参数估计和假设检验习题解答讲解
统计基础试题——参数估计和假设检验

第七章参数估计和假设检验一、填空题1.在抽样推断中,常用的总体指标有、和。
2.在抽样推断中,按随机原则从总体中抽取的部分单位叫,这部分单位的数量叫。
3.整群抽样是对总体中群内的进行的抽样组织形式。
4.若总体单位的标志值不呈正态分布,只要,全部可能样本指标也会接近于正态分布。
5.抽样估计的方法有和两种。
6.扩大误差范围,可以推断的可靠程度,缩小误差范围则会推断的可靠程度。
7.对总体的指标提出的假设可以分为和。
8.如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为。
二、单项选择题1.所谓大样本是指样本单位数在()及以上。
A.50个B.30个C.80个D.100个2.总体平均数和样本平均数的关系是()。
A.总体平均数是确定值,样本平均数是随机变量B.总体平均数是随机变量,样本平均数是确定值C.总体平均数和样本平均数都是随机变量D.总体平均数和样本平均数都是随机变量3.先对总体按某一标志分组,然后再在各组中按随机原则抽取一部分单位构成样本,这种抽样组织方式称为()。
A.简单随机抽样B.机械抽样C.类型抽样D.整群抽样4.用样本指标对总体指标作点估计时,应满足4点要求,其中无偏性是指()。
A.样本平均数等于总体平均数B.样本成数等于总体成数C.样本指标的平均数等于总体的平均数 D.样本指标等于总体指标5.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将()。
A.保持不变B.随之扩大C.随之缩小D.无法确定6.在抽样估计中,样本容量()。
A.越小越好B.越大越好C.有统一的抽样比例D.取决于抽样估计的可靠性要求。
7.假设检验中的临界区域是指()。
A.接受域B.拒绝域C.检验域D.置信区间三、多项选择题1.在抽样推断中,抽取样本单位的具体方法有()。
A.重复抽样B.不重复抽样C.分类抽样D.等距抽样E.多阶段抽样2.在抽样推断中,抽取样本的组织形式有()。
第八讲参数估计和假设检验

证:(1)由于 的密度为 ,
故 的分布函数为 ,
对应的密度函数为 ,
从而 。
所以, 是 的无偏估计,
类似地, 的密度为 ,
故
,
( , , , )
所以, 是 的无偏估计。
(2)为计算 ,先算 。
, , ,
越小, 越大,故
的分布函数为
的分布函数为
的密度函数为
,故 不是 的无偏估计。取 ,因 ,故 是 的无偏估计。
例6.设总体 的概率分布为
0 1 2 3
其中 是未知参数,利用总体的如下8个样本:3,1,3,0,3,1,2,3,求 的矩估计和最大似然估计值。
解:
,令 ,即 ,
解得 得矩估计值 。
又从题目要求 ,可令 ,得 =15.68,取大于 的最小整数是16。
例8.设总体 , 已知,问样本容量 为多大时,方能保证 的置信度为0.95下的置信区间长度不超过 ?
解:由于 , 已知,故用 作统计量即可找到分位数 ,
使 ,即 ,
从而置信区间长为 ,再由题目要求 ,从中解出 ,故 ,其中 表示为小于 的最大整数。
故有 ,
,故 的置信区间为 。
(3)由上题结果 及 的严格递增性,可知:
,
故 的置信度为0.95置信区间为 。
3.假设检验
(本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)
第八讲 极大似然估计,无偏性和有效性)
例1.设总体 的概率密度为 , 是取自总体 的简单随机样本,(1)求 的矩估计量 ;(2)求 的方差 。
假设检验练习试题-答案解析

假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设 (通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1: W为双边H1: W为单边H1: W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=0.05有的双边 W为的右单边 W为的右单边 W为第五步根据样本观测值,计算和判断计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值 227页 p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值 227页 p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验 -----比较目标均值双样本t检验 -----比较两个均值方差分析 -----比较两个以上均值等方差检验 -----比较多个方差离散型(区分或数的数据):卡方检验 -----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。
统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为与置信水平成正比,在其他条件不变的情况下,置信水平越大,所其中: 2222α2222)(E z n σα=n z E σα2=需要的样本量越大;与总体方差成正比,总体的差异越大,所要求的样本量也越大;与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
MBA参数估计、假设检验参考答案

1.某公司雇用2 000名推销员,并希望估计其平均每年的乘车里程。
从过去的经验可知,通常每位推销员行程的标准差为5 000公里。
随机选取的25辆汽车样本的均值为14 000公里。
1)求出总体均值μ所需要的估计量;14 0002)确定总体均值μ95%的置信区间;(14000±1.96*5000/5)。
虽是小样本,但“从过去的经验可知,通常每位推销员行程的标准差为5 000公里”这句话,表明总体服从正太分布且标准差已知,所以用最基本的公式。
3)公司经理们认为均值介于13 000到15 000公里之间,那么该估计的置信度是多少?对应的Z在-1-+1之间,所以置信度为68.26%。
这里要注意的是应用均值的分布。
4)如果在3)的估计中希望有95%的置信水平,那么所要求的样本容量是多少。
96=1.962*50002/100022.生产隐形眼镜的某公司生产一种新的型号,据说其寿命比旧型号的寿命长。
请6个人对该新型眼镜做实验,得出平均寿命为4.6年,标准差为0.49年。
构造该新型眼镜的平均寿命90%的置信区间。
小样本且总体标准差未知,用t公式。
4.6±2.015*0.49/2.453.假设某厂家生产的可充电的电池式螺丝刀的使用寿命近似于正态分布。
对15个螺丝刀进行测试,并发现其平均寿命为8 900小时,样本标准差为500小时。
1)构造总体均值置信水平为95%的区间估计;8900±2.145*500/3.872)构造总体均值置信水平为90%的区间估计;8900±1.761*500/3.874.电话咨询服务部门在每次通话结束时都要记录下通话的时间。
从一个由16个记录组成的简单随机样本得出一次通话的平均时间为1.6分钟。
试求总体平均值的置信度为90%的置信区间。
已知总体服从标准差为0.7分钟的正态分布。
1.6±1.645*0.7/45.某仓库中有200箱食品,每箱食品均装100个。
考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设为未知参数θ的无偏一致估计,且是θ2的( )A.无偏一致估计。
B.无偏非一致估计。
C.非无偏一致估计。
D.非无偏非一致估计。
正确答案:C解析:根据无偏估计和一致估计的概念可得的非无偏一致估计,故选C。
知识模块:参数估计2.设是取自总体X中的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果( )A.X~N(μ,σ2)。
B.X服从参数为μ的指数分布。
C.P{X=m}=μ(1—μ)m—1,m=1,2,…。
D.X服从[0,μ]上均匀分布。
正确答案:A解析:若X~N(μ,σ2),则E(X)=μ,μ的矩估计为,故选A。
对于选项B,X服从参数为μ的指数分布,则E(X)=,μ的矩估计,对于选项C,X服从参数为μ的几何分布,E(X)=,μ的矩估计,对于选项D,E(X)=,μ的矩估计。
知识模块:参数估计3.总体均值μ置信度为95%的置信区间为,其含义是( )A.总体均值μ的真值以95%的概率落入区间。
B.样本均值以95%的概率落入区间。
C.区间含总体均值μ的真值的概率为95%。
D.区间含样本均值的概率为95%。
正确答案:C解析:根据置信区间的概念,故选C。
均值μ是一个客观存在的数,说“μ以95%的概率落入区间”是不妥的,所以不选A,而B、D两项均与μ无关,无法由它确定μ的置信区间。
知识模块:参数估计4.下列关于总体X的统计假设H0属于简单假设的是( )A.X服从正态分布,H0:E(X)=0。
B.X服从指数分布,H0:E(X)≥1。
C.X服从二项分布,H0:D(X)=5。
D.X服从泊松分布,H0:D(X)=3。
正确答案:D解析:A、B、C三项的假设都不能完全确定总体的分布,所以是复合假设,而D选项的假设可以完全确定总体分布,因而是简单假设,故选D。
概率论与数理统计实验实验3参数估计假设检验

概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。
2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。
2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。
(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。
数理统计--参数估计、假设检验、方差分析(李志强) (3)讲解

教学单元案例: 参数估计与假设检验北京化工大学 李志强教学内容:统计量、抽样分布及其基本性质、点估计、区间估计、假设检验、方差分析 教学目的:统计概念及统计推断方法的引入和应用(1)理解总体、样本和统计量等基本概念;了解常用的抽样分布;(2)熟练掌握矩估计和极大似然估计等方法; (3)掌握求区间估计的基本方法; (4)掌握进行假设检验的基本方法; (5) 掌握进行方差分析的基本方法;(6)了解求区间估计、假设检验和方差分析的MA TLAB 命令。
教学难点:区间估计、假设检验、方差分析的性质和求法 教学时间:150分钟教学对象:大一各专业皆可用一、统计问题 引例例1 已知小麦亩产服从正态分布,传统小麦品种平均亩产800斤,现有新品种产量未知,试种10块,每块一亩,产量为:775,816,834,836,858,863,873,877,885,901问:新产品亩产是否超过了800斤?例2 设有一组来自正态总体),(2σμN 的样本0.497, 0.506, 0.518, 0.524, 0.488, 0.510, 0.510, 0.512. (i) 已知2σ=0.012,求μ的95%置信区间; (ii) 未知2σ,求μ的95%置信区间; (iii)求2σ的95%置信区间。
例3现有某型号的电池三批, 分别为甲乙丙3个厂生产的, 为评比其质量, 各随机抽取5只电池进行寿命测试, 数据如下表示, 这里假设第i 种电池的寿命),(.~2σμi i N X .(1) 试在检验水平下,检验电池的平均寿命有无显著差异? (2) 利用区间估计或假设检验比较哪个寿命最短.二 统计的基本概念: 总体、个体和样本(1)总体与样本总体 在数理统计中,我们将研究对象的某项数量指标的值的全体称为总体,总体中的每个元素称为个体比如,对电子元件我们主要关心的是其使用寿命.而该厂生产的所有电子元件的使用寿命取值的全体,就构成了研究对象的全体,即总体,显然它是一个随机变量,常用X 表示 为方便起见,今后我们把总体与随机变量X 等同起来看,即总体就是某随机变量X 可能取值的全体.它客观上存在一个分布,但我们对其分布一无所知,或部分未知,正因为如此,才有必要对总体进行研究.简单随机样本对总体进行研究,首先需要获取总体的有关信息. 一般采用两种方法:一是全面调查.如人口普查,该方法常要消耗大量的人力、物力、财力.有时甚至是不可能的,如测试某厂生产的所有电子元件的使用寿命. 二是抽样调查. 抽样调查是按照一定的方法,从总体X 中抽取n 个个体.这是我们对总体掌握的信息.数理统计就是要利用这一信息,对总体进行分析、估计、推断.因此,要求抽取的这n 个个体应具有很好的代表性.按机会均等的原则随机地从客观存在的总体中抽取一些个体进行观察或测试的过程称为随机抽样.从总体中抽出的部分个体,叫做总体的一个样本.从总体中抽取样本时,不仅要求每一个个体被抽到的机会均等,同时还要求每次的抽取是独立的,即每次抽样的结果不影响其他各次的抽样结果,同时也不受其他各次抽样结果的影响.这种抽样方法称为简单随机抽样.由简单随机抽样得到的样本叫做简单随机样本.往后如不作特别说明,提到“样本”总是指简单随机样本.从总体X 中抽取一个个体,就是对随机变量X 进行一次试验.抽取n 个个体就是对随机变量X 进行n 次试验,分别记为X1,X2,…,Xn.则样本就是n 维随机变量(X1,X2,…,Xn).在一次抽样以后, (X1,X2,…,Xn)就有了一组确定的值(x1,x2,…,xn),称为样本观测值.样本观测值(x1,x2,…,xn)可以看着一个随机试验的一个结果,它的一切可能结果的全体构成一个样本空间,称为子样空间.(2)样本函数与统计量设n x x x ,,,21 为总体的一个样本,称ϕϕ= (n x x x ,,,21 )为样本函数,其中ϕ为一个连续函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数估计和假设检验习题1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?0.05,α=26,n =0:1600H μ=,即,以95%的把握认为这批产品的指标的期望值μ为1600.2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。
问,新工艺上浆率能否推广(α=0.05)?解: 012112:, :,H H μμμμ≥<3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.4.有一批产品,取50个样品,其中含有4个次品。
在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)?解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,50,n =由检验统计量0.9733Z ===<1.65,接受H 0:p ≤0.05.即, 以95%的把握认为p ≤0.05是成立的.5.某产品的次品率为O.17,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=0.05)?解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =0.950.05, 1.65z α=-=-,由检验统计量4001.5973i x npZ -===-∑>-1.65, 接受0:0.17H p ≥,即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)?解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2(1)t t n α>-,24,n = x =11958,s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量2.1537t ===>2.0687,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,ii02,612,407,506.假定重量服从正态分布,试问以95%的显著性检验机器工作是否正常?解: 01:500 :500H vs H μμ=≠,总体标准差σ未知,拒绝域为2(1)t t n α>-,10,n =经计算得到x =502, s =6.4979,取0.0250.05,(9) 2.2622t α==,由检验统计量0.9733t ===<2.2622, 接受0:500 H μ= 即, 以95%的把握认为机器工作是正常的.8.有一种新安眠药,据说在一定剂量下,能比某种旧安眠药平均增加睡眠时间3小时,根据资料用某种旧安眠药时,平均睡眠时间为20.8小时。
标准差为1.6小时,为了检验这个说法是否正确,收集到一组使用新安眠药的睡眠时间为26.7,22.O ,24.1,21.O ,27 .2,25.0,23.4。
试问:从这组数据能否说明新安眠药已达到新的疗效(假定睡眠时间服从正态分布,α=0.05)。
解: 01:23.8 :23.8H vs H μμ≥<,已知总体标准差σ =1.6,拒绝域为Z z α<-,7,n =经计算得到x =24.2,取0.950.05, 1.65z α=-=-,由检验统计量0.6614x Z ===>-1.65, 接受0:23.8H μ≥即, 以95%的把握认为新安眠药已达到新的疗效.9.测定某种溶液中的水份,它的l0个测定值给出x =0.452%,s =O.037%,设测定值总体服从正态分布,μ为总体均值,σ为总体的标准差,试在5%显著水平下,分别检验假(1)H 0: μ=O.5%; (2)H 0: σ=O.04%。
解:(1)H 01: μ=O.5%,11:0.5%H μ≠, 总体标准差σ未知,拒绝域为2(1)t t n α>-,10,n =x =0.452%,s =O.037%,取0.0250.05,(9) 2.2622t α==,由检验统计量4.102t ===>2.2622,拒绝H 0: μ=O.5%, (2) H 02:σ=0.04%, H 12:σ≠0.04%,拒绝域为2222122(1) (1)n n ααχχχχ-≤-≥-或,10,n =取α=0.05,2220.9750.025(9) =2.7 (9)19.023χχχ≥=,,由检验统计量22222(1)(101)0.000377.70060.0004n s χσ--===,即22.77.700619.023χ<=<,接受H 02:σ=0.04%.10.有甲、乙两个试验员,对同样的试样进行分析,各人试验分析结果见下表(分析结果服从正态分布解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F Fn n F F n n αα-≤--≥--或,128,n n ==取α=0.05, 0.9750.0250.0251(7,7)0.2004 , (7,7) 4.99(7,7)F F F ===,经计算22120.2927,0.2927,s s ==由检验统计量2212/0.2927/0.29271F s s ===,接受220112:,H σσ=(2) 02121212:, :H H μμμμ=≠拒绝域为122(2)t t n n α>+-,128,n n ==0.0250.05,(14) 2.1448t α==,并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=0.2927, w s =0.5410, 由检验统计量-0.6833t ===<2.1448, 接受0212:,H μμ=即, 以95%的把握认为甲、乙两试验员试验分析结果之间无显著性的差异.11.为确定肥料的效果,取1000株植物做试验。
在没有施肥的100株植物中,有53株长势良好;在已施肥的900株中,则有783株长势良好,问施肥的效果是否显著(α=O.01)?解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F Fn n F F n n αα-≤--≥--或,取α=0.01,12100,900,n n ==0.9950.0050.0051(99,899)0.7843 , (99,899) 1.3(899,99)F F F ===,计算22125353783783(1)0.2491,(1)0.1131,100100900900s s =⨯-==⨯-=由检验统计量 2212/0.2491/0.1131 2.2025F s s ===, 拒绝220112:,H σσ=(2) 02121212:, :H H μμμμ≤>拒绝域为12(2)t t n n α>+-,12100,900,n n ==0.010.01,() 2.4121t α=∞≥并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=0.1266, w s =0.3558, 由检验统计量-9.0656x y t ===<2.4121, 接受0212:,H μμ≤即, 以95%的把握认为施肥的效果有显著性的差异.(备注: 0.005(99,899)F =1.43+(1.43-1.69)*0.5=1.3, 0.025(899,99)F =1.36+(1.36-1.53)*0.5=1.275)12.在十块地上同时试种甲、乙两种品种作物,设每种作物的产量服从正态分布,并计算得x =30.97,y =21.79,x s =26.7,y s =12.1。
这两种品种的产量有无显著差别(α=O.01)?解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F Fn n F F n n αα-≤--≥--或,1210,n n ==取α=0.01, 0.9950.0050.0051(9,9)0.1529 , (9,9) 6.54(9,9)F F F ===,有题设22712.89,146.41,x y s s ==由检验统计量2212/712.89/146.41 4.8691F s s ===, 接受220112:,H σσ=(2) 02121212:, :H H μμμμ≥<,拒绝域为12(2)t t n n α<-+-,0.010.01,(18) 2.5524t α==-,1210,n n ==并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=(9×712.89+9×146.41)/18=429.6500, w s =20.7280, 由检验统计量0.9903x y t ===>-2.5524, 接受0212:,H μμ≥即, 以95%的把握认为此两品种作物产量有显著差别,并且是第一种作物的产量显著高于第二种作物的产量.13.从甲、乙两店备买同样重量的豆,在甲店买了10次,算得y =116.1颗,1021()i i y y =-∑=1442;在乙店买了13次,计算x =118颗,1321()i i x x =-∑=2825。