数学选修4-4参数方程

合集下载

选修4-4 第五节几种常见的参数方程

选修4-4 第五节几种常见的参数方程

x=1+2cos t, (0≤t≤π),把它化为普通 y=-2+2sin t
方程,并判断该曲线表示什么图形.
所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
例2
已知圆的普通方程为
x2+y2+2x-6y+9=0, 将它化为参
轴上,所以椭圆的标准方程为 + =1, 25 16 x=4cos θ , 故参数方程为 (θ 为参数). y=5sin θ
y2
x2
(x-1)2 (y+2)2 1. 写出圆锥曲线 + =1 的 3 5
例1
x=5+3t, 设直线的参数方程为 y=10-4t.
(1)求直线的普通方程; (2)化参数方程为标准形式.
解析:(1) 4x+3y-50=0.
3 4 4 k tan (2) 3 cos α =- ,sin α = . 5 5 3 x=5- u, 5 则参数方程的标准形式为: 4 y=10+ u. 5
例 3 已知直线 l 的方程为 3x-4y+1=0,点 P(1,1)在 直线 l 上,写出直线 l 的参数方程,并求点 P 到点 M(5,4)和 点 N(-2,6)的距离.
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 ,设直线的 4 3 3 4 则 tan α = ,sin α = ,cos α = . 4 5 5
制作人:葛海泉
课前预习
1.பைடு நூலகம்线的参数方程
x=x0+tcosα , 1. 经过点 M0(x0, y0), 倾斜角为 α 的直线 l 的参数方程为 y=y0+tsinα
(t 为参数).
t0

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件

高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件
[思路点拨] 此类问题关键是参数的选取.本例中由于 A、 B 的滑动而引起点 P 的运动,故可以 OB 的长为参数,或以角 为参数,不妨取 BP 与 x 轴正向夹角为参数来求解.
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.

数学选修4-4-用参数方程求轨迹问题

数学选修4-4-用参数方程求轨迹问题

六、轨迹问题1.设过原点O 的直线与圆C :x 2+(y-1)2=1相交于两点O ,P ,点M 为线段OP 的中点.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)求点M 的轨迹方程,2.在平面直角坐标系xoy 中,动点A 的坐标为(2-3sinα,3cosα-2),其中α∈R.在极坐标系(以原点O 为极点,以x 轴非负半轴为极轴)中,直线C 的方程为ρcos(θ-4π)=a.(Ⅰ)判断动点A 的轨迹的形状; (Ⅱ)若直线C 与动点A 的轨迹有且仅有一个公共点,求实数a 的值.3.设过原点O 的直线与圆C :x 2+(y-1)2=1相交于两点O ,P ,点M 为线段OP 的中点.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)求点M 的轨迹方程,2.已知点)sin ,cos1(αα+P ,参数[]πα,0∈,点Q 在曲线C :)4sin(210πθρ-=上.(Ⅰ)求在直角坐标系中点P 的轨迹方程和曲线C 的方程;(Ⅱ)求PQ 的最小值.1.已知在一个极坐标系中点C 的极坐标为2,3π⎛⎫⎪⎝⎭。

(1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形(2)在直角坐标系中,以圆C 所在极坐标系的极点为原点, 极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,()5,3Q- ,M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹普通方程。

2.已知直线C 1(t 为参数),C 2(θ为参数),(Ⅰ)当α=时,求C 1与C 2的交点坐标;(Ⅱ)过坐标原点O 做C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.3。

在极坐标系中,O 为点,半径为2的圆C 的圆心的为(2,3π). (1)圆C 的极坐标方程;(2)P 是圆C 上一动点,点Q 满足3OQ OP = ,以点O 为原点,以轴为x 轴正半轴建立直角系,点Q 的轨迹的直角坐标方程.。

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

人教A版数学【选修4-4】ppt课件:2-2第二讲-参数方程

【解】
如图所示:
由动点C在该椭圆上运动,故可设C的坐标为(6cosθ,3sinθ), 点G的坐标为(x,y),由题意可知A(6,0),B(0,3),由三角形重心坐 标公式可知:
x=6+0+6cosθ=2+2cosθ, 3 0+3+3sinθ y= =1+sinθ. 3 x-22 由此,消去参数θ,得到所求的普通方程为 4 +(y-1)2= 1.
x-1=cosθ, 3 【解】 (1)由题意可设 y+2 =sinθ, 5
x=1+ 3cosθ, y=-2+ 5sinθ

(θ为参数)为所求.
2 2 x y (2)x2-y2=4变形为: 4 - 4 =1.
x=2secα, ∴参数方程为 y=2tanα
2 x = 2 pt , 2 2.抛物线y =2px(p>0)的参数方程为 y=2pt
y 1 由于 x = t ,因此参数t的几何意义是抛物线上除顶点外的点与 抛物线的顶点连线的斜率的倒数. 3.几个结论 x2 y2 (1)焦点在y轴上的椭圆的标准方程为 b2 + a2 =1(a>b>0),其参 数方程是 [0,2π).
x2 y2 a2+b2=1
x=acosφ, y=bsinφ
x2 y2 a2-b2=1
x=asecφ, y=btanφ
点的坐标
(rcosθ, rsinθ)
(acosφ,bsinφ)
(asecφ,btanφ)
这三种曲线的参数方程都是参数的三角形式.其中圆的参数θ 表示旋转角,而椭圆、双曲线的参数φ表示离心角,几何意义是不 同的,它们的参数方程主要应用价值在于: (1)通过参数(角)简明地表示曲线上任一点的坐标; (2)将解析几何中的计算问题转化为三角问题,从而运用三角 函数性质及变换公式帮助求解最值、参数的取值范围等问题.

第十二章 坐标系与参数方程[选修4-4]第二节 参数方程

第十二章 坐标系与参数方程[选修4-4]第二节   参数方程

距离是________.
解析:直线方程可化为 x-y+1=0,圆的方程可化为(x -1)2+y2=1.由点到直线的距离公式可得,圆心 C(1,0)到 |2| 直线 l 的距离为 2 2= 2. 1 +-1
答案: 2
x=1+3t, 5.(2012· 湖南十二校联考)若直线的参数方程为 y=2- 3t
解析:由 y=t-1,得 t=y+1,代入 x=3t+2,得 x =3y+5, 即 x-3y-5=0.
答案:x-3y-5=0
x=5cos θ, 2.(教材习题改编)曲线 y=3sin θ
(θ 为参数)的左焦点
的坐标是________.
x2 y2 解析:化为普通方程为 + =1,故左焦点为(-4,0). 25 9
x=2t+2a, y=-t
(t 为参数),曲线
x=2cos θ, C2: y=2+2sin θ
(θ 为
参数).若曲线 C1,C2 有公共点,则实数 a 的取值范围 是________.
解析:将曲线 C1,C2 的参数方程化为普通方程, 得 C1:x+2y-2a=0,C2:x2+(y-2)2=4. 因为曲线 C1 与 C2 有公共点, |4-2a| 所以圆心到直线的距离 ≤2, 5 解得 2- 5≤a≤2+ 5.
[自主解答] =16.
由圆C的参数方程可得其标准方程为x2+y2
π 因为直线l过点P(2,2),倾斜角α= ,所以直线l的参数 3 π x=2+tcos3, 方程为 y=2+tsinπ, 3 1 x=2+2t, 即 y=2+ 3t 2
(t为参数).
1 x=2+2t, 把直线l的参数方程 y=2+ 3t 2
去参数;
(2)利用三角恒等式消去参数; (3)根据参数方程本身的结构特征,选用一些灵活的方 法从整体上消去参数. 2.将参数方程化为普通方程时,要注意防止变量x和y

选修4-4第二讲参数方程(文)

选修4-4第二讲参数方程(文)

一、学习目标1. 通过分析抛射体运动中时间与物体位置的关系,了解参数方程的概念,体会其意义。

2. 理解直线、圆、椭圆的参数方程及其参数的意义,掌握它们的参数方程与普通方程的互化,并能利用参数方程解决一些相关的应用问题(如求最值等)。

3. 了解抛物线、双曲线的参数方程,能将它们的参数方程化为普通方程。

4. 知道摆线、圆的渐开线的参数方程,体会参数在建立曲线方程中的作用。

二、重点、难点重点:直线、圆、椭圆的参数方程的建立,以及参数方程与普通方程的互化与应用。

难点:对上述三类重点参数方程中参数的意义的理解,以及熟练应用参数方程解决相关问题。

三、考点分析高考中对本讲的考查以直线、圆、椭圆的参数方程为主,有时会与极坐标方程相结合,多以选做题的形式出现在填空题或解答题中,难度不大,分值为5-10分,不同的省份在题型和分值的设定上略有差异,与普通方程的互化仍然是解决此类问题的常用策略,此外,参数方程也为解决解析几何中的最值、轨迹等问题提供了一条思路。

一、知识网络(1)圆的参数方程其中θ的几何意义为圆心角(参看图甲)(2)椭圆的参数方程其中θ为椭圆的离心角(参看图乙)乙(3)双曲线的参数方程(4)抛物线的参数方程知识点一:参数方程的建立例1 (1)经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 (2)已知椭圆1422=+yx ,点P 为椭圆上一动点,O 为坐标原点,设由x 轴逆时针旋转到OP 的角为α,则该椭圆的以α为参数的参数方程为 。

知识点一小结:参数方程的建立主要是指利用教材中的直线、圆、椭圆的参数方程的基本形式结合题中参数的意义直接写出参数方程,同时也是利用参数方程解决一些解析几何问题的知识基础。

选修4-4直线的参数方程优秀课件

选修4-4直线的参数方程优秀课件
设直线 l的倾斜角为 ,定点 M 0、动点 M的坐标 分别为 ( x0 , y0 )、 ( x, y )
(1)如何利用倾斜角 写出直线l的单位方向向量 e ?
( 2)如何用e和M 0的坐标表示直线上任意 一点M的坐标?
(1) e (cos , sin )
(2) M 0 M ( x, y ) ( x0 , y0 ) ( x x0 , y y0 )
x 线AB的方程为 3 y 2
1 2x 3y 6 0
6 13
d
| 6 cos 6 sin 6 | 22 32
2 sin( ) 4
所以当 =

4 这时点P的坐标为( 3 2 2 , 2)
时, d 有最大值, 面积最大
x2 y2 1、动点P(x,y)在曲线 1上变化 ,求2x+3y的最 9 4 大值和最小值
3 5 3 5 4 2
( 1 )如何写出直线 l的参数方程?

( 2 )如何求出交点 A,B所对应的参数 t1,t 2 ?

( 3 ) AB 、 MA MB 与t1,t 2有什么关系?
( 1 ) M 1 M 2 t1 t 2
t1 t 2 ( 2 )t 2
四、课堂小结
A1
B2
A
F1
C
O B1
B
F2
X A2 X
练习3:已知A,B两点是椭圆 x 1 9 与坐标轴正半轴的两个交点,在第一象限的椭 圆弧上求一点P,使四边形OAPB的面积最大.
2
y2 4
解 : 椭圆参数方程 设点P(3cos ,2sin ) SABO 面积一定, 需求 SABP 最大即可 即求点P到线AB的距离最大值

人教版高数选修4-4第2讲:参数方程(学生版)

人教版高数选修4-4第2讲:参数方程(学生版)

参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t =⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则y x 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个. 6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655 D .0 11.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标为__________. [解析] 原方程消去参数 θ,得普通方程为2x52 +y92
=1.它是焦点在 x 轴上的椭圆,a2=25,b2=9,c2=a2 -b2=16,c=4,所以左焦点坐标是(-4,0).
[答案] (-4,0)
6.圆锥曲线xy==34tsaencθθ, (θ 是参数)的渐近线方程
【解析】把双曲线方程化为参数方程xy==tsaenc
θ, θ.
设双曲线上动点 M(sec θ,tan θ),
则M0M2=sec2θ+(tan θ-2)2 =(tan2θ+1)+(tan2θ-4tan θ+4)
=2tan2θ-4tan θ+5=2(tan θ-1)2+3,

tan
θ-1=0

θ=π4时,M0M
2
取最小值
3,此时
有M0M= 3,即 M0 点到双曲线的最小距离为 3.
【评析】在求解一些最值问题时,用参数方程来表示 曲线的坐标,将问题转化为三角函数求最值,能简化运算 过程.
【解析】由题意知 A(6,0),B(0,3),由于动点 C 在 椭圆上运动,故可设动点 C 的坐标为(6cosθ,3sinθ), 点 G 的坐标设为(x,y),由三角形重心的坐标公式可
得yx==06++30++3336scionsθθ
,即xy==12++s2icnoθsθ ,消去参数
θ 得到x-4 22+(y-1)2=1.
第二讲 参数方程
学案2 圆锥曲线的参数方程
课前预习
——课标学习目标——
了解圆锥曲线的参数方程,分析圆锥曲线的几何性质 选择适当的参数写出它们的参数方程.
——基础梳理——
1.椭圆的参数方程 (1)中心在原点,焦点在 x 轴上的椭圆ax22+yb22=1(a >b>0)的参数方程是__________.规定参数 φ 的取 值范围为__________.
对称性,知内接矩形的面积为 S=4xy=4×5cost×4sint
=40sin2t.
当 t=π4时,面积 S 取得最大值 40,此时,x=5cos
π4=52 2,y=4sin π4=2 2,因此,矩形在第一象限的
顶点为52
2,2
2,此时内接矩形的面积最大,且最
大面积为 40.
题型二 双曲线的参数方程及应用 【例 2】求点 M0(0,2)到双曲线 x2-y2=1 的最小距 离(即双曲线上任一点 M 与点 M0 距离的最小值). 【分析】化双曲线方程为参数方程,对MM0 建立 三角函数求最值.
(φ 为参数)
2.(1)xy==batsaencφφ (φ 为参数) [0,2π),且 φ≠π2,φ≠32π
x=btanφ (2)y=asecφ
(φ 为参数)
3.(1)xy==22pptt2 (t 为参数) (-∞,+∞) (2)抛物线上除顶点外的任意一点与原点连线的斜
率的倒数
自主演练
1.已知方程x2+my2=1表示焦点在y轴上的椭圆,则 ()
A.m<1 C.m>1
B.-1<m<1 D.0<m<1
[解析] 方程化为 x2+y12=1,若要表示焦点在 y m
轴上的椭圆,需要m1 >1,解得 0<m<1.故应选 D.
[答案] D
2.已知90°<θ<180°,方程x2+y2cosθ=1表示的 曲线是( )
A.圆 B.椭圆 C.双曲线 D.抛物线 [解析] 当90°<θ<180°时,-1<cosθ<0,方程 x2+y2cosθ=1表示的曲线是双曲线.故应选C. [答案] C
3.抛物线的参数方程 (1) 抛 物 线 y2 = 2px(p > 0) 的 参 数 方 程 为 __________,t∈__________. (2)参数 t 的几何意义是__________.
[答案]
1.(1)xy==bascionsφφ (φ 为参数) [0,2π)
x=h+acosφ (2)y=k+bsinφ
3.直线 y=ax+b 经过第一、二、四象限,则
圆xy==ba++rrscionsθθ, (θ 为参数)的圆心位于第几象限
() A.一
B.二 C.三
D.四
[解析] 直线y=ax+b经过第一、二、四象限,则a< 0,b>0,而圆心坐标为(a,b),所以位于第二象限.
[答案] B
4.椭圆xy==bascions
(2)中心在(h,k)的椭圆的普通方程为x-a2h2+ y-b2k2=1,则其参数方程为__________.
2.双曲线的参数方程 (1)中心在原点,焦点在 x 轴上的双曲线xa22-yb22=1(a >0,b>0)的参数方程是__________.规定参数 φ 的取 值范围为__________. (2)中心在原点,焦点在 y 轴上的双曲线ya22-bx22=1(a >0,b>0)的参数方程是__________.
θ, θ
(θ 为参数),若 θ∈[0,2π],
则椭圆上的点(-a,0)对应的 θ 为( )
A.π
B.π2
C.2π
D.32π
[ 解 析 ] 由 已 知 acosθ = - a , ∴cosθ = - 1 , 又 θ∈[0,2π],∴θ=π.故选A.
[答案] A
5.二次曲线xy==35scionsθθ, (θ 是参数)的左焦点的坐

【评析】本题的解法体现了椭圆的参数方程对于解决 相关问题的优越性,运用参数方程显得很简单,运算更简 便.
变式训练
在椭圆2x52+1y62 =1 中有一内接矩形,问内接矩
形的最大面积是多少?
[解析]

圆的



程为
x=5cost, y=4sint
(t 为参
数),设第一象限内椭圆上任一点 M(x,y),由椭圆的
课内讲练
——题型探究——
题型一 椭圆的参数方程及应用 【例 1】已知 A,B 分别是椭圆3x62 +y92=1 的右顶 点和上顶点,动点 C 在该椭圆上运动,求△ABC 的重 心 G 的轨迹方程.
【分析】△ABC的重心G取决于△ABC的三个顶点的 坐标,为此需要把动点C的坐标表示出来,可考虑用参数 方程的形式.
是________________,实轴长是__________.
[解析]
原方程可化为x43y==staecnθθ,,
因为 sec2θ-tan2θ
=1,所以1x62-y92=1.它是焦点在 x 轴上的双曲线,
∴a2=16. ∴双曲线的渐近线为 y=±34x,且实轴长为 8.
[答案] y=±34x 8
相关文档
最新文档