 点,在点D 处测得树顶端A 的仰角为30 ,若斜坡CF 的坡比为1:3i (点E C B 、、住同一水平线上).(1)求王刚同学从点C 到点D 的过程中上升的高度;(2)求大树AB 的高度(结果保留根号).【详解】(1)过D 作DH CE 于H,如图所示:在Rt DCH △中,∵斜坡CF 的坡比为1:3i ,∴3CH DH ,……1分∵222CH DH CD ,∴2223DH DH ,解得:4DH 或4DH (舍去),∴王刚同学从点C 到点D 的过程中上升的高度为4米.……3分(2)延长AD 交CE 于点G ,设AB x 米,由题意得,30AGC ,∴tan 30DH GH 4分∵斜坡CF 的坡比为1:3i ,∴312CH DH ,∴12CG GH CH ,……5分在Rt ABC △中,∵45ACB ,∴AB BC ,……6分在Rt ABG △中,∴tan 30AB BG解得:12x ,故大树AB 的高度为 12 米.……8分18.(本题满分8分)【观察思考】【规律发现】请用含n 的式子填空:(1)第n 个图案中“◎”的个数为__________;(2)第1个图案中“★”的个数可表示为122 ,第2个图案中“★”的个数可表示为232´,第3个图案中“★”的个数可表示为342 ,第4个图案中“★”的个数可表示为452,……,第n 个图案中“★”的个数可表示为__________.【规律应用】(3)求正整数n ,使第n 个图案中“★”的个数是“◎”的个数的2倍.【详解】(1)解:第1个图案中有3个,第2个图案中有336 个,第3个图案中有3239 个,第4个图案中有33312 个,……∴第n个图案中有3n 个,故答案为:3n .……3分(2)第1个图案中“★”的个数可表示为122 ,第2个图案中“★”的个数可表示为232´,第3个图案中“★”的个数可表示为342 ,第4个图案中“★”的个数可表示为452 ,……,第n 个图案中“★”的个数可表示为12n n ,故答案为:12n n ;……6分(3)由题意得: 1232n n n ,解得:11n 或0n (不符合题意).正整数n 为11.……8分五、(本大题共2小题,每小题10分,满分20分)19.(本题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数(0,0)k y k x x的图象上,点D 的坐标为(4,3),设AB 所在直线解析式为y ax b (0)a .(1)求k 的值,并根据图象直接写出关于x 的不等式k ax b x的解集;(2)若将菱形ABCD 沿x 轴正方向平移m 个单位,在平移中,若反比例函数图象与菱形的边AD 始终有交点,求m 的取值范围.【详解】(1)解:延长AD 交x 轴于F ,由题意得AF x 轴,∵点D 的坐标为(4,3),4OF ,3DF ,5OD ,……2分5AD ,点A 坐标为(4,8),4832k xy ,……3分由图象得关于x 的不等式k ax b x的解集为:4x ;……4分(2)将菱形ABCD 沿x 轴正方向平移m 个单位,使得点D 落在函数32(0)y x x的图象D ¢点处, 点D ¢的坐标为(4,3)m ,……6分∵点D ¢在32y x的图像上,3234m,解得:203m ,经检验符合题意,……8分2003m .……10分.20.(本题满分10分)如图,AB 为O 的直径,OC AB 交O 于点C ,D 为OB 上一点,延长CD 交O 于点E ,延长OB 至F ,使DF FE ,连接EF .(1)求证:EF 为O 的切线;(2)若1OD 且BD BF ,求O 的半径.【详解】(1)证明:如图,连接OE ,∵OE OC ,∴OEC OCE ,……1分∵DF FE ,∴FED FDE ,……2分∵FDE CDO Ð=Ð,90CDO OCD ,∴90FED OEC ,即90FEO ,∴OE FE ,……4分∵OE 是半径,∴EF 为O 的切线;……5分(2)解:设O 的半径EO BO r ,则1BD BF r ,∴ 221FE BD r ,……7分在Rt FEO △中,由勾股定理得,222FE OE OF ,∴ 2222221r r r ,解得3r ,或1r (舍去),……9分∴O 的半径为3.……10分六、(本题满分12分)21.(本题满分12分)把垃圾资源化,化腐朽为神奇,既是科学,也是艺术.由生活垃圾堆积起来的“城市矿山”也是一个宝藏.为了让孩子们更好的树立起节能减排、从源头分类和终端资源化利用的意识,某校开展了“关于垃圾分类知识竞赛”活动,并从七、八年级中各抽取了20名学生的竞赛成绩进行整理、描述和分析(竞赛成绩用x 表示,总分为100分,共分成五个等级:A :90100x ;B :8090x ;C :7080x ;D :6070x ;E :5060x .)下面给出了部分信息:七年级所抽学生成绩在B等级的情况分别为:85,82,80,85,85,81,85,83,85,88八年级所抽学生成绩在B等级的情况分别为:82,84,80,84,85,81,82,84,84七、八年级各抽取的20名学生成绩的平均数、中位数、众数、等级情况如表:年级平均分众数中位数A等级七年级83a b15%八年级838482%m根据以上信息解答下列问题:(1)上述表中:a;b ;m ;(2);(3)该校七、八年级共有1400人,请估计七、八年级竞赛成绩为A等级的总人数.【详解】(1)解:由条形统计图可得七年级:A等级有3人,B等级有10人,C等级有4人,D等级有2人,E等级有1人,出现次数最多的数据为:85共5人,故85a=,……2分从小到大排列第十、十一个数据分别是:82,83,故828382.52b,……4分八年级所抽学生成绩在B等级的人数是9人,在扇形统计图中占比为:9100%45% 20,故%100%45%5%15%15%20%m .……6分(2)七年级垃圾分类知识掌握得更好;……7分因为七年级所抽学生成绩众数为85比八年级所抽学生成绩众数84大,所以七年级垃圾分类知识掌握得更好.……9分(3)七、八年级在A 等级的人数分别为3,4,七、八年级共有1400人,……10分故七、八年级竞赛成绩为A 等级的总人数为:34140024540.答:七、八年级竞赛成绩为A 等级的总人数为245人.……12分七、(本题满分12分)22.(本题满分12分)抛物线 2225214y x a x a 的顶点为N .(1)若0a ,且抛物线过点 3,3A ,求抛物线的函数表达式;(2)在 1的条件下,直线 0y kx k 与抛物线交于A 、B 两点,过A ,B 分别作y 轴的垂线,垂足为C ,D ,求AC BD 的值;(3)若直线y x m 与抛物线有两个交点,求m 的取值范围,并证明,两交点之间的距离与a 无关.【详解】(1)解:把 3,3A 代入 2225214y x a x a,则 2225332134a a,即21364a a,可解得12a 或132a ,……2分又0a ∵,12a ,22112521()224y x x,26y x .……4分(2)解:把 3,3A 代入y kx ,则33k ,1k ,y x ,……5分当y x 与26y x 相交时,则26x x ,3x 或2x ,当2x 时,=2y ,则 2,2B ,……6分AC y ∵轴于C ,且 3,3A ,0,3C ,BD y ∵轴于D ,0,2D ,303AC , 022BD ,326AC BD .……8分(3)证明:当y x m 与 2225214y x a x a 相交时, 2225214x m x a x a,整理得:2225204x ax m a ,……9分当该直线与抛物线有两个交点时,该方程应有两个不等实数根,2225Δ(2)4104a m a,254m ,则122x x a ,212254x x m a,222121212()2x x x x x x ,2212121224x x x x x x ,21212()4x x x x ,2225(2)44a m a,425m ,……10分当1x x 时,113y x ,当2x x 时,223y x ,则212()y y212[3(3)]x x 212(33)x x 221()x x 212()x x ,……11分两交点之间的距离两交点之间的距离与a 无关.……12分八、(本题满分14分)23.(本题满分14分)如图1,已知点O 在四边形ABCD 的边AB 上,且1OA OB OC OD ,OC 平分BOD ,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F .(1)求证:OC AD ∥;(2)如图2,若DE DF ,求AE AF的值;(3)当四边形ABCD 的周长取最大值时,求DE DF 的值.【详解】(1)证明:AO OD ∵,OAD ADO ,OC ∵平分BOD ,DOC COB ,……2分又DOC COB OAD ADO ∵,ADO DOC ,CO AD ∥;……4分(2)解:如图1,OA OB OD ∵,90ADB ,……5分设DAC ,则ACO DAC .OA OD ∵,DA OC ∥,2ODA OAD ,3DFE ,……6分DF DE ∵,3DEF DFE ,490 ,22.5 ,45DAO ,AOD 和ABD 为等腰直角三角形,AD ,ADAO7分DE DF ∵,DFE DEF ,DFE AFO ∵,AFO AED ,又90ADE AOF ,ADE AOF ∽,AE AD AF AO8分(3)解:如图2,OD OB ∵,BOC DOC ,OC OC (SAS)BOC DOC ≌,BC CD ,……9分设BC CD x ,CG m ,则1OG m ,2222OB OG BC CG ∵,2221(1)m x m ,解得:12m 2x ,2112OG x ,……10分OD OB ∵,DOG BOG ,G 为BD 的中点,又O ∵为AB 的中点,222AD OG x ,四边形ABCD 的周长为 22222222415BC AD AB x x x x x ,10 ∵,1x 时,四边形ABCD 的周长有最大值为5.1BC ,BCO 为等边三角形,60BOC ,……12分OC AD ∵ ,60DAO COB ,60ADF DOC ,30DAE ,90AFD ,DE DA 12DF DA ,DE14分DF。
2024年安徽省部分学校中考一模数学试题(含答案)

数学试题注意事项:1.你拿到的试卷满分150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.的相反数是( )A .2024B .C.D .2.计算的正确结果是()A .B .C .D .3.篆刻是中华传统艺术之一,雕刻印章是篆刻基本功.如图是一块雕刻印章的材料,其俯视图为()A .B .C .D .4.12月26日,第十四届中国(合肥)国际园林博览会(简称合肥园博会)圆满闭幕.据了解,合肥园博会自2023年9月26日开幕,三个月以来累计接待国内外游客632万人次,上榜国庆假期国内热门旅游目的地.数据“632万”用科学记数法表示为( )A .B .C .D .5.如图,的三个顶点在一组平行线上,,,若,则()A .B .C .D .6.已知点E ,F ,G ,H 分别在菱形的边,,,上,若,,则四边形一定是( )A .正方形B .对角线相等的四边形2024-2024-1202412024-()232a b -624a b 534a b 524a b 322a b -TOP20463210⨯563.210⨯66.3210⨯60.63210⨯ABC △90ACB ∠=︒60BAC ∠=︒1α∠=2∠=1302α︒+1452α︒+90α︒-60α︒-ABCD AB BC CD DA //EG BC //FH CD EFGHC .菱形D .对角线互相垂直的四边形7.若k 为任意整数,则的值总能( )A .被2整除B .被3整除C .被5整除D .被7整除8.如图,公园里的方桌旁有4个圆凳,甲、乙、丙、丁4人随机坐到这4个圆凳上,则甲坐在乙对面的概率为()A.B .C .D .9.实数a ,b ,c 满足,则下列结论不正确的是( )A .若,则B .若,则C .若,则D .若,则10.如图1,四边形是矩形,点P 从边上点E 出发,沿直线运动到矩形内部一点处,再从该点沿直线运动到顶点B ,最后沿运动到点C .设点P 运动的路程为x ,的面积为y ,图2是y 关于x 变化的函数图像,根据图像,下列判断正确的是()A .B .点P 经过矩形对角线的交点C .D .当时,长度的最小值为4二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:__________.12.某弹簧秤弹簧总长是所挂物体质量的一次函数,其部分对应值如下表所示:…25710……13.5151617.5…根据上面信息,此弹簧秤的弹簧原长(不挂重物)是__________.13.如图,已知是的直径,点C 是圆上一点,点D 是上一点,,连接并延长交于点E ,,若的半径为3,则的长为__________.(结果保留)22(23)4k k +-14121323111362a b c +=a b =a c =2c a =2b c=a b >a c>a c >b c>ABCD AD BC CDP △4AB =ABCD 3sin 5BAC ∠=38x ≤≤AP 3=(cm)y (kg)x /kg x /cmy cm AB O AB AC AD =CD O54B ∠=︒O AE π14.如图,一次函数与反比例函数的图像相交于A ,B 两点,其交点的横坐标分别为4,8.(1)k 的值是__________;(2)将点A 沿x 轴正方向平移个单位长度得到点C ,连接并延长交x 轴正半轴于点D ,则的最大值是__________.三、解答题(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:,其中.16.今年植树节,九年级(1)班同学参加义务植树活动,共同种植一批樟树苗,如果每人种4棵,则剩余25棵;如果每人种5棵,则还缺20棵,求该班的学生人数和樟树苗的棵数.四、解答题(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,的三个顶点的坐标分别为,,.(1)画出关于直线对称的,并写出点C 的对应点的坐标;(2)将绕原点O 顺时针旋转得到,画出,问与关于哪条直线对称?18.观察以下等式:第1个等式:,第2个等式:,y x b =-+(0)ky x x=>(4)m m >CB AC OD ⋅21224xx x -+-1x =ABC △(1,3)-(0,1)(3,4)ABC △:l y x =-111A B C △1C ABC △90︒222A B C △222A B C △111A B C △222A B C △2231421-⨯=+2252732-⨯=+第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:_________________________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.五、解答题(本大题共2小题,每小题10分,满分20分)19.如图,点C 是直径延长线上一点,切于点D ,交于点F ,.(1)求证:;(2)若,,求的长.20.图1是学校的篮球架,图2是其示意图,,,经测量,,,,,求立柱的长.(结果保留整数,参考数据:,,)六、(本题满分12分)21.东升学校做了如下表的调查报告(不完整):调查项目1.了解本校学生最喜爱的球类运动项目2.抽查部分学生最喜爱的球类运动项目的水平调查方式随机抽样调查调查对象部分学生调查内容1.调查你最喜爱的一个球类运动项目(必选,只选一个)A .篮球B .乒乓球C .足球D .排球E .羽毛球2.你最喜爱的球类运动项目的水平……调查结果1.被调查学生最喜爱的球类运动的统计图:22731043-⨯=+22941354-⨯=+O AB CE O AE O BDC DAE ∠=∠ BDDF =2EF =BD =AF AB BE ⊥CD AD ⊥250cm DE =120cm BE =66.5BED ∠=︒150BCD ∠=︒AB sin 66.50.92︒≈cos 66.50.40︒≈tan 66.5 2.30︒≈ 1.73≈2.被抽查的最喜爱篮球运动的学生中有10人恰好是学校篮球社团成员,他们定点投篮10次,命中的次数分别为:6,7,8,8,8,9,9,9,9,10结合调查信息,回答下列问题:(1)本次调查共抽查了__________名学生,补全条形统计图;(2)这10名篮球社团的学生定点投篮命中次数的中位数是__________,众数是__________;平均数8.3能不能代表全校喜爱篮球的学生定点投篮的平均水平:__________(填“能”或“不能”);(3)估计该校1200名学生中最喜爱篮球运动项目的人数.七、(本题满分12分)22.如图,四边形,,对角线,相交于点O ,,点E 是上一点,,连接.(1)求证:为等边三角形;(2)取的中点M ,连接并延长交的延长线于点N ,若,求证:.八、(本题满分14分)23.如图1,二次函数的图象与x 轴交于,两点,与y 轴交于点C .(1)求此二次函数的解析式;(2)已知直线与交于点D ,在第二象限与抛物线交于点P ,求的值;(3)平移抛物线,如图2,使新抛物线的顶点E 是直线在第一象限部分上的一动点,过E 作轴于点F ,过原抛物线的顶点M 作轴交新抛物线于点N ,若,求点E 的ABCD AB BC =AC BD 60BAC ADB ∠=∠=︒BD BE AD =CE DCE △AB DM CB N ACD ∠=∠MN AD DM =+24y ax bx =++(4,0)A -(2,0)B 2y x =-AC PDOD24y ax bx =++AC EF x ⊥MN x ⊥MN EF =坐标.数学参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案AADCCBBCDB9.D 若,则,,即A 正确;由得,,若,则,,即B 正确;若,则,,即C 正确;若,则,,,,即D 错误.故选D .10.B 由题意知,当P 与B 重合时,,最大,当点P 在上运动,逐渐减小,直至P 与C 重合时,,,的最大值,,A 错误;,,C 错误;当时,点P 在上,,,,,点E 是的中点,即点P 从的中点出发,延长交于点G ,,用勾股定理可求,是的中点,点F 是矩形对角线的交点,即点P 经过矩形对角线的交点,B 正确;作,易求,当时,长度的最小值为,D 错误.故选B .二、填空题(本大题共4小题,每小题5分,满分20分)11.512.12.513.连接,是的直径,,,,,,的长为.14.(1)32(2)36a b =111111363622a b a a a c +=+==a c ∴=111362a b c +=23a b c +=2c a =3c b c +=2b c ∴=a b >323a a b c >+=a c ∴>a c >22a c >22a b c b +>+32c c b ∴>+c b ∴>8x =CDP S △BC CDP S △16x =1688BC ∴=-=CDP S △1242BC CD =⋅=6CD AB ∴==10AC ==4sin 5BC BAC AC ∴∠==∴03x ≤≤EF EF AD ⊥3EF =1122CDP S CD DE =⋅=△4DE ∴=∴AD AD EF BC 5BF = 3FG =F ∴EG ∴ABCD ∴AH BF ⊥245AH =∴38x ≤≤AP 245∴125πOE AB O 90ACB ∴∠=︒9036A B ∴∠=︒-∠=︒AC AD = 72ACD ADC ∴∠=∠=︒2144AOE ACE ∴∠=∠=︒ AE ∴1443121805ππ⨯=(1)点A ,B 在反比例函数的图象上,,;点A ,B 在一次函数的图象上,,,两式相减,解得,,;(2)作轴于点F ,交于点E ,则,,,,易证,,,,当时,取最大值,最大值是36.三、解答题(本大题共2小题,每小题8分,满分16分)15.解:原式,当时,原式.16.解:设该班的学生人数为x 人,根据题意得,解得.樟树苗的棵数为:(棵),故该班的学生为45人,樟树苗为205棵.四、解答题(本大题共2小题,每小题8分,满分16分)17.解:(1)如图,的坐标为;(2)如图,与关于y 轴对称.k y x =4,4k A ⎛⎫∴ ⎪⎝⎭8,8k B ⎛⎫ ⎪⎝⎭y x b =-+44k b ∴-+=88kb -+=48k=32k =(4,8)A ∴(8,4)B BF x ⊥AC (8,8)E (8,0)F 4AE BE BF ∴===4CE m ∴=-BCE BDF ≌△△4DF CE m ∴==-12OD m ∴=-2(12)(6)36AC OD m m m ∴⋅=-=--+6m =AC OD ⋅2221(2)(2)(2)(2)(2)(2)2x x x x x x x x x x ---=-==-+-+-+--1x =111212x =-=-=--425520x x +=-45x =44525205⨯+=111A B C △1C (4,3)--222A B C △111A B C △222A B C △18.解:(1);(2)第n 个等式:,证明:左边,右边,左边=右边,等式成立.五、解答题(本大题共2小题,每小题10分,满分20分)19.解:(1)连接.是的切线,.是直径,,,,,,,,,,,,;(2)连接.由(1)知,,.,,,,.,,,,,,.221151665-⨯=+22(21)(31)(1)n n n n n +-+=++222441331n n n n n n =++--=++224131n n n n n =++-=++∴∴OD CE O 90ODC ∴∠=︒AB O 90ADB ∴∠=︒90ADE BDC ∴∠+∠=︒BDC DAE ∠=∠ 90ADE DAE ∴∠+∠=︒90E ∴∠=︒90E ODC ∴∠=∠=︒//OD AE ∴EAD ADO ∴∠=∠OA OD = ADO OAD ∴∠=∠OAD EAD ∴∠=∠ BD DF ∴=DF BDDF =BD DF ∴==4DE ∴==90ADB ∠=︒ 90OAD ABD ∴∠+∠=︒90ADE DAE ∠+∠=︒ OAD EAD ∠=∠ADE ABD ∴∠=∠ABD DFE ∠=∠ ADE DFE ∴∠=∠E E ∠=∠ EAD EDF ∴∽△△DE EFAE DE∴=28DE AE EF ==6AF AE EF ∴=-=20.解:作于点F ,于点G ,则四边形是矩形,,.在中,,,,,,,.,,,在中,,,,,,立柱的长为.六、(本题满分12分)21.解:(1)100,补全条形统计图如图所示;(2)8.5、9、不能;(3)被抽查的100人中最喜爱羽毛球的人数为:(名),被抽查的100人中最喜爱篮球的人数为:(名),(名),答:估计该校1200名初中生中最喜爱篮球项目的人数为480.七、(本题满分12分)22.解:(1),,是等边三角形,,,,,即,DF BE ⊥DG AB ⊥BFDG BF DG ∴=BG DF =Rt DEF △90DFE ∠=︒66.5DEF ∠=︒sin DF DEF DE ∴∠=cos EFDEF DE∠=sin 250sin 66.52500.92230cm DF DE DEF ∴=⋅∠=⨯︒≈⨯=cos 250cos 66.52500.40100cm EF DE DEF =⋅∠=⨯︒≈⨯=20cm DG BF BE EF ∴==-=150BCD ∠=︒ 90ADC ∠=︒60CAD ∴∠=︒Rt ADG △90AGD ∠=︒60GAD ∠=︒tan DG GAD AG∴∠=11.6cm tan DG AG GAD ∴==≈∠11.6230242cm AB AG BG AG DF ∴=+=+=+≈∴AB 242cm 1005%5⨯=∴100301015540----=401200480100⨯=AB BC = 60BAC ∠=︒ABC ∴△60ACB ∴∠=︒AC BC =AOD BOC ∠=∠ 180180ADB AOD ACB BOC ∴︒-∠-∠=︒-∠-∠DAC CBE ∠=∠,,,,,,,为等边三角形;(2)在上取点G ,使,连接.设,由,得,,,,,为等边三角形,,,,,,,,,,,,,,,.(作也可证)证法二:延长至点G ,使.易证,,由证法一可知,,,,,.八、(本题满分14分)23.解:(1)由题意得,,解得,此二次函数的解析式为;(2)作轴于点Q ,交于点G ,轴,,,易求直线的解析式为;点P 在直线上,设点P 的坐标为,BE AD = DAC EBC ∴≌△△ACD BCE ∴∠=∠CD CE =60BCE ACE ∠+∠=︒ 60ACD ACE ∴∠+∠=︒60DCE ∴∠=︒DCE ∴△MN MG MD =BG N ACD α∠=∠=DAC EBC ≌△△ACD BCE α∠=∠=N ACD ∠=∠ CDF CDN ∠=∠60CFD DCB ACB ACD α∴∠=∠=∠+∠=︒+1801202CDF CFD ACD α∴∠=︒-∠-∠=︒-DCE △60CDE ∴∠=︒120ADC ∴∠=︒2ADF ADC CDF α∴∠=∠-∠=AM BM = DM MG =AMD BMG ∠=∠AMD BMG ∴≌△△AD BG ∴=2ADF BGM α∠=∠=N α∠= N NBG ∴∠=∠GN BG ∴=GN AD ∴=MN MG GN =+ MN AD DM ∴=+//BG AD MD MG MN =AMG BMN ≌△△G N α∴∠=∠=2ADF α∠=G DAG ∴∠=∠AD DG ∴=MG DM DG =+ MN AD DM ∴=+164404240a b a b -+=⎧⎨++=⎩121a b ⎧=⎪⎨⎪=-⎩∴2142y x x =--+PQ x ⊥AC //PQ y ∴PDG ODC ∴∽△△4PD PG PGOD OC ∴==AC 4y x =+ 2y x =-∴(,2)m m -11,解得,(由于点P 在第二象限,舍去),,,当时,,,,.(3)设点E 的坐标为,则,平移后的函数解析式为,,点,把代入的得,,即点N 的坐标为,,,,解得,,点E 的坐标为以上各解答题如有不同解法并且正确,请按相应步骤给分.21242m m m ∴-=--+12m =-24m =(2,4)P ∴-4PQ =2m =-(2,2)G -2GQ ∴=2PG ∴=142PD PG OD ∴==(,4)(0)n n n +>4EF n =+∴21()42y x n n =--++221194(1)222y x x x =--+=-++ ∴91,2M ⎛⎫- ⎪⎝⎭1x =-21()42y x n n =--++21722y n =-+2171,22n ⎛⎫--+ ⎪⎝⎭22917112222MN n n ⎛⎫∴=--+=+ ⎪⎝⎭MN EF = 21142n n ∴+=+11n =21n =+∴(1+。
2024年安徽省合肥市多校联考中考一模数学试题(含答案)

数学(一)(试题卷)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.在实数1,,0,这四个数中,最小的是( )A .1B .C .0D .2.计算的结果是( )A .B .C .D .3.2024年元旦春节期间,安徽省各级工会组织筹措1.4亿元开展送温暖活动.其中1.4亿用科学记数法表示为()A .B .C .D .4.如图,将一个正方体沿上底的对角线(虚线)切开分成①,②两部分,再把①移到②的右边拼成一个新几何体,若主视方向不变,这个新几何体的三视图是()5.下列关于x 的一元二次方程中,有两个不相等实数根的是( )A .B .C .D .6.新趋势·跨学科问题 如图是古典名著《西游记》和《三国演义》中的人物图片,它们的反面完全相同,小明和小亮同时从中任意各抽取1张图片,两张图片的人物恰好属于同一部名著的概率是()A.B .C .D .7.点E 在菱形的边上,点F 在边上,分别连接,.下列条件不能判定四边形是平行四边形的是( )A .B .C .D .8.新趋势·代数推理 已知整数a ,b 满足,,,则的值为()A .B .C .0D .29.如图,在四边形中,,,,,,动点P 从点A 出1-110-1-110-()()322a b b -⋅-66a b66a b-65a b65a b-71.410⨯81.410⨯91.410⨯101.410⨯210x x ++=212x x+=22x mx m --=2210x mx --=12232535ABCD AB CD DE BF DEBFDE BF =AE CF=BE DF =//DE BF0a <0b >34a b -=-a b +2-1-ABCD //AD BC 90BAD ∠=︒3AB =4BC =5AD =发,按的方向在,边上移动,记,点D 到直线的距离为y ,则y 关于x 的函数图象大致是()10.如图,在中,,M 为边的中点,线段的垂直平分线分别与,,交于点P ,N ,Q ,分别连接,,若,则下列结论错误的是( )A .B .C.D .二、填空题(本大题共4小题,每小题5分,满分20分)11.的立方根是________.12.因式分解:________.13.如图,内接于,为的直径,,,则________.14.已知抛物线交y 轴于点A ,其对称轴交x 轴于点B ,直线交抛物线于另一点C .(1)点B 的坐标为________;(2)点P 是直线下方抛物线上的一动点(与点A ,C 不重合),则的面积的最大值为A B C →→AB BC ()0PA x x =>PA ABC △90ACB ∠=︒BC AM PQ AB AM AC BN CN CM AN =2BC CN =2AQ CQ=23PN QN =23AP BP =27-33mn m n -=ABC △O BD O AB AC =70A ∠=︒ABD CBD ∠-∠=︒223y x x =--AB AC PAC △________.三、(本大题共2小题,每小题8分,满分16分)15.计算:16.如图,在由边长为1个单位的小正方形组成的网格中,的顶点均为格点(网格线的交点).(1)画出关于直线的对称图形(其中C 的对应点为);(2)画出以为中心,将顺时针旋转得到的(其中A 的对应点为D ,B 的对应点为E ,C 的对应点为F ).四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律,解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式:________(用含n 的等式表示),并证明.18.如图,旅游部门准备为某景点修建一条索道,无人机在P 点测到索道底端A 和顶端B 的俯角分别为,,已知的坡角为,P 点到地面的距离米,求索道的长.参考数据:,,,,,.1122cos301-⎛⎫⎪⎝⎭︒---ABC △ABC △AB C 'C 'ABC △90︒DEF △111131123⎛⎫⨯⨯ ⎪⎭=⎝+121244134⎛⎫⨯⨯ ⎪⎭=⎝+131359145⎛⎫⨯⨯ ⎪⎭=⎝+1161414566⎛⎫+⨯⨯= ⎪⎝⎭AB 67.4︒45︒AB 36.9︒MN 480PH =AB sin 36.90.60︒≈cos36.90.80︒≈tan 36.90.75︒≈sin 67.40.92︒≈cos 67.40.38︒≈tan 67.4 2.40︒≈五、(本大题共2小题,每小题10分,满分20分)19.为支持美丽乡村建设,某大学主动承担绿水县的高标准农田改造工程.第一批任务要求在第50天完成,待改造的高标准农田y (亩)与工作时间x (天)满足一次函数关系,已知30天后还有4000亩高标准农田待改造.(1)求第一批任务中需改造的高标准农田的亩数;(2)为进一步加大支持力度,第二批任务比第一批增加,且每亩改造价格比第一批少100元,这两批任务的改造总价相同.求第二批任务的改造总价.20.如图,等腰的腰为的一条弦,另一腰与相交于D ,底边上的高的延长线交于F ,连接.(1)求证:;(2)连接交于G ,若,,求的长.六、(本题满分12分)21.某乡共有2000家农户,为了解每户人均年收入情况,从中随机调查部分农户的近两年每户人均年收入(每户人均年收入用x 表示,单位:万元,分成6个等级:A .;B .;C .;D .;E .;F .),并绘制统计图表,部分信息如下:a .调查的农户2022年和2023年每户人均年收入的统计图b .调查的农户2022年每户人均年收入在C .这一组的收入是:1.5,1.5,1.5,1.5,1.5,1.6,1.6,1.6,1.8,1.8;c .调查的农户2022年和2023年每户人均年收入的平均数、众数、中位数如下:20%ABC △AB O AC O BC AE O DF FC FD =BD AE //BD CF AB =BC =AG 1.0x < 1.0 1.5x ≤< 1.5 2.0x ≤<2.0 2.5x ≤< 2.5 3.0x ≤< 3.0 3.5x ≤≤1.5 2.0x ≤<年份平均数众数中位数2022年 1.77 1.5m 2023年1.821.91.85请根据以上信息,完成下列问题:(1)填空:调查了_______户农户,_______万元;(2)若为富裕户,为政府帮助户,则该乡2023年的富裕户约有_______户,政府帮助户约有_______户;(3)你认为2023年该乡每户人均年收入有没有提高?请说明理由.七、(本题满分12分)22.在平面直角坐标系中,O 为坐标原点,抛物线的对称轴为直线,与x 轴交于A ,B 两点,与y 轴交于点C ,已知.(1)求a ,b 的值;(2)已知横坐标为t 的点P 为对称轴左侧的抛物线上一动点,过点P 作x 轴的平行线交抛物线于另一点M ,①若与的面积之和为8,求t 的值;②过点P 作x 轴的垂线,垂足为N ,直线交线段于点D ,是否存在这样的点P ,使若存在,求出t 的值;若不存在,请说明理由.八、(本题满分14分)23.四边形的两条对角线,相交于点O ,.(1)如图1,已知.①求证:;②若,求的值;(2)如图2,若,,,求的值.数学(一)答案一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案BDBADCACBCm =2.5x ≥ 1.0x <24y ax bx =++32x =()4,0B OCP △OCM △PN MN BC 2MN MD =ABCD AC BD 90BAD ∠=︒AC CD =2ACD BAC ∠=∠25OC OA =OBOD90BCD ∠=︒AB AD =3CD BC =ACBD8.C 【解析】,,又,,,为整数,,,.故选C .9.B 【解析】当时,;当时,.观察图象可知选B .10.C 【解析】为的中点,N 为的中点,,,,又,N 为的中点,,,,故A 正确;如图1,连接,延长交于D ,垂直平分,,又,,,,,又,,,,,故B 正确;如图2,作交直线于E ,延长交直线于F ,,为的中点,易证,,又M 为的中点,,,,,,①,②,又,①+②得,即,,即,故D 正确;,,易证,,又,,,,,,,,故C 错误,故选C .二、填空题(本大题共4小题,每小题5分,满分20分)11. 12. 13.1514.(1);(2分)(2).(3分)【解析】(1),对称轴为,点B 的坐标为;(2)由待定系数法可得,与联立可得.设,作轴交于34a b -=- 34b a ∴=+0b >43a ∴>-403a ∴-<<a 1a ∴=-1b ∴=0a b ∴+=03x <≤5y =35x <≤15y x=M BC AM CM AN =MN MB MC ∴==BN CN ∴⊥90ACB ∠=︒AM CN MN ∴=CM CN ∴=2BC CN ∴=MQ BN AQ PQ AM 90MNQ MQ ∴∠=∠=︒MN MC =MQ MQ =()Rt Rt MNQ MCQ HL ∴△≌△QC QN ∴=MQ CN ∴⊥BN CN ⊥//MQ BD ∴CQ DQ ∴=AD DQ =2AQ CQ ∴=//AE BC PQ BC PQ AEN MFN ∴∠=∠N AM ANE MNF △≌△AE MF ∴=BC BM CM ∴=22CF BF MF AE ∴+==//AE BF AQE CQF ∴△∽△APE BPF △∽△CQ CF AQ AE ∴=BP BFAP AE =2AQ CQ =∴CQ BP CF BF AQ AP AE AE+=+12BP CF BF AP AE ++=32BP AP ∴=23AP BP =ANE MNF △≌△EN FN ∴=ANQ FCQ △≌△AQ QF ∴=2AQ CQ =2QF QN ∴=3FN QN ∴=3EP QN PN ∴=-APE BPF △∽△23EP AP FP BP ∴==3233QN PN QN PN -∴=+35PN QN ∴=3-()()mn n m n m +-()1,01258()222314y x x x =--=-- ∴1x =∴()1,033BC y x =-223y x x =--()5,12C ()2,23P m m m --//PQ y ACQ ,,,,,时,有最大值.三、(本大题共2小题,每小题8分,满分16分)15.解:原式.16.解:(1)如图,即为所求;(2)如图,即为所求;四、(本大题共2小题,每小题8分,满分16分)17.解:(1);(2),证明:左边右边,等式成立.18.解:如图,作于C ,于D ,在中,,,(),33Q m m ∴-25PQ m m ∴=-+502-< 05m <<52m ∴=PAC S △1258)221=-21=--+1=-ABC '△DEF △1251515677⎛⎫+⨯⨯= ⎪⎝⎭2111122nn n n n n ⎛⎫+⨯⨯=⎪+++⎝⎭()()()21122n n nn n n n +===+++∴BC PH ⊥AD BC ⊥Rt PBC △45PBC ∠=︒BC PC ∴=在中,,,,(米).设,则,,在中,,,,解得,(米),,(米),答:索道的长约为200米.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)设待改造的高标准农田y (亩)与工作时间x (天)的一次函数关系式为,由题意得,,解得,即第一批任务中需改造的高标准农田为10000亩;(2)设第二批任务中每亩改造价格为a 元,由题意得,解得,(元),答:第二批任务的改造总价为6000000元.20.解:(1)如图,连接,为等腰三角形,且,,,,,;(2),,,,,,,,,,,,,,Rt PAH △480PH =67.4PAH ∠=︒tan 2.40PHPAH AH∠=≈200AH ∴=BC PC x ==480CH AD x ==-200BD x =-Rt ABD △36.9ABD ∠=︒tan AD ABD BD ∠=4800.75200xx -∴≈-360x =480120AD x ∴=-=sin 0.60ADABD AB∠=≈ 200AB ∴=AB y kx b =+500304000k b k b +=⎧⎨+=⎩20010000k b =-⎧⎨=⎩()()1000010010000120%a a +=+500a =()10000120%6000000a ∴+=BF ABC △AB AC =AE BC ⊥BF CF ∴=BAF DAF ∠=∠BF DF ∴=FC FD ∴=//BD CF BCF CBD ∴∠=∠BF CF = BCF CBF ∴∠=∠CBD CBF ∴∠=∠EF EG ∴=BGF BFG ∠=∠BGF BAG ABG ∠=∠+∠ ABF ABG FBG ∠=∠+∠FBG FAD FAB ∠=∠=∠BGF ABF BFG ∴∠=∠=∠AB AF AC ∴==AB = BC =AF ∴=,,.六、(本题满分12分)21.解:(1)40,1.6;(2),,即该乡2023年的富裕户约有350户,政府帮助户约有100户,故答案为:350,100;(3)该乡2023年每户人均年收入提高了,理由如下:因为该乡2023年每户人均年收入的平均数、众数和中位数均比2022年大,所以该乡2023年每户人均年收入提高了.(答案合理即可)七、(本题满分12分)22,解:(1)由题意得,,解得;(2)①由(1)知,抛物线的函数表达式为,点C 的坐标为.由题意知,,当时,的面积,的面积,此时与的面积之和为6,不符合题意;当时,的面积,的面积,与的面积之和为,此时,解得,综上,t 的值为;②存在,点P.理由如下:易得直线的函数表达式为,,点D 为线段的中点,点D 的横坐标为,点D 在直线上,,点M 的纵坐标为5,则,解得或(不合题意,舍去),AF =EF EG ∴==AG AE EG ∴=-==-7200035040⨯=2200010040⨯=32216440b a a b ⎧-=⎪⎨⎪++=⎩13a b =-⎧⎨=⎩234y x x =-++∴()0,424,)3(P t t t -++()23,34M t t t ∴--++302t <<OCP △1422t t =⨯⨯=OCM △()143622t t =⨯⨯-=-OCP △OCM △0t <OCP △()1422t t =⨯⨯-=-OCM △()143622t t =⨯⨯-=-OCP ∴△OCM △64t -648t -=12t =-12-BC 4y x =-+2MN MD = ∴MN ∴3322t t -+= BC 35,22D ⎛⎫∴ ⎪⎝⎭∴2345t t -++=t =t =存在,且t.八、(本题满分14分)23.解:(1)①设,,,,,,;②如图1,过点C 作于M ,交于N ,,为的中点,,,,,,;(2)如图2,延长至E ,使得,连接.,,,,.又,.在和中,,,,,,,为等腰直角三角形,,,,,.在直角中,,.∴ACD α∠=AC CD = ()111809022CAD αα∴∠=︒-=︒-90BAD ∠=︒ 190902BAC α∴︒-+∠=︒12BAC α∴∠=2ACD BAC ∴∠=∠CM AD ⊥BD AC CD = M ∴AD 90BAD ∠=︒ //AB CM ∴BN DN ∴=25OC OA = 25ONOB ∴=59OB OD ∴=CD DE BC =AE 90BAD ∠=︒ AB AD =45ABD ADB ∴∠=∠=︒BDE ADE ADB BCD CBD ∠=∠+∠=∠+∠ 45ADE CBD ∴∠=︒+∠45ABC ABD CBD CBD ∠=∠+∠=︒+∠ADE ABC ∴∠=∠ABC △ADE △AB AD ABC ADE BC DE =⎧⎪∠=∠⎨⎪=⎩()ABC ADE SAS ∴△≌△AE AC ∴=DAE BAC ∠=∠90BAD ∠=︒ 90CAE ∴∠=︒ACE ∴△CE ∴=BC CD CE ∴+==3CD BC = 4BC ∴=AC ∴=BCD △BD =AC BD ∴=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年安徽省芜湖市中考数学一模试卷一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:94.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.165.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.8.如图,一张矩形纸片ABCD 的长AB =a ,宽BC =b .将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b =( )A .2:1B .:1C .3:D .3:29.欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:画Rt △ABC ,使∠ACB =90°,BC =,AC =b ,再在斜边AB 上截取BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长10.如图,在等腰△ABC 中,AB =AC =4cm ,∠B =30°,点P 从点B 出发,以cm /s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm /s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D . 二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y =x 2向左平移1个单位,所得的新抛物线的解析式为 . 12.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是 (结果保留π).13.如图所示,点C 在反比例函数y =(x >0)的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB =BC ,已知△AOB 的面积为1,则k 的值为 .14.如图所示,已知AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△PAD 与△PBC 相似,则AP = .三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x (x +2)=0.16.已知△OAB 在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO 绕原点O 逆时针旋转90°得△OA 1B 1,再以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2;(2)直接写出点A 1的坐标,点A 2的坐标.四、(本大题共2小题,每小题8分,满分16分.)17.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG 的长.2019年安徽省芜湖市中考数学一模试卷参考答案与试题解析一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A、=,则5y=6x,故此选项错误;B、=,则5x=6y,故此选项正确;C、=,则5y=6x,故此选项错误;D、=,则xy=30,故此选项错误;故选:B.【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°【分析】根据相似多边形对应角的比相等,就可以求解.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.【点评】主要考查了相似多边形的性质和四边形的内角和是360度的实际运用.3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒【分析】已知函数式为二次函数解析式,最高点即为抛物线顶点,求达到最高点所用时间,即求顶点的横坐标.【解答】解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.【点评】本题考查的是二次函数在实际生活中的应用,比较简单.7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率为=,故选:C.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1 B.:1 C.3:D.3:2【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x 之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ =BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC =2BH =4,∵点P 运动的速度为cm /s ,Q 点运动的速度为1cm /s ,∴点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,当0≤x ≤4时,作QD ⊥BC 于D ,如图1,BQ =x ,BP =x ,在Rt △BDQ 中,DQ =BQ =x ,∴y =•x •x =x 2,当4<x ≤8时,作QD ⊥BC 于D ,如图2,CQ =8﹣x ,BP =4在Rt △BDQ 中,DQ =CQ =(8﹣x ),∴y =•(8﹣x )•4=﹣x +8,综上所述,y =.故选:D .【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y =x 2向左平移1个单位,所得的新抛物线的解析式为 y =(x +1)2 . 【分析】先确定抛物线y =x 2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y =x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(﹣1,0),所以新抛物线的解析式为y =(x +1)2.故答案为y =(x +1)2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是 8﹣2π (结果保留π).【分析】根据S 阴=S △ABD ﹣S 扇形BAE 计算即可;【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为 4 .【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(﹣a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(a,),∴点B的坐标为(0,),∴=1,解得,k=4,故答案为:4.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=或2或6 .【分析】由AD∥BC,∠ABC=90°,易得∠PAD=∠PBC=90°,又由AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,然后分别从△APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.所以AP=或AP=2或AP=6.故答案是:或2或6.【点评】此题考查了相似三角形的性质.注意利用分类讨论思想求解是关键. 三、(本大题共2小题,每小题8分,满分16分.) 15.解方程:x (x +2)=0.【分析】原方程转化为x =0或x +2=0,然后解一次方程即可. 【解答】解:∵x =0或x +2=0, ∴x 1=0,x 2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.16.已知△OAB 在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO 绕原点O 逆时针旋转90°得△OA 1B 1,再以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2; (2)直接写出点A 1的坐标,点A 2的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案; (2)利用(1)中所画图形进而得出答案.【解答】解:(1)如图所示:△OA 1B 1,△OA 2B 2,即为所求;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键. 四、(本大题共2小题,每小题8分,满分16分.)17.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.【分析】一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x )万元,在2015年的基础上再增长x ,就是2016年的教育经费数额,即可列出方程求解.【解答】解:设增长率为x ,根据题意2015年为2500(1+x )万元,2016年为2500(1+x )2万元.则2500(1+x )2=3025,解得x =0.1=10%,或x =﹣2.1(不合题意舍去). 答:这两年投入教育经费的平均增长率为10%.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【解答】解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.【分析】(1)根据圆周角定理得到∠D=∠B,证明△DMA∽△BMC,根据相似三角形的性质列出比例式,即可证明结论;(2)连接OA,OC,过O作OH⊥AC于H点,根据圆周角定理、垂径定理计算即可.【解答】(1)证明:∵=,∴∠D=∠B,又∵∠DMA=∠BMC,∴△DMA∽△BMC,∴=,∴DM•MC=BM•MA;(2)连接OA,OC,过O作OH⊥AC于H点,∵∠D=60°,∴∠AOC=120°,∠OAH=30°,AH=CH,∵⊙O半径为2,∴AH=∵AC=2AH,∴AC=2.【点评】本题考查的是相似三角形的判定和性质、圆周角定理、垂径定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.【分析】(1)根据抛物线与x轴有两个交点,得到△>0,由此求得m的取值范围.(2)利用(1)中m的取值范围确定m=2,然后根据抛物线解析式求得点A、B的坐标,利用三角形的面积公式解答即可.【解答】解:(1)∵抛物线y=x2﹣4x+2m﹣1与x轴有两个交点,令y=0.∴x2﹣4x+2m﹣1=0.∵与x轴有两个交点,∴方程有两个不等的实数根.∴△>0.即△=(﹣4)2﹣4•(2m﹣1)>0,∴m<2.5.(2)∵m<2.5,且m取最大整数,∴m=2.当m=2时,抛物线y=x2﹣4x+2m﹣1=x2﹣4x+3=(x﹣2)2﹣1.∴C坐标为(2,﹣1).令y=0,得x2﹣4x+3=0,解得x1=1,x2=3.∴抛物线与x轴两个交点的坐标为A(1,0),B(3,0),∴△ABC的面积为=1.【点评】考查了抛物线与x轴的交点坐标,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点,解题时,注意二次函数与一元二次方程间的转化关系.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出点(x,y)落在反比例函数y=的图象上的情况数,即可求出所求的概率;(3)找出所确定的数x,y满足y的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);(2)其中点(x,y)落在反比例函数y=的图象上的情况有:(2,3);(3,2)共2种,则P(点(x,y)落在反比例函数y=的图象上)==;(3)所确定的数x,y满足y的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,则P(所确定的数x,y满足y)==.【点评】此题考查了列表法与树状图法,以及反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k= 3 ;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.【分析】(1)由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;(2)设A点坐标为(a,),则D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),进而可得出PB ,PC ,PA ,PD 的长度,由四条线段的长度可得出,结合∠P =∠P 可得出△PDC ∽△PAB ,由相似三角形的性质可得出∠CDP =∠A ,再利用“同位角相等,两直线平行”可证出CD ∥AB ;(3)由四边形ABCD 的面积和△PCD 的面积相等可得出S △PAB =2S △PCD ,利用三角形的面积公式可得出关于a 的方程,解之取其负值,再将其代入P 点的坐标中即可求出结论. 【解答】(1)解:∵B 点(1,3)在反比例函数y =的图象, ∴k =1×3=3. 故答案为:3.(2)证明:∵反比例函数解析式为, ∴设A 点坐标为(a ,).∵PB ⊥x 轴于点C ,PA ⊥y 轴于点 D ,∴D 点坐标为(0,),P 点坐标为(1,),C 点坐标为(1,0), ∴PB =3﹣,PC =﹣,PA =1﹣a ,PD =1, ∴,, ∴.又∵∠P =∠P , ∴△PDC ∽△PAB , ∴∠CDP =∠A , ∴CD ∥AB .(3)解:∵四边形ABCD 的面积和△PCD 的面积相等, ∴S △PAB =2S △PCD ,∴×(3﹣)×(1﹣a )=2××1×(﹣), 整理得:(a ﹣1)2=2,解得:a 1=1﹣,a 2=1+(舍去), ∴P 点坐标为(1,﹣3﹣3).【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k 值;(2)利用相似三角形的判定定理找出△PDC ∽△PAB ;(3)由三角形的面积公式,找出关于a 的方程. 八、(本题满分14分)23.如图1,四边形ABCD 中,AB ⊥BC ,AD ∥BC ,点P 为DC 上一点,且AP =AB ,分别过点A 和点C 作直线BP 的垂线,垂足为点E 和点F .(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG 的长.【分析】(1)由余角的性质可得∠ABE=∠BCF,即可证△ABE∽△BCF;(2)由相似三角形的性质可得==,由等腰三角形的性质可得BP=2BE,即可求的值;(3)由题意可证△DPH∽△CPB,可得==,可求AE=,由等腰三角形的性质可得AE平分∠BAP,可证∠EAG=∠BAH=45°,可得△AEG是等腰直角三角形,即可求AG的长.【解答】证明:(1)∵AB⊥BC,∴∠ABE+∠FBC=90°又∵CF⊥BF,∴∠BCF+∠FBC=90°∴∠ABE=∠BCF又∵∠AEB=∠BFC=90°,∴△ABE∽△BCF(2)∵△ABE∽△BCF,∴==又∵AP=AB,AE⊥BF,∴BP=2BE∴==(3)如图,延长AD与BG的延长线交于H点∵AD∥BC,∴△DPH∽△CPB∴==∵AB=BC,由(1)可知△ABE≌△BCF∴CF=BE=EP=1,∴BP=2,代入上式可得HP=,HE=1+=∵△ABE∽△HAE,∴=,=,∴AE=∵AP=AB,AE⊥BF,∴AE平分∠BAP又∵AG平分∠DAP,∴∠EAG=∠BAH=45°,∴△AEG是等腰直角三角形.∴AG=AE=3【点评】本题是相似综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.。