高光谱数据处理基本流程
高光谱数据采集流程

高光谱数据采集是一种获取广泛、连续光谱范围内的反射或辐射信息的技术。
下面是常见的高光谱数据采集流程:
1.选择传感器和平台:根据采集目标和需求,选择适合的高光谱传感器和平台。
传感器可
以是航空或航天平台上的成像设备,例如多光谱相机、高光谱成像仪等。
2.飞行计划和路径规划:确定数据采集区域并制定详细的飞行计划。
根据采集区域的大小
和特点,规划飞行路径,包括高度、速度、重叠度等参数。
3.数据预处理:在采集数据之前,进行必要的预处理工作,如校准传感器、消除大气影响、
噪声过滤等。
这些步骤有助于提高数据质量和准确性。
4.数据采集:在确定的飞行路径上,使用载具(如飞机、无人机或卫星)携带高光谱传感
器进行数据采集。
通过持续记录传感器接收到的光谱信息,获取连续的光谱数据。
5.数据处理与校正:采集完毕后,对原始数据进行处理和校正。
包括辐射定标、几何校正、
噪声滤波等步骤,以确保数据的准确性和一致性。
6.数据解译与分析:对经过校正的高光谱数据进行解译和分析。
使用各种算法和技术,提
取数据中的特征和信息,如陆地覆盖类型、植被生理参数、污染物浓度等。
7.结果展示与应用:将分析得到的结果进行可视化展示,并应用于相关领域,如农业、环
境监测、地质勘探等。
可以生成高光谱图像、分类地图或其他需要的产品。
在整个高光谱数据采集流程中,数据质量控制和精确度校正是非常重要的环节。
同时,合适的数据处理和分析方法也能提高数据的有效利用和应用效果。
高光谱数据处理的相关方法

高光谱数据的处理步骤
1.先将原始的光谱反射在软件Viewspec pro 中进行异常值的删除,然后将重复的测量进行平均。
具体步骤如下
双击图标打开软件,(图1)点击File open 打开文件,默认路径为ViewSpecPro文件夹。
为了使打开和存储路径是储存数据的文件夹,需要对打开路径进行修改
将导出的txt文本中的直接复制到execl中。
此时需要注意小数位数的选择。
4到5位较好。
在此软件中可以进行反射率的一阶导,二阶导等的基础变化。
2利用origin对数据进行平滑。
步骤如下
首先打开软件将波段和对应的反射率复制进去然后进行一介导和平滑。
界面如下
一介导
平滑
制图比较效果
原始的
一介导平滑前
一介导平滑后
在ENVI中统去除
首先建立光谱数据库步骤如下
文件的保存为sli格式
点击polt出现右面的图
连续统去除
统去除后的效果图
统去除数据的保存
同去除前后的效果比较数据的打开类似前面。
高光谱数据处理业务流程

高光谱数据处理业务流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!高光谱数据处理是一项专业性很强的技术活动,其主要目的是为了从高光谱遥感数据中提取有价值的信息,以支持地物分类、资源调查、环境监测等应用。
高光谱数据预处理

高光谱数据预处理是指对从高光谱传感器获取的原始数据进行处理和优化,以提高数据质量、减少噪声和冗余信息,并为后续的数据分析和应用提供更好的基础。
以下是高光谱数据预处理的一些常见步骤:
1.数据校正:高光谱数据通常包含传感器的特定响应曲线、大气影响、太阳高度角等因素,需要进行各种校正,如大气校正、几何校正、太阳高度角校正等,以消除这些影响因素,提高数据质量。
2.数据滤波:高光谱数据可能存在噪声和冗余信息,需要进行滤波处理。
常见的滤波方法包括中值滤波、高斯滤波、小波变换等,可以根据数据的特点和应用需求选择合适的滤波方法。
3.数据增强:高光谱数据可能存在光谱分辨率不足的问题,需要进行数据增强。
常见的数据增强方法包括插值、降采样、多通道分解等,可以提高数据的空间和光谱分辨率。
4.特征提取:高光谱数据中包含丰富的光谱信息,需要进行特征提取,以便进行后续的分类、聚类、识别等分析。
常见的特征提取方法包括光谱特征提取、空间特征提取等。
5.数据归一化:高光谱数据的不同波段之间可能存在差异,需要进行数据归一化处理,以消除波段之间的差异,提高数据的可比性和稳定性。
常见的归一化方法包括最小-最大归一化、z-score标准化等。
6.数据降维:高光谱数据通常包含大量的冗余信息,可以通过数据降维方法减少数据维度,提高数据处理效率和准确性。
常见的降维方法包括主成分分析、线性判别分析等。
高光谱数据预处理是高光谱图像分析的重要步骤,可以提高数据质量、减少噪声和冗余信息,并为后续的数据分析和应用提供更好的基础。
高光谱图像处理技术的使用方法与技巧

高光谱图像处理技术的使用方法与技巧高光谱图像处理技术是一种在特定波长范围内连续获取大量光谱信息的技术。
它不仅可以提供丰富的光谱数据,还能提供高分辨率的空间信息,因此在许多领域都有广泛的应用。
本文将介绍高光谱图像处理技术的使用方法与一些常用的技巧。
首先,高光谱图像的处理流程主要包括预处理、特征提取和分类三个步骤。
预处理是为了去除图像中的噪声和杂质,使得后续的特征提取和分类工作更加准确。
常见的预处理方法包括影像校正、光谱校正和噪声去除等。
影像校正是为了解决图像中的光照不均匀问题,常用的方法有常规平滑和直方图匹配等。
常规平滑方法可以通过滤波算法去除图像中的噪声和高频分量,提高图像的可视性。
而直方图匹配则可以通过调整图像的亮度和对比度,使得不同图像之间的光照条件保持一致。
光谱校正是为了解决不同设备采集的高光谱数据存在光谱偏移的问题。
通常可以通过使用已知光谱的参考物质进行校正,如大气校正和地物光谱响应校正等。
大气校正可以去除大气对光谱数据的影响,使得数据更加准确。
地物光谱响应校正则是为了减少不同地物对光谱数据的影响。
噪声去除是为了去除因设备等原因造成的图像噪声,提高图像的质量。
常见的噪声去除方法包括中值滤波、高斯滤波和小波分析等。
中值滤波是一种基于排序统计的方法,通过对图像中的像素排序并取中值来去除噪声。
高斯滤波则是一种常用的线性滤波方法,通过将像素的值与周围像素的值按照一定的权重进行加权平均,得到滤波后的像素值。
小波分析是一种基于频域的方法,通过对图像进行频域分解和重构来去除噪声。
接下来是特征提取。
高光谱图像的特征提取是为了从原始数据中提取出与目标信息相关的特征。
常用的特征提取方法包括光谱特征提取、纹理特征提取和形状特征提取等。
光谱特征提取是通过对高光谱数据进行光谱统计分析来获得与目标信息相关的参数。
常用的统计参数包括均值、方差、偏度和峰度等。
这些参数可以反映出光谱数据在不同波段上的分布情况。
纹理特征提取是为了从高光谱图像中提取出纹理信息。
高光谱数据处理基本流程

高光谱分辨率遥感用很窄(10—2l)而连续的光谱通道对地物持续遥感成像的技术.在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,每个像元均可提取一条连续的光谱曲线,因此高光谱遥感又通常被称为成像光谱(ImagingSpectrometry)遥感。
高光谱遥感具有不同于传统遥感的新特点:(1)波段多-—可以为每个像元提供几十、数百甚至上千个波段;(2)光谱范围窄——波段范围一般小于10nm;(3)波段连续—-有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱;(4)数据量大-—随着波段数的增加,数据量成指数增加;(5)信息冗余增加--由于相邻波段高度相关,冗余信息也相对增加。
优点:(1)有利于利用光谱特征分析来研究地物;(2)有利于采用各种光谱匹配模型;(3)有利于地物的精细分类与识别。
ENVI高光谱数据处理流程:一、图像预处理高光谱图像的预处理主要是辐射校正,辐射校正包括传感器定标和大气纠正.辐射校正一般由数据提供商完成.二、显示图像波谱打开高光谱数据,显示真彩色图像,绘制波谱曲线,选择需要的光谱波段进行输出。
三、波谱库1、标准波谱库软件自带多种标准波谱库,单击波谱名称可以显示波谱信息.2、自定义波谱库ENVI提供自定义波谱库功能,允许基于不同的波谱来源创建波谱库,波谱来源包括收集任意点波谱、ASCII文件、由ASD波谱仪获取的波谱文件、感兴趣区均值、波谱破面和曲线等等。
3、波谱库交互浏览波谱库浏览器提供很多的交互功能,包括设置波谱曲线的显示样式、添加注记、优化显示曲线等四、端元波谱提取端元的物理意义是指图像中具有相对固定光谱的特征地物类型,它实际上代表图像中没有发生混合的“纯点”。
端元波谱的确定有两种方式:(1)使用光谱仪在地面或实验室测量到的“参考端元",一般从标准波谱库选择;(2)在遥感图像上得到的“图像端元”.端元波谱获取的基本流程:(1)MNF变换重要作用为:用于判定图像内在的维数;分离数据中的噪声;减少计算量;弥补了主成分分析在高光谱数据处理中的不足。
ENVI高光谱数据处理流程

ENVI高光谱数据处理流程1.数据预处理数据预处理是高光谱数据处理流程中的第一步,其主要目的是去除数据中的噪声并增加图像质量。
常用的预处理方法包括:大气校正、大气校正之后的辐射校正、大气校正之后的大气校正等。
-大气校正:高光谱数据中的大气散射会引入许多噪声。
大气校正的目的是根据大气散射的物理原理,通过对高光谱数据进行光谱校正和辐射校正,去除大气散射带来的干扰。
-辐射校正:高光谱数据中的辐射能量受到地面温度、雨水和云等因素的影响,导致数据中存在辐射偏差。
辐射校正的目的是根据卫星的辐射源数据和大地辐射能量的关系,对高光谱数据进行校正,消除辐射偏差。
-大气校正之后的大气校正:在进行大气校正之后,仍然可能存在一些小范围的大气散射。
大气校正之后的大气校正的目的是再次进行大气散射校正,进一步提高图像质量。
2.特征提取特征提取是高光谱数据处理流程中的核心步骤,其主要目的是从高光谱数据中提取出对地物分类和解译有用的特征信息。
-光谱特征提取:光谱特征提取是指根据高光谱数据中不同波段的辐射能量变化,提取出反映地物光谱特性的特征参数。
常用的光谱特征包括:光谱曲线的均值、方差、斜率等。
-空间特征提取:空间特征提取是指从高光谱数据的空间分布中提取出反映地物空间特性的特征参数。
常用的空间特征包括:纹理特征、形状特征、边缘特征等。
3.分类与监督解译分类与监督解译是高光谱数据处理流程中的关键步骤,其主要目的是将预处理和特征提取之后得到的数据进行分类和解译。
-监督分类:监督分类是指通过已知的训练样本数据,建立分类模型,并将该模型应用于未知的高光谱数据,将数据分成不同的类别。
常用的监督分类方法有:最大似然分类、支持向量机分类、随机森林分类等。
-非监督分类:非监督分类是指利用高光谱数据本身的统计特性,将数据按照统计特性对其进行分类。
常用的非监督分类方法有:K-均值聚类、多元高斯聚类等。
4.地物解译与验证地物解译与验证是高光谱数据处理流程中的最后一步,其主要目的是对分类结果进行解译和验证,以评估分类的准确性。
envi高光谱数据处理流程

envi高光谱数据处理流程
envi高光谱数据处理流程是一种非常常用的数据处理方法,主要应用于高光谱遥感数据处理。
其主要流程包括:数据预处理、光谱反射率计算、特征提取与分类等几个步骤。
1、数据预处理:数据预处理包括数据校正、波长校准及大气校正等过程。
其中,数据校正主要是将数据进行去背景、去噪、去影响等处理。
波长校准是将采集到的数据进行波长校准,保证数据的准确性。
大气校正是将采集的数据进行大气校正,降低大气对数据的影响。
2、光谱反射率计算:光谱反射率计算是将采集到的数据进行转换,得到地表反射率信息。
这个过程主要通过将采集到的数据进行比对处理,计算出地表反射率。
3、特征提取:特征提取是将采集到的数据进行特征分析,得到地物分类信息。
这个过程主要通过对采集到的数据进行分析,计算出每个波段的特征,然后根据这些特征进行分类。
4、分类:分类是将采集到的数据进行分类,识别出地表不同的类别。
这个过程主要通过将采集到的数据进行分析,然后根据不同的特征进行分类,最终得到地表不同的类别。
总之,envi高光谱数据处理流程是一个比较全面、细致的数据处理方法,可以有效地对高光谱遥感数据进行处理,得到准确的地表信息。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高光谱数据处理基本流
程
The document was finally revised on 2021
高光谱分辨率遥感
用很窄(10-2l)而连续的光谱通道对地物持续遥感成像的技术。
在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,每个像元均可提取一条连续的光谱曲线,因此高光谱遥感又通常被称为成像光谱(Imaging Spectrometry)遥感。
高光谱遥感具有不同于传统遥感的新特点:
(1)波段多——可以为每个像元提供几十、数百甚至上千个波段;
(2)光谱范围窄——波段范围一般小于10nm;
(3)波段连续——有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱;
(4)数据量大——随着波段数的增加,数据量成指数增加;
(5)信息冗余增加——由于相邻波段高度相关,冗余信息也相对增加。
优点:
(1)有利于利用光谱特征分析来研究地物;
(2)有利于采用各种光谱匹配模型;
(3)有利于地物的精细分类与识别。
ENVI高光谱数据处理流程:
一、图像预处理
高光谱图像的预处理主要是辐射校正,辐射校正包括传感器定标和大气纠正。
辐射校正一般由数据提供商完成。
二、显示图像波谱
打开高光谱数据,显示真彩色图像,绘制波谱曲线,选择需要的光谱波段进行输出。
三、波谱库
1、标准波谱库
软件自带多种标准波谱库,单击波谱名称可以显示波谱信息。
2、自定义波谱库
ENVI提供自定义波谱库功能,允许基于不同的波谱来源创建波谱库,波谱来源包括收集任意点波谱、ASCII文件、由ASD波谱仪获取的波谱文件、感兴趣区均值、波谱破面和曲线等等。
3、波谱库交互浏览
波谱库浏览器提供很多的交互功能,包括设置波谱曲线的显示样式、添加注记、优化显示曲线等
四、端元波谱提取
端元的物理意义是指图像中具有相对固定光谱的特征地物类型,它实际上代表图像中没有发生混合的“纯点”。
端元波谱的确定有两种方式:
(1)使用光谱仪在地面或实验室测量到的“参考端元”,一般从标准波谱库选择;
(2)在遥感图像上得到的“图像端元”。
端元波谱获取的基本流程:
(1)MNF变换
重要作用为:用于判定图像内在的维数;分离数据中的噪声;减少计算量;弥补了主成分分析在高光谱数据处理中的不足。
(2)计算纯净像元指数PPI
PPI生成的结果是一副灰度的影像,DN值越大表明像元越纯。
作用及原理:
纯净像元指数法对图像中的像素点进行反复迭代,可以在多光谱或者高光谱影像中寻找最“纯”的像元。
(通常基于MNF变换结果来进行)纯净像元指数可以将N维散点图映射为一个随机单位向量来计算,每次映射的极值像元被记录下来,并且被标为极值的总数也被记录下来。
按照多次映射每个像元被记录为极值像元的次数来决定该像元是否为纯净像元。
(3)端元波谱收集
n维可视化工具-选取样本像元-生成地物平均波谱
五、波谱识别和图像分类
ENVI提供许多波谱分析方法,包括:二进制编码、波谱角分类、线性波段预测、线性波谱分离、光谱信息散度、匹配滤波、混合调谐匹配滤波(MTMF)、包络线去除、光谱特征拟合、多范围光谱特征拟合等。
六、分类结果浏览及后处理
(1)以RGB方式在ENVI中显示高光谱数据,进行查看分类结果。
(2)利用波谱沙漏工具进行分类后处理
基本流程:影像亮度值定标为反射率-最小噪声分离(MNF)-纯净像元指数(PPI)-n维散度分析-选择终端单元-地物制图(地物识别)
高光谱遥感与多光谱遥感的异同点:
1、光谱分辨率在λ/10数量级范围的称为多光谱,这样的遥感器在可见光和近红外光谱区只有几个波段;
2、光谱分辨率在λ/100的遥感信息称之为高光谱遥感;
3、随着遥感光谱分辨率的进一步提高,在达到λ/1000时,遥感即进入超高光谱;
4、高光谱和多光谱实质上的差别就是,高光谱的波段较多,谱带较窄(比如hyperion有242个波段,带宽10nm);
5、多光谱相对波段较少;
6、高光谱遥感就是比多光谱遥感的光谱分辨率更高,但是光谱分辨率高的同时空间分辨率会降低。