分式的知识点总结 [《分式》知识点归纳与总结]

合集下载

分式知识点总结

分式知识点总结

分式知识点总结1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。

(分式的值是在分式有意义的前提下才可以考虑的,所以使分式为0的条件是A=0,且B≠0.)(分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。

首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为(),其中A、B、C是整式注意:(1)“C是一个不等于0的整式”是分式基本性质的一个制约条件;(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。

5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

分式性质知识点总结

分式性质知识点总结

分式性质知识点总结一、分式的概念分式是由分子和分母组成的表达式,形式为a/b,其中a为分子,b为分母,a、b为整数且b≠0。

二、分式的分母不为0分式的分母不为0,这是因为分母为0时,分式的值就没有意义。

分式的分母不能为0是分式的基本性质之一。

三、分式的约分分式的约分是指将分子和分母的公因数约去得到分式的最简形式。

如2/4的最简形式为1/2,4/6的最简形式为2/3。

四、分式的等价两个分式的值相等时,称它们是等价分式,即a/b = c/d,记作a/b ≡ c/d。

例如2/3 = 4/6。

五、分式的加减当分式的分母相同时,分式的加减运算就像整数的加减一样。

当分式的分母不相同时,需要将分式化简成通分分式后再进行加减运算。

六、分式的乘法分式的乘法是分子相乘,分母相乘。

即(a/b) × (c/d) = (a×c)/(b×d)。

七、分式的除法分式的除法是分子相除,分母相除。

即(a/b) ÷ (c/d) = (a×d)/(b×c)。

八、分式的倒数一个分式的倒数是将分子与分母交换位置得到的新的分式。

例如分式a/b的倒数是b/a。

九、分式的乘方分式的乘方是指分式本身或者分式的分子分母分别乘方。

例如(a/b)² = (a²)/(b²),(a/b)² = (a²)/(b²)。

十、分式方程分式方程是指含有分式的方程。

解分式方程时需要化简分式并求解分式的值。

如2/x+1 = 3,则x的值为1。

十一、分式的实际应用分式的实际应用包括比例、百分比、利润、损失、利率等,这些都是日常生活中常见的分式应用。

总结:分式是数学中常见的一种数学表达式,掌握分式的性质和运算方法对于学习代数和数学计算有着重要的意义。

要熟练掌握分式的加减乘除和方程的解法,掌握这些知识点能够帮助我们更好地理解数学问题,并且在实际生活中做出正确的数学计算。

分式数学知识点归纳总结

分式数学知识点归纳总结

分式数学知识点归纳总结一、分式的定义和基本性质1. 分式是由分子和分母组成的数,分子和分母都是整数,并且分母不为零。

2. 分式可以表示有理数,有理数包括整数和分数。

3. 分式可以看作是代数式的特殊形式,其中分母不为零。

4. 分式的分子和分母可以约分,即分子和分母同时除以一个相同的非零数。

5. 分式可以相加、相减、相乘和相除,也可以化简和合并。

6. 分式的大小比较可以用分式的加减乘除性质进行比较。

二、分式的化简和合并1. 化简分式:化简分式是指对分式的分子和分母进行约分,使分数的值保持不变的基础上,得到最简分数。

2. 合并分式:合并分式是指将两个分式相加或者相减,得到一个最简分式。

三、分式的加减乘除性质1. 分式的加法性质:分式相加时,首先要找到它们的公分母,然后将分子相加,分母保持不变。

2. 分式的减法性质:分式相减时,首先要找到它们的公分母,然后将分子相减,分母保持不变。

3. 分式的乘法性质:分式相乘时,分子相乘,分母相乘。

4. 分式的除法性质:分式相除时,将除数分子分母互换,再将所得的分式作为乘数分式进行运算。

四、分式的大小比较1. 分式的大小比较:分式大小的比较可以用分式的加减乘除性质进行比较。

对于两个分式a/b和c/d来说,若a/b<c/d,则ad<bc;若a/b>c/d,则ad>bc。

2. 分式的大小比较练习:比较分式大小时,可以将分式通分进行比较,也可以将分式转化为小数进行比较。

五、分式方程的解法1. 分式方程的定义:分式方程是含有分式的代数方程。

2. 分式方程的解法:对于分式方程的解法,首先要通过分式的化简和合并,将分式方程化为最简分式方程,然后可以通过分式方程的乘法性质和除法性质进行求解。

六、分式在实际应用中的问题求解1. 分式在应用问题中的运用:分式在实际生活中有着广泛的应用,包括比例、百分数、利率、比率、工程问题等。

2. 分式应用问题求解:在实际应用问题中,我们可以将问题中的条件转化为分式形式,然后通过分式的运算法则进行求解。

分式的知识点总结

分式的知识点总结

分式的知识点总结一、分式的基本概念1. 分式的定义:分式是由一个整数(分子)与另一个非零整数(分母)用分数线(也称为分子线)相连所构成的数,通常表示为 a/b(a为分子,b为分母)。

2. 分式的分类:根据分母的情况,分式可以分为真分式、假分式和带分数。

真分式的分子比分母小,假分式的分子比分母大,带分数由整数部分和真分数部分组成。

3. 分式的性质:分式的分子和分母都可以乘以(或除以)同一非零数,而不改变其值;分式的分子和分母互换位置,得到的新分式称为倒数;两个分式相乘,分子相乘,分母相乘;两个分式相除,分子相除,分母相除。

这些性质都是分式运算中的基本规律,对于分式的计算和化简有着重要的作用。

二、分式的运算1. 分式的加减法:要进行分式的加减法,首先需要找到它们的公分母,然后分别对分子进行相应的加减操作,最后将结果化简为最简分式。

如果分式的分母不同,可以通过通分的方式将它们转化为相同分母后进行计算。

2. 分式的乘法:分式的乘法是将分式的分子相乘,分母相乘,然后将结果化简为最简分式。

如果有字数相同的多个分式相乘,也可以先将它们的分子和分母分别相乘,最后将所有结果相乘得到最终结果。

3. 分式的除法:分式的除法是将两个分式相除,即将第一个分式乘以第二个分式的倒数,然后化简为最简分式。

三、分式的应用1. 代数中的分式:在代数中,分式可以用来表示多项式中的系数和字母之间的比值关系,例如多项式的根、系数、因式分解等都涉及到分式的计算和化简。

2. 几何中的分式:在几何中,分式可以用来表示两个线段或面积的比值,例如在相似三角形或相似图形中,就可以利用分式来表示相似比例。

3. 概率中的分式:在概率中,分式可以用来表示事件的发生概率,例如事件发生的次数与总次数之间的比值就可以用分式表示。

综上所述,分式是数学中重要的概念之一,它不仅具有基本的定义和运算规律,还在各个数学领域中有着广泛的应用。

熟练掌握分式的相关知识和运算方法,对于学习代数、几何和概率等数学课程都具有重要的意义。

分式的相关知识点总结

分式的相关知识点总结

分式的相关知识点总结一、分式的定义和性质1. 分式的定义分式是指两个整数或者两个代数式的比值的表示形式.一般为 a/b 的形式,其中 a 和 b 都是整数,b 不等于 0。

2. 分式的性质(1) 分式的分子和分母互质:如果分数 a/b 已经约分为最简分数,那么 a 和 b 一定是互质的,即它们的最大公因数是 1。

(2) 分母为 1 的分数:如果分数的分母为 1,那就是一个整数,可以简单地把它看作一个整数。

(3) 分式的相等:分数 a/b 和 c/d 相等,当且仅当 ad = bc。

两个分式相等时,它们表示的比值是相等的。

二、分式的运算1. 分式的加法和减法(1) 加法和减法的分母变换:对于不同分母的分数,需要将它们的分母变为相同的数,然后再进行加法或减法运算。

(2) 加法和减法的运算规则:对于相同的分母,直接将分子相加或相减,分母保持不变。

2. 分式的乘法和除法(1) 乘法法则:两个分式相乘时,分子与分子相乘,分母与分母相乘,即 (a/b) * (c/d) = (a*c)/(b*d)。

(2) 除法法则:两个分式相除时,分子与分母相乘,分母与分子相乘,即 (a/b) / (c/d) = (a*d)/(b*c)。

三、分式的化简1. 分式的约分分式约分是指将分子与分母的公因数约掉,使其成为最简分式.一般采用求最大公因数的方法进行约分。

2. 分式的通分不同分母的分数,通分是指将它们的分母都变为相同的数,通常采用最小公倍数的方法进行通分。

3. 分式的化简原则(1) 分式中的公因式可以约掉;(2) 同等分母的分式相加或相减时,只需对各分子分别进行加减。

四、分式的应用1. 代数方程中的应用在解代数方程时,常常会遇到分式方程,需要对其进行分式的加减乘除,并化简以便求解。

2. 几何问题中的应用在几何中,常常会涉及到对分式的加减乘除和化简操作,特别是在比例、相似三角形、面积等方面的计算中。

3. 物理问题中的应用在物理中,分式广泛应用于密度、速度、功率等问题的计算中,需要进行分式的加减乘除以及化简操作。

八年级上册《分式》知识点归纳与总结上课讲义

八年级上册《分式》知识点归纳与总结上课讲义

八年级上册《分式》知识点归纳与总结主讲 王老师一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B 0≠)⑦分式值为-1:分子分母值互为相反数(A+B=0,0B ≠)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。

四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。

3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。

◆约分时。

分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

分式知识点的总结及复习

分式知识点的总结及复习

分式知识点的总结及复习分式是数学中的一个重要概念,对于理解和解决各种问题非常有帮助。

分式的概念、性质以及操作都是数学中的基础知识点,非常值得我们重视和复习。

下面给出分式的总结及复习,希望能对大家有所帮助。

一、分式的定义和表示方法1.分式是由两个整数用除号连接起来的表达式,形如a/b,其中a和b都是整数,b不等于0。

a被称为分子,b被称为分母。

分子和分母都可以为正整数、负整数或零。

2.分式也可以表示为a÷b,即a除以b。

二、分式的化简1.如果分式的分子和分母都可以被同一个非零整数整除,则可以进行约分。

约分后得到的分式与原分式的值相等。

2.两个分数相加(减)时,要先找到它们的公共分母,然后将分子相加(减),再写上公共分母。

3.两个分数相乘时,将分子相乘,分母相乘。

4.两个分数相除时,将除号转为乘号,即分子乘以分母的倒数。

5.分子和分母同时乘以一个非零整数不改变分数的值。

这也是化简分式中常用的方法。

三、分式的乘除混合运算1.分式的乘法:把分子与分子相乘,分母与分母相乘。

然后可以进行约分。

2.分式的除法:用除号变成乘号,然后求倒数,即分子和分母交换位置。

然后进行乘法运算,可以进行约分。

四、分式的加减混合运算1.分式的加法:确定两个分式的公共分母,然后将分子相加,写上公共分母。

最后可以进行约分。

2.分式的减法:确定两个分式的公共分母,然后将分子相减,写上公共分母。

最后可以进行约分。

五、分式的化简与方程的解1.在代数中,分式经常出现在方程的求解中。

如果方程中含有分式,我们需要对方程进行化简,使得分母消失,然后求解方程。

2.常用的化简方法有通分、去括号、移项等。

六、分式的应用1.在实际生活中,分式的应用非常广泛。

比如:计算机网络中的带宽分配、物资的平均分配等都涉及到分式的应用。

2.分式在商业计算、金融投资等领域也有广泛应用。

七、分式的习题练习1.简化下列分式:(a)12/30(b)-18/12(c)40/802.求下列分式的值:(a)1/4+3/8(b)5/6-2/3(c)2/3×3/4(d)1/2÷2/33.解方程:2/(x-1)-3/(x+2)=1/(x+1)以上是分式知识点的总结及复习,对于掌握分式知识以及应用都有一定的帮助。

分式复习知识点总结

分式复习知识点总结

分式复习知识点总结一、分式的定义分式是指由一个整数或多项式作为分子,一个非零整数或多项式作为分母组成的表达式。

通常表示为a/b,其中a为分子,b为分母,a和b分别为整数或多项式,且b ≠ 0。

分式可以表示有理数,它可以是一个整数、分数或带分数。

二、分式的性质1. 分式的值可以是正数、负数或零,取决于分子和分母的符号。

2. 分式的分子和分母都可以约分,约分后的分式与原分式等值。

3. 分式中的分母不能为0,因为0不能做除数。

4. 分式可以化简为最简形式,即分子和分母没有公因数。

5. 分式可以进行加、减、乘、除以及简单化简等运算。

三、分式的简化对于分式a/b,若a和b有公因数,可以进行约分,使分子和分母互素,即没有公因数。

对于多项式分式,可以进行因式分解,将分子和分母都化为最简形式。

四、分式的运算1. 分式的加法和减法若a/b和c/d是两个分式,且b≠0,d≠0,则a/b + c/d = (ad+bc)/bda/b - c/d = (ad-bc)/bd2. 分式的乘法若a/b和c/d是两个分式,且b≠0,d≠0,则a/b × c/d = ac/bd3. 分式的除法若a/b和c/d是两个分式,且b≠0,c≠0,则a/b ÷ c/d = ad/bc4. 分式的混合运算先将分式化为最简形式,然后进行运算。

五、解分式方程分式方程指含有未知数的分式等式,解分式方程的关键是通分,将分式方程转化为多项式方程,然后求解。

六、分式的应用分式在实际生活中有着广泛的应用,例如在工程、物理、经济等领域都有着重要的作用。

在经济学中,分式可以用来表示利润、成本、收入等比例关系;在物理学中,分式可以用来表示速度、加速度、密度等物理量的关系;在工程学中,分式可以用来表示材料的混合比例、工程测量中的比例关系等。

在学习分式的过程中,要善于把分数化简成最简式,掌握有理数的运算法则,灵活运用有理数的基本性质,加强分数的认识和运用,掌握有理数的相关知识,对于解决有理数问题能够运用有理数的性质和基本运算规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的知识点总结 [《分式》知识点归纳与总结] 《分式》知识点归纳与总结一、分式的定义:一般地,如果A,B 表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。

二、与分式有关的条件①分式有意义:分母不为0()②分式无意义:分母为0()③分式值为0:分子为0且分母不为0()④分式值为正或大于0:分子分母同号(或)⑤分式值为负或小于0:分子分母异号(或)⑥分式值为1:分子分母值相等(A=B)
⑦分式值为-1:分子分母值互为相反数(A+B=0,)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:,,其中A、B、C是整式,C0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0。

四、分式的约分 1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。

3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。

◆约分时。

分子分母公因式的确定方法: 1)系数取分子、分母系数的最大公约数作为公因式的系数. 2)取各个公因式的最低次幂作为公因式的因式. 3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式. 五、分式的通分 1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

(依据:分式的基本性质!) 2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

◆通分时,最简公分母的确定方法: 1.系数取各个分母系数的最小公倍数作为最简公分母的系数. 2.取各个公因式的最高次幂作为最简公分母的因式. 3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母. 六、分式的四则运算与分式的乘方①分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为:②分式的乘方:把分子、分母分别乘方。

式子表示为:③分式的加减法则:同分母分式加减法:分母不变,把分子相加减。

式子表示为:异分母分式加减法:先通分,化为同分母的分式,然后再加减。

式子表示为:整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

④分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。

加减后得出的结果一定要化成最简分式(或整式)。

七、整数指数幂①引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。

即:())()(任何不等于零的数的零次幂都等于1)其中m,n均为整数。

八、分式方程的解的步骤:⑴去分母,把方程两边同乘以各分母的最简公分母。

(产生增根的过程)⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

九、列分式方程——基本步骤:①审:仔细审题,找出等量关系。

②设:合理设数。

③列:根据等量关系列出方程(组)。

④解:解出方程(组)。

⑤验:检验⑥答:答题。

模板,内容仅供参考。

相关文档
最新文档