数理方程—横向纵向振动问题、波动方程
大学物理波动方程

4
波线: 沿波的传播方向作的 有方向的线。 波前: 在某一时刻,波传播 到的最前面的波面。
波面 波线
波面
波线
球面波 z
波面
x
y
波线
平面波
柱面波
5
注意 在各向同性均匀介质中,波线⊥波面。
三、波长
周期
频率和波速
波长() : 同一波线上相邻两个相位差为 2 的质点之间
的距离;即波源作一次完全振动,波前进的距离 。波长反映了波的空间周期性。
T 4s
2m
u 0.5 m s 1
2 rad s 1 T 2 y0 0.5 cos( t ) t=0原点0: 2 2 2
20
例 一平面简谐波沿x轴正方向传播,已知其波函数为
y 0.04 cos (50t 0.10 x) m
1
横波 波的传播方向 质点的振动方向 特点:具有波峰和波谷 纵波 波的传播方向 质点振动方向 特点:具有疏密相间的区域
下面以横波为例观察波的形成过程
2
t 0
1 2
3
4
5
6
7
8
9 10 11 12 13
静止
T t 4
1 2
3
4
5
6
7
8
9 10 11 12 13
振动状态 传至4
T t 2
1 2
t1 时刻x1 处的振动状态经Δt 时间传播到x1+Δx 处,则
可得到
x1 x1 x (t1 ) (t1 t ) u u x u t
x y ( x, t ) A cos[ (t ) 0 ] u x y ( x, t ) A cos[2π (t ) 0 ] t x y ( x, t ) A cos[2π ( ) 0 ] T
数理方程__波动方程的分析

数学与物理方程——波动方程的分析波动方程的分析摘要: 波动方程是一个二阶线性偏微分方程。
解二阶偏微分方程的主要方法是分离变量法。
在下面介绍波动方程是怎样导出来的,它的物理意义是什么,在不同的坐标系里波动方程的表达式应该怎么写,有什么边界条件,在给定的边界条件下怎么用分离变量法得到波动方程的解等等问题。
关键词: 波动方程;分离变量法;边界条件;本征方程;本征值;本征函数 1引言波动方程也可叫做波方程。
它是一种重要的偏微分方程,通常表述所有种类的波,例如声波,光波和水波等。
它出现在不同领域,例如声学,电磁学,和流体力学。
波动方程的变种可以在量子力学和广义相对论中见到。
历史上,像乐器那样的振动弦问题曾被很多科学家研究过,其中包括达朗贝尔,欧拉,丹尼尔·伯努利,和拉格朗日。
2波动方程的导出(1)波动方程是从均匀直棒的弹性形变过程中推得的,一般来说,它适用于各向同性的均匀介质。
(2)波动方程等号两边分别是未知量y 对变量t 和对变量x 的二阶偏导数的正比函数,所以该波动方程是线性的。
之所以会得到线性方程,这是因为该波动方程是根据牛顿第二定律和胡克定律推导出来的,而这两个定律的数学表达式都是线性方程。
(3)波动方程是线性方程,则从理论上保证了波动满足叠加原理。
如果1u 和2u 都是波动方程的解,即以下两式成立2122212xu atu ∂∂=∂∂ (1)2222222xu atu ∂∂=∂∂ (2)将以上两式相加,得()()221222212xu u atu u ∂+∂=∂+∂(3)这表示,21u u +也是波动方程的解。
21u u +表示两列波的叠加。
所以说,线性的波动方程从理论上保证了波动满足叠加原理。
(4)胡克定律表示,在比例极限以内,应力与应变满足线性关系。
在比例极限之内的应变必定是幅度很小的形变,这就是说,满足上述波动方程的波,一定是振幅很小的波,当这样的波传来时,所引起的介质各部分的形变也是很小的。
数理方程-波动方程的导出

地震波传播规律的研究中,波动方程发挥了重要作用 。
电磁波传播
在研究电磁波传播时,波动方程用于描述电磁场的变 化规律。
波动方程的数学表达形式
01
一维波动方程
一维波动方程是描述一维空间中波动现象的基本方程,形 式为 $frac{partial^2 u}{partial t^2} = c^2 frac{partial^2 u}{partial x^2}$。
03
CATALOGUE
波动方程的物理意义
波动方程的物理背景
波动现象
波动方程是描述波动现象的基本数学工具,如声波、光波、水波等。
波动方程的导出
基于物理定律和数学推导,将实际问题抽象为数学模型,进而得到波动方程。
波动方程的物理应用
声学研究
波动方程在声学研究中用于描述声波传播规律,如声 速、声压等。
从而模拟声波的传播过程。
水波传播的模拟
要点一
总结词
波动方程也可以用来描述水波的传播规律,通过求解波动 方程可以得到水波的传播速度、振幅和相位等信息。
要点二
详细描述
水波是一种常见的波动现象,其传播规律可以用波动方程 来描述。在水波传播的模拟中,我们需要考虑水的密度、 弹性模量、阻尼系数等参数,以及水波的频率、振幅、波 长等特征。通过求解波动方程,我们可以得到水波在介质 中的传播速度、振幅和相位等信息,从而模拟水波的传播 过程。
波动方程的应用实例
声波传播的模拟
总结词
波动方程可以用来描述声波在介质中的传播 规律,通过求解波动方程可以得到声波的传 播速度、振幅和相位等信息。
详细描述
声波是一种波动现象,其传播规律可以用波 动方程来描述。在声波传播的模拟中,我们 需要考虑介质的密度、弹性模量、阻尼系数 等参数,以及声波的频率、振幅、波长等特 征。通过求解波动方程,我们可以得到声波 在介质中的传播速度、振幅和相位等信息,
数理方程第2章波动方程

π
2π sin x,"" l
kπ 2 π 1,cos l x, cos x,""cos l l
π
x,"
是[0, l]上的正交函数列
⎧l , m=n≠0 ⎪ l mπ nπ ⎪2 = cos cos ∫0 l x l xdx ⎨ l m = n = 0 ⎪ ⎪ ⎩0 m≠n
17
例:
2 ⎧ ∂ 2u u ∂ 2 = , t > 0, 0 < x < l a ⎪ ∂t 2 2 ∂x ⎪ ⎪ u (0, t ) = u ( l , t ) = 0, ⎨ ⎪ u ( x , 0) = x ( l − x ), ⎪ 2π x ⎪ u t ( x , 0) = sin l ⎩
kπ X k ( x) = Bk sin x l
所以定解问题的级数形式解为
u ( x, t ) = ∑ X k ( x)Tk (t )
k =1
kπ a kπ a ⎞ kπ ⎛ t + bk sin t ⎟ sin x = ∑ ⎜ ak cos l l ⎠ l k =1 ⎝ ak =Bk Ck ,bk =Bk Dk .
8π at 8π x u ( x, t ) = 3cos sin sin + 5 cos l l l l
π at
πx
23
• 其它边界条件的混合问题
2 ⎧ ∂ 2u u ∂ 2 x ∈ (0, l ), t > 0 ⎪ ∂t 2 = a ∂x 2 , ⎪ ⎪ ⎨u ( x, 0) = ϕ ( x), ut ( x, 0) = ψ ( x), x ∈ [0, l ] ⎪u (0, t ) = u (l , t ) = 0, t≥0 x x ⎪ ⎪ ⎩
第一章----波动方程

求解动力学弹道的目
的是为了得到
x, y,v
三个参数,以便对射 程、导引方法及燃料 添置等方案进行选择
其中 P,Q,Y,, g 分别表示发动机的推力,气体阻力,升力(飞行速度、飞
行高度、导弹外形等因素确定),推力与速度的夹角在垂 直平面上的投影,重力加速度
m 导弹质量 x 飞行路程
练习:
求解下列二阶偏微分方程
uxy 0
复习:
牛顿运动定律、质量守恒定律、
动量守恒定律、热量守恒定律等基本的 物理定律?
冲量、动量等概念?
本学期(数学物理方程)学习的基本内容:
一、三类数理方程(弦振动方程、热传导方程 和调和方程)定解问题的
1、适定性 2、基本求解方法 3、解的性质等 二、二阶线性偏微分方程的分类 注:弦振动方程也叫波动方程
一般步骤(从宇宙探星谈起): 1、将物理问题归结为数学上的定解问题; 2、求解定解问题; 3、对求得的解给出物理解释。
四、偏微分方程的研究内容-适定性的概念
1、存在性 2、唯一性 3、稳定性
如果一个定解问题的解是存在的、 唯一的,而且是稳定的,则称该定 解问题是适定的。
五、微分方程的重要作用
可以说有了微积分,就有了微分方程 (微积分是17世纪为了解决物理、力学、 天体问题而产生的,而这些问题多为数学 物理方程)。
v 导弹速度 (t) 弹道倾角 y 飞行高度 mc 推进剂秒流量
2、金融数学(金融工程期权定价模型)
在基于股票的衍生证券市场上,欧式买入期权的行使办法是:
在到期日 ,当T 股票价格
X
S(T 行X 使价格)时,则按
欧式卖出期权的行使办法是:在到期日 T ,当股票价格 ST X (行使价格)时,则按 X 卖出股票,否则不行使期权。
第一章----波动方程

t
x y
y
c2H
其中 h 平均海平面下水深; 海平面相对平均海平面的高度; H h 总水深; u,v 垂直平均流速的 x, y 分量
几乎所有学科:分子扩散过程、激光诱导DNA分子动
力学模型、桥梁工程设计中的力学振动问题、流体力学、 量子力学、生物人口模型、最优控制论等等
上与x轴垂直的方向为 u轴。以 u( x, t )表
示弦上点x 在时刻t 垂直于x 轴方向的位移
对于弦的微小振动,可设倾角(弦上一点的切线和横轴
的夹角) 很小。即假定
sin ,cos 1,tan
在这种假设下,有:
(1)弦的伸长可忽略不计
ds (dx)2 (du)2 1 ( du)2 dx dx
x
x
T[u( x x, t) u( x, t)]
x
x
从而在时段该合力产生的冲量为
tt u( x x, t ) u( x, t )
t T[ x
]dt
x
由动量守恒定律可得
tt u( x x, t ) u( x, t )
T[
t
x
x ]dt =
xx [u( x, t t ) u( x, t )]dx
x
t
t
tt
xx 2u( x, t )
T
dxdt
x x
tt 2u( x, t) dtdx
t
x
x2
x
t
t 2
(1.1)
即
tt t
xx 2u( x, t) x T x2 dxdt
沿杆长方向的位移
胡克(
Hook)定律:
第三章波动方程

2 t2V p 2 2 2 t2V p 2divg r(a t)d
▪ 将点震源用半径r=a的小球代替,小球体积为W。对上式 求体积分,并令r->0,其极限情况就是点震源的达朗贝 尔解。
lr i0m W2 t2 dW Vp2lr i0m Wdivgd raW dlr i0m W(t)dW
▪ 各种算子在球坐标系中的表达式为:
u 1u 1 u
gradru errersine
对于球面u只 纵存 波 r方在 , 向位 上 u只 移 , (是 r,t)的 即函数 u, u0 则
u rer u rrr
拉普拉斯算子:
2u
1 r2
r
(r2
ur )r
s1in(sin1r u
)r29;1(tV rp)rr
➢ 2、近震源的球面纵波( 1/r2 >> 1/r)
1
rr
up4r2Vp 2 1(tVp)r
26
3.3 地震波的动力学特点
▪ 在近震源区域,质点振动规律(波 函数)主要与震源函数 (t)有关;而 在远震源区域,质点振动主要与震 源函数的导数 '(t)有关。
2u
2
u u 0
1 r2
(2r
ur2 r
2u r2 )
2u 2
r2
r
u r
15
3.2 无限大、均匀各向同性介质中的球面波
将各种算子带入纵波的波动传播方程,得到著名的弦方程:
2 t21V P 2 2 r210
1r
可用达朗贝尔法 解r得:c(tr )c(tr )
1
数理方程重点总结

X (0) A 0 B 1 0
断 言: B 0, 于 是 有
u
u
0,
0 (2)
x x0
x xl
X ( x) A sin x
又 由 边 界 条 件u
0, 得
x xl
sin l 0
于 是 , 得 到 空 间 变 量 问题 的 本 征 值
l n
或
n
( n l
)2
(n 1,2,3,)
据此,解得H( y)
H ( y) cos y 1 y2 1 H (0) 6
(7)
将 (5) 、 (7) 代 入 (4) 式 , 即 得 特 解
u( x, y) 1 x3 y2 cos y 1 y2 1 x2
6
6
再另附:直接积分法 求偏微分方程的通解
2u u
t
2 2xt
xt x
可 以 由 两 个 边 界 条 件 唯一 地 被 确 定 。
例如 f (x) x
W (x)
1 6a 2
x3
C1 x C2
W (0) M1
M1 C2
W (l) M2
l3 M2 6a2 C1l M1
据此,得到W ( x) 的解
C1
M2
M1
l3 6a 2
l
M2
l
M1
l2 6a 2
X X 0
(1)
u x
0 , u
x0
x
0
xl
(2)
(1) 式的通解为
X ( x) Acos x B sin x
(3)
对上式求导,得
X ( x) A sin x B cos x
X ( x) A sin x B cos x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何意义——曲线的切线斜率
u( x x , t ) u( x , t )
x
ˆ
u( x x, t ) u( x, t )
x x
x
u( x x , t ) u( x ) x 0 u x ( x , t ) x x 0 ˆ tan ux ( x, t ) tan
0 x L/ 2 2hx / L, ( x) 2h( L x ) / L, L / 2 x L
u h O
L/2
L
x
11/16
波动方程定解条件II
细弦的线密度为,一端固定在坐标原点,另一端固定在 x 轴上的 L 处.弦的中点受到垂直于 x 轴方向的冲量 I 的作用,作微小横振动。函数 u(x,t) 表示位移
SY [ ux(x+dx, t) – ux(x, t) ]
用牛顿第二定律
SY [ux(x+dx,t)-ux(x,t)] = S dxutt
由
T ux ( x dx, t ) ux ( x , t ) utt dx
ux ( x dx, t ) ux ( x , t ) uxx ( x , t ) dx
数学物理方程
弦的横向振动问题 细杆的纵向振动问题 波动方程的定解条件
物理、力学、电磁学、自动化工程、生物工程等 领域中,研究某物理量和其它物理量之间的变化关系。 物理学中的定律,往往只给出这些函数和它们的各 阶导数与自变量的关系。
单摆的数学模型:
d 2 mL 2 mg sin dt
14/16
偏微分方程定解条件小结:
第一种情况: 初始条件( 求解区域为无界区域 ) 第二种情况: 初边值条件(求解区域为有界区域) I. 第一类边界条件: 给定函数在边界上的函数值
II. 第二类边界条件: 给定函数在边界上的导数值 III. 第三类边界条件: 给定函数在边界上的函数值和 导数值的线性组合
设细弦上各点线密 度为 ρ, 细弦上质点 之间相互作用力为 张力T(x,t)
O
u
T2
T1 x
ds
ρgds x
x+dx
水平合力为零
T2 cos 2-T1 cos 1 = 0 T2≈T1≈T
cos 1≈cos 2 ≈1
铅直合力: F=m a T( sin 2-sin 1) = ρds utt sin 1 ≈tan 1 T( tan 2-tan 1) = ρds utt
3/16
二阶偏导数 utt 物理意义——物体运动加速度
二阶偏导数:
u x ( x x , t ) u x ( x , t ) u xx ( x , t ) lim x 0 x tan 2 tan 1 u xx ( x , t ) lim x 0 x
tan1
utt = a2 uxx
2 2u u 2 a 2 t x 2
令 a2 = Y/。化简,得 或
弦振动问题定解条件
细弦一端固定在坐标原点,另一端固定在 x 轴上的 L 处.受到垂直于 x 轴方向的扰动,作微小横振动。初始 条件包括初始位移和初始速度 边界条件表示端点状态,初始条件表示历史状态
utt a 2 u xx , 0 x L, 0 t 0 t u(0, t ) 0, u( L, t ) 0, u( x ,0) 0, u ( x ,0) ( x ), 0 x L t
I /(2 ), L / 2 x L / 2 ( x) other 0,
习题 2.1(P.22)1、2、3、4
15/16
思考题
1. 弦振动和简谐振动的数学模型有何区别?
2. 弦的横振动和杆的纵振动的数学模型中位移函数 u(x, t )有何不同?
3. 举一个实例简述第二类边界条件的物理背景
16/16
12/16
波动方程定解条件III
u(L,t) O L
细杆在 x = 0 点固定, 在 x = L 处受外力 F(t) 作用
utt F (t ) SYux ( L , t )
F(t) – SY ux( L , t ) = 0 ux
x L
F (t ) / SY
utt a 2 uxx , 0 x L, 0 t u | x 0 0, ux x L F ( t ) / SY , 0 t 0 x L u( x ,0) 0, ut ( x ,0) 0,
13/16
波动方程定解条件IV
弦的一端固定在原点,另一端与 x 轴上 L 处的弹簧相 接.受到扰动,作上下微小横振动。 在右端点处(张力=弹性力) : Tux= -Ku
令 =T/K, 得[u + ux]x=L=0
utt a 2 u xx , 0 x L, 0 t u | x 0 0, [u x u] x L 0, 0 t u( x ,0) 0, u ( x ,0) 0, 0 x L t
u(x,t)|x=0=0, u(x,t)|x=L=0 或: u(0,t)=0, u(L,t)=0
初始条件: u(x,t)|t=0= (x), ut(x,t)|t=0=g(x)
或: u(x,0)= (x) , ut(x,0)=g(x)
10/16
波动方程定解条件I
utt a 2 u xx , 0 x L, 0 t u(0, t ) 0, u( L, t ) 0, 0 t u( x ,0) ( x ), u ( x ,0) 0, 0 x L t
T[ ux(x+dx,t)-ux(x,t)] = ρds utt
d s≈ dx utt= a2 uxx
T ux ( x dx, t ) ux ( x , t ) utt dx
其中 utt = a2 uxx
T
a2
一维波动方程:
考虑有恒外力密度f(x,t)作用时,可以得到一维 波动方程的非齐次形式 utt = a2 uxx + f(x, t)
x
tan 2
x
x x
几何意义——曲线曲率近似
4/16
弦的横向振动问题
一根均匀柔软的细弦线,一端固定在坐标原点,另一端 沿 x 轴拉紧固定在 x 轴上的 L 处,受到扰动,开 始沿 x 轴(平衡位置)作微小横振动(细弦线上各 点运动方向垂直于x 轴).试建立细弦线上任意点位移 函数 u(x,t) 所满足的规律 .
牛顿第二定律: F = m a a—物体加速度;F—合外力;m—物体质量 虎克定律: (1) f = –k x; f —弹力;k—弹性系数; x—弹簧伸长 (2) p = Y ux; Y—杨氏模量; ux—弹性u( x x , t ) u( x ) lim 一阶偏导数: ux ( x , t ) x 0 x
细杆的纵向振动问题
u(x,t) O x
u(x+dx,t) x+dx L
均匀细杆长为L,线密度为,杨氏模量为Y,杆的 一端固定在坐标原点,细杆受到沿杆长方向的扰动 (沿x轴方向的振动)杆上质点位移函数 u(x,t) 细杆纵向振动时,细杆各点伸缩,质点位移 u(x,t) 改变,质点位移相对伸长为 ux,截面应力 P = Y ux Y 是杨氏模量。截面的张力 T = SP。 T(x, t) = SY ux(x, t), T(x+dx, t) = SY ux(x+dx, t)