初等数论§3同余

合集下载

初等数论§3同余

初等数论§3同余
不能成立。 反例:取m=6,c=2,a=20,b=23.
这时,有40 46(mod6), 但20 23(mod6)不成立!
2019/4/3
8
⑥ a b c(mod m ) a c b(mod m )
证:a b c(mod m ) m c a b
m (c b ) a a (c b)(mod m ).
由71 1(mod4), 72 1(mod4), 76 1(mod4), 7 1 3(mod4), r3
7
所以7 7r 7 3 7 2 7 ( 1) ( 3) 3(mod10).
77
即7 的个位数是3.
2019/4/3
77
13
一般地,求a 对模m的同余的步骤如下:
—— 7|a 7|a2a1a0 a5a4a3
7 11 13 1001 1000 1(mod7)
a n a n 1

a 0 a n a n 1
a3 1000 a2a1a0 a6
a2a1a0 anan1
(mod7).
a3 a2a1a0 a5a4a3 anan1
① 求出整数k,使ak 1 (mod m);
bc
② 求出正整数r,r < k,使得bc r (mod k);
——减小幂指数
③ a a (mod m )
r bc
练习:若a Z , 证明 10|a1985 a1949 . 提示: a 5 a(mod10)
2019/4/3
14
例4
3、9 的整除特征
——各位上的数字之和能被3(9)整除 10i 1mod(3)

初等数论 同余方程组

初等数论 同余方程组

初等数论同余方程组初等数论是数学中的一个分支,主要研究自然数的性质和整数的性质。

同余方程组是初等数论中的一个重要概念,它涉及到数与数之间的整除关系。

本文将介绍同余方程组的定义、性质以及解法,并通过例题来加深理解。

一、同余方程组的定义同余方程组是由若干个同余方程组成的一组方程。

同余方程的定义如下:对于整数a、b和正整数m,如果m能整除(a-b),即(a-b)能被m整除,则称a与b对于模m同余,记为a≡b(mod m)。

这里的≡表示同余关系。

二、同余方程组的性质1. 同余关系具有自反性、对称性和传递性。

即对于任意的整数a、b和正整数m,有a≡a(mod m),a≡b(mod m)等价于b≡a(mod m),若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。

2. 同余关系具有加法和乘法的性质。

即对于任意的整数a、b和正整数m,若a≡b(mod m),则a+c≡b+c(mod m),ac≡bc(mod m)。

三、同余方程组的解法1. 线性同余方程组的解法:线性同余方程组是形如ax≡b(mod m)的方程组,其中a、b为整数,m为正整数。

若a与m互质,则存在唯一的解x0,且x≡x0(mod m)。

若a与m不互质,且b可被a整除,则方程组有无穷多个解,否则无解。

2. 中国剩余定理:中国剩余定理适用于一组两两互质的模数的同余方程组。

设m1、m2、...、mn为两两互质的正整数,a1、a2、...、an为整数,则同余方程组:x≡a1(mod m1)x≡a2(mod m2)...x≡an(mod mn)有唯一的解x,且0≤x<m1m2...mn。

四、例题解析1. 解线性同余方程组:求解方程组2x≡3(mod 5)和3x≡4(mod 7)。

首先,对于第一个方程,由于2与5互质,所以存在唯一解x0。

根据扩展欧几里得算法,我们可以求出x0=4。

然后,将x0代入第二个方程,得到3*4≡4(mod 7),即12≡4(mod 7)。

初等数论 同余

初等数论 同余

注意:这条与前面的(5)的推论和(7)不同, 模变了. 证明: m | (a-b) => km | k(a-b)
a b m a b mt t. d d d
2013年11月13日10时5分
我喜欢数学
性质(9)
若 a ≡b (mod m1), a ≡b (mod m2), m=[ m1, m2 ], 则 a ≡ b (mod m) . 证明: 由充要条件, 有 m2 | (a-b), m1 | (a-b)
2013年11月13日10时5分
性质的应用:
由 10≡1(mod 9),有 102≡12(mod 9), 103≡13(mod 9),…,10n≡1n(mod 9),
an an 1 a2 a1a0 an 10n an 1 10n 1 a1 10 a0 an an 1 a1 a0 (mod 9).
性质⑺ 同余式的“除”.
性质⑻⑼⑽
涉及模的改变!分别与a,b和m的约 数,倍数,公约数,最小公倍数有关.
性质⑾是关于a,b和m最大公约数的。
2013年11月13日10时5分
例 2
分析
今天是星期二,101000天之后的那天是星期几?
由于1乘a为a ,1n=1,先求得某数的n次幂与1对模同余 是非常方便的. 我们已知 7 | 1001, 即103 +1≡0 (mod 7), , 103 ≡-1(mod 7), 得106 ≡1 (mod 7).
又23m1 2(mod 7), 从而当且仅当
23m 2 4(mod 7),
n 3m时, 7 2n 1.
(2)由23m 1 2(mod 7),3m 1 1 3(mod 7), 23m 2 1 5(mod 7), 2 可知,对任何正整数n, 2n 1不能被7整除.

数论算法讲义3章(同余方程)

数论算法讲义3章(同余方程)

数论算法讲义3章(同余方程)第 3 章同余方程(一)内容:● 同余方程概念● 解同余方程● 解同余方程组(二)重点● 解同余方程(三)应用● 密码学,公钥密码学3.1 基本概念及一次同余方程(一) 同余方程(1)同余方程【定义3.1.1】(定义1)设m 是一个正整数,f(x)为n 次多项式()0111a x a x a x a x f n n n n ++++=--Λ其中i a 是正整数(n a ≠0(mod m )),则f (x)≡0(mod m )(1)叫做模m 的(n 次)同余式(或模m 的(n 次)同余方程),n 叫做f(x)的次数,记为deg f 。

(2)同余方程的解若整数a 使得f (a)≡0(mod m )成立,则a 叫做该同余方程的解。

(3)同余方程的解数若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。

即剩余类a C ={x |x ∈Z ,x ≡a (mod m )}中的每个剩余都是解。

故把这些解都看做是相同的,并说剩余类a C 是同余方程(1)的一个解,这个解通常记为x ≡a (mod m )当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程(2)的不同的解,所有对模m 的两两不同余的解的个数,称为是同余方程(1)的解数,记作()m f T ;。

显然()m f T ;≤m(4)同余方程的解法一:穷举法任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程(1),在这完全剩余系中解的个数就是解数()m f T ;。

【例1】(例1)可以验证,x ≡2,4(mod 7)是同余方程15++x x ≡0(mod 7)的不同的解,故该方程的解数为2。

50+0+1=1≡3 mod 751+1+1=3≡3 mod 752+2+1=35≡0 mod 753+3+1=247≡2 mod 754+4+1=1029≡0 mod 755+5+1=3131≡2 mod 756+6+1=7783≡6 mod 7【例2】求同余方程122742-+x x ≡0(mod 15)的解。

三讲:初等数论3——同余的性质和应用

三讲:初等数论3——同余的性质和应用

第三讲:初等数论3——同余的性质和应用三、巩固练习1. 今天是星期三,到第1000天是星期几?解:从今天到第1000天相隔999天,1000-1≡5(mod 7),3+5-7=1,是星期一.2. 若1059,1417,2313分别被自然数x除时,所得余数都是y,则x-y= .解:∵1059≡y(mod x) ,1417≡y(mod x) , 2313≡y(mod x),∴1417-1059=358≡0(mod x),2313-1417=896≡0(mod x), 2313-1059=1254≡0(mod x)又(358,896,1254)的最大公约数为2,则x=2, y=1,x-y=1.3. 若正整数a和1995对于模6同余,则a的值可以是()A. 25B. 26C. 27D. 28解:1995除以6的余数是3,a≡1995 (mod 6),a除以6的余数也是3,只有a=27,选C.4. 一个两位数被7除余1,它的反序数被7除也余1,那么这样的两位数共有()A. 2个B. 3个C. 4个D. 5个解:列出满足条件的所有两位数:15,22,29,36,43,50,57,64,71,78,85,92,99 两位数据反序数也满足条件的有:22,29,92,99,选C.5. 设n为自然数,则32n+8被8除的余数是_________.解:由32n+8=9n+8,知32n+8≡1n+0(mod 8)≡1(mod 8) ,故32n+8被8除余1.6. 黑板上写着13个数:1908,1918,1928,1938,1948,1958,1968,1978,1988,1998,2008,2018,2028.小明第一次擦掉其中的一个数,第二次擦掉剩下数中的两个数,第三次擦掉剩下数中的三个数,第四次擦掉剩下数中的四个数,他想使得每次擦掉数后剩下的所有数之和为13的倍数,小明的意图能否达到?如果可以,给出一种可行的方法,不能请说明理由.答案:可以:依次擦掉(2028);(1958,1968);(1908,1938,1978);(1918,1928,1998,2008)。

初等数论第三章课件

初等数论第三章课件

, n 1)时,每一项3i xi 各取3个值, 3x1 x0共通过3n 1 个数;
② 在这3n 1 个数中,若有 3n 1 xn 1 3n xn x0 =3n xn 3n 1 xn 1 3x1 3x1 x0 3n ( xn xn ) 3n 1 ( xn 1 xn 1 ) 则x0 x0 x0 x0 3 x0 x0 x1 ) 3( x1
同余的一个应用——检查因数的一些方法
A、一整数能被3(9)整除的充要条件是它的十进位 数码的和能被3(9)整除。
证:a Z , 将a写成十进位数的形式: a an10 an 110
n
i n n
n 1

a0 , 0 ai 10.
i n
因10 1(mod 3), 故10 1(mod 3), ai 10 ai (mod 3), 从而 ai 10i ai (mod 3),即a ai (mod 3).
n
n 1
3 x1 x
也是模3 =2H+1的绝对最小完全剩余系。(再由 模2H+1的绝对最小完全剩余系具有唯一性得到结论)
① 3n xn 3n 1 xn 1 xi 1, 0,1(i 0,1, 故3n xn 3n 1 xn 1
3x1 x0共有n 1项,当
i ! p( p 1)
( p i 1) Z i! ( p i 1)
当i 1, 2, 故C ip pq,
, p 1时, (i !, p) 1 即p C ip
i ! ( p 1)
( p i 1),
例3、( 1)求所有的正整数n,使得2n 1能被7整除; (2)证明:对于任何正整数n,2n +1不能被7整除。

初等数论(三)同余

初等数论(三)同余

初等数论(三)--同余基本性质:(1) 反身性:(mod )a a m ≡(2) 对称性:若(mod ),a b m ≡则(mod ),b a m ≡(3) 传递性:如果(mod ),a b m ≡(mod ),b c m ≡那么(mod ),a c m ≡以上三个性质说明∙“同余是一个等价关系,Z 中元素可以按照模m 分成m 个类,粗略地讲,用一类中的元素可以认为是相同的”(4) 如果(mod ),a b m ≡(mod ),c d m ≡那么(mod ),(mod ),a c b d m ac bd m ±≡±≡(5) 如果(mod ),a b m ≡那么(mod ),n n a b m ≡(6) 如果(mod )ac ab m ≡,不一定有(mod )c b m ≡(整数之间的乘法消去律不一定成立),(7) 若(mod ),ac bc m ≡则mod (,)m a b c m ⎛⎫≡ ⎪⎝⎭。

因此,(,)1c m =时,才会有(mod )a b m ≡。

例1.若质数5,p ≥并且21p +也是质数,证明:41p +是合数。

例2.对于任何n 个整数的集合,存在一个子集,该子集的元素之和被n 整除。

例3.证明表达式23,95x y x y ++按照相同的,x y 被17整除。

例4.设3p ≥为奇质数且111...21a p b +++=-, 证明:p a 。

作业:证明:3131421x x ++++被7整除。

例5.30对夫妻围着圆桌而坐。

证明:至少有两名妻子到各自丈夫的距离相等。

例6.设(,)1a m =,证明方程(mod )ax b m ≡在{0,1,2,3,...,1}m -中有唯一解。

例7.设01,,,,1,2,3,...n n a b x N x ax b n -∈=+=。

证明:数列12,,....,,...n x x x 不可能都是质数。

例8.证明方程2222x y z xyz ++=只有一个整数解0x y z ===。

同余关系的概念与定理

同余关系的概念与定理

同余关系的概念与定理同余关系是离散数学中一个重要的概念,它在数论、代数和密码学等领域有着广泛的应用。

本文将介绍同余关系的概念和相关定理。

一、同余关系的概念同余关系是数论中的一个基本概念,它描述了两个数之间的整除关系。

具体来说,给定两个整数a和b,如果它们除以一个正整数m所得的余数相同,即a和b对m同余,记作a≡b(mod m),则称a和b关于模m同余。

二、同余关系的性质同余关系具有以下三个性质:1.自反性:对于任意整数a,a≡a(mod m)恒成立。

即任意整数与自身关于模m同余。

2.对称性:对于任意整数a和b,若a≡b(mod m),则b≡a(mod m)。

即若a与b关于模m同余,则b与a关于模m同余。

3.传递性:对于任意整数a、b和c,若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。

即若a与b关于模m同余,且b与c关于模m同余,则a与c关于模m同余。

三、同余关系的定理1. 除法定理:对于任意整数a和正整数m,存在唯一的整数q和r,使得a=qm+r,其中0≤r<m。

即任意整数a可以表示为以m为模的除法形式。

2. 模运算性质:- 同余类的性质:对于任意整数a和正整数m,a关于模m的同余类可以表示为[a]m={b∈Z | b≡a(mod m)},其中Z表示整数集合。

同余类[a]m是所有与a关于模m同余的整数构成的集合。

- 同余的运算性质:对于任意整数a、b和正整数m,若a≡a' (mod m)且b≡b' (mod m),则有a+b≡a'+b' (mod m),a-b≡a'-b' (mod m),ab≡a'b' (mod m)。

3. 唯一性定理:对于给定的整数a、b和正整数m,存在整数x,使得a≡b (mod m)的充分必要条件是a和b对m的余数相同。

即a和b关于模m同余的充分必要条件是它们对m的余数相同。

4. 同余定理:对于任意整数a、b和正整数m,若a≡b (mod m),则a^n≡b^n (mod m),其中n是正整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑦ a b(mod m),a a1d ,b b1d , (d ,m) 1
a1 b1(mod m). 证:a b(mod m) m a b m (a1 b1)d
m (a1 b1) a1 b1(mod m). 注意:若没有(d , m) 1的条件,不能成立!
反例:取m 4,a 6,b 10,d 2,
有6 10(mod 4),但3 5(mod 4)不能成立.
2020/7/8
阜阳师范学院 数科院
9
四、一些整数的整除特征 设a anan1 a0表示an 10n an1 10n1 a1 101 a0 (1) 3、9 的整除特征
——各位上的数字之和能被3(9)整除 10i 1mod(3) a an 10n a1 10 a0 an a1 a0 mod(3)
注:若没有条件(c, m) = 1,即为TH2③的逆命题, 不能成立。
反例:取m=6,c=2,a=20,b=23.
这时,有40 46(mod 6), 但20 23(mod 6)不成立!
2020/7/8
阜阳师范学院 数科院
ห้องสมุดไป่ตู้
8
⑥ a b c(mod m) a c b(mod m)
证:a b c(mod m) m c a b m (c b) a a (c b)(mod m).
⑥ a b c(mod m) a c b(mod m)
⑦ a b(mod m),a a1d ,b b1d , (d ,m) 1 a1 b1(mod m).
2020/7/8
阜阳师范学院 数科院
6
① a b (mod m),dm,d > 0 a b (mod d);
证:a b(mod m) m|a b d|a b a b(modd ).
第三章 同 余
同余是数论中的重要概念,同余理论是研究整数 问题的重要工作之一.本章介绍同余的基本概念,剩 余类和完全剩余系.
生活中我会经常遇到与余数有关的问题,比如: 某年级有将近400名学生。有一次演出节目排队时出 现:如果每8人站成一列则多余1人;如果改为每9人 站成一列则仍多余1人;结果发现现成每10人结成一 列,结果还是多余1人;聪名的你知道该年级共有学 生多少名吗?
② a b (mod m),k > 0,kN ak bk (mod mk);
证:a b(mod m) m|a b mk|k(a b) ak bk(mod mk).
③ a b (mod mi ),1 i k a b (mod [m1, m2, , mk])
证:a b(mod mi ) mi a b [m1, , mk ] a b.
④ a b (mod m) (a, m) = (b, m);
证:a mq1 r (a,m) (m,r),
同理,b 2020/7/8
mq2
r (b,m)
阜阳师范学院
(m, r ).
数科院
7
⑤ ac bc (mod m),(c, m) = 1 a b (mod m);
证:ac bc(mod m) m ac bc m (a b)c m (a b) a b(mod m).
2020/7/8
阜阳师范学院 数科院
1
§3.1 同余的概念及其基本性质
一、问题的提出 1、今天是星期一,再过100天是星期几? 再过1010 天呢? 2、3145×92653=2910 93995的横线处漏写了一个 数字,你能以最快的办法补出吗? 3、13511,13903,14589被自然数m除所得余数 相同,问m最大值是多少?
4、你知道777 的个位数是多少吗?
2020/7/8
阜阳师范学院 数科院
2
二、同余的定义 设a,b Z,m Z ,如果m|(a b),则称a与b对模m 同余,记作:a b(mod m). 否则,称a与b对模m不同余,记作:a b(mod m).
注:下面的三个表示是等价的:
(1) a b(mod m); (2)q Z ,使得a b qm; (3)q1,q2 Z ,使得a q1m r,b q2m r.
例1 检查5874192、435693 能否被3(9)整除。
2020/7/8
阜阳师范学院 数科院
10
(2) 7、11、13 的整除特征 ——7|a 7|a2a1a0 a5a4a3
7 1113 1001 1000 1(mod7) anan1 a0 anan1 a3 1000 a2a1a0 a2a1a0 anan1 a3 a2a1a0 a5a4a3 anan1 a6 (mod7).
n
n
则: ai xi bi yi (mod m)
i0
i0
2020/7/8
阜阳师范学院 数科院
5
TH4 下面的结论成立: ① a b (mod m),dm,d > 0 a b (mod d); ② a b (mod m),k > 0,kN ak bk (mod mk); ③ a b (mod mi ),1 i k a b (mod [m1, m2, , mk] ④ a b (mod m) (a, m) = (b, m); ⑤ ac bc (mod m),(c, m) = 1 a b (mod m);
2020/7/8
阜阳师范学院 数科院
3
三、同余的性质
TH1 ① a a (mod m); ② a b (mod m) b a (mod m); ③ a b,b c (mod m) a c (mod m)。
TH2 设a,b,c,d,k是整数,并且 a b (mod m), c d (mod m),
则 ① a c b d (mod m); ② ac bd (mod m); ③ak bk (mod m).
注:TH1、TH2是最简单、常用的性质。
2020/7/8
阜阳师范学院 数科院
4
TH 3 设ai ,bi (0 i n),x, y都是整数,
并且x y mod(m), ai bi mod(m), 0 i n.
相关文档
最新文档