17.4.2欧拉公式

合集下载

欧拉公式顶点面和棱之间的关系

欧拉公式顶点面和棱之间的关系

欧拉公式顶点面和棱之间的关系
在几何学中,多面体是一个基本的研究对象。

它由顶点、面和棱组成。

欧拉公式是一个描述简单多面体中顶点数(V)、面数(F)和棱数(E)之间关系的数学公式。

这个公式揭示了多面体的基本性质,为我们理解多面体的结构提供了重要的理论依据。

欧拉公式如下:
V - E = F
或者更具体地:
V + F - E =2
这个公式表明,在简单多面体中,顶点数、面数和棱数之间存在一种特殊的关系。

通过这个公式,我们可以了解多面体的结构特点,分析不同类型的多面体之间的差异。

欧拉公式的几何解释:
1.顶点数(V):表示多面体中的顶点数量,顶点是多面体的基本构成部分。

2.面数(F):表示多面体中的面数量,面是多面体的外部表现形式。

3.棱数(E):表示多面体中的棱数量,棱是连接顶点的线段。

在实际应用中,欧拉公式可以帮助我们了解多面体的性质,例如,通过计算多面体的顶点数、面数和棱数,我们可以判断多面体的类型和结构。

此外,欧拉公式在计算机图形学、机器人学等领域也有广泛的应用。

值得注意的是,欧拉公式不仅适用于简单多面体,还适用于更复杂的多面体。

通过研究欧拉公式,我们可以深入了解多面体的内在规律,为多面体的研究和应用提供有力的支持。

总之,欧拉公式是描述简单多面体中顶点数、面数和棱数之间关系的重要公式。

它揭示了多面体的基本性质,为多面体的研究奠定了基础。

通过深入理解欧拉公式,我们可以更好地认识多面体的结构特点,发挥多面体在各个领域的应用价值。

欧拉上帝公式:包括数学中最基本的常量e、i、π,哲学重要的0和1

欧拉上帝公式:包括数学中最基本的常量e、i、π,哲学重要的0和1

欧拉上帝公式:包括数学中最基本的常量e、i、π,哲学重要的0和1欧拉公式:将数学中最基本的常量e、i、π,数学和哲学中最重要的0和1通过加号连接,放在同一个式子中,推导过程并不复杂,不是天掉下来的,结果很惊人感觉自己数学不太好的读者请放心,全文只会出现最简单的初等代数、微积分和复变函数公式,如果看不懂。

那就看图吧。

莱昂哈德·欧拉(Leonhard Euler,1707年4月15日~1783年9月18日)欧拉公式:“宇宙第一”公式这个公式的巧妙之处在于,它没有任何多余的内容,将数学中最基本的e、i、π放在了同一个式子中,同时加入了数学也是哲学中最重要的0和1,再以简单的加号相连。

e、i、π这三个量的由来可见以下三文详细介绍:1.数学中最基本的自然常数e的由来,e代表欧拉(Euler)吗?2.数学中最有意思的符号之一虚数单位i的由来,i有物理意义吗?3.数学中最基本的常数之一圆周率π的由来以及计算机快速计算π算法•欧拉公式Euler's Identity•创立者:莱昂哈德·欧拉•意义:数学上有许多公式都是欧拉发现的,因此欧拉公式并不是某单一的公式,欧拉公式广泛分布于数学的各个分支中。

•瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。

”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。

右眼瞎了的欧拉这个公式是上帝写的么?欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。

数学史上称十八世纪为“欧拉时代”。

数学小王子欧拉不是浪得虚名,各个领域都有他战斗过的足迹。

欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力。

他一生谦逊,很少用自己的名字给他发现的东西命名。

不过还是命名了一个最重要的一个常数——e。

欧拉公式和球

欧拉公式和球
r R2 d2
①当d=0时,截面过球心,此时截面的面积最大, 此圆叫球的大圆,球面被经过球心的平面截得的圆 叫做大圆.
②当d=R时,平面与球相切.
③与球心距0<d<R平面与球面截得的圆, 叫小圆.
不过球心的截面截得的圆叫球的小圆.
球面的距离
在球面上,两点之间的最短连线的长度,就是 经过这两点的大圆在这两点间的一段劣弧的长 度,这个弧长叫做两点的球面距离.
; 苹果售后维修点 / 苹果售后维修点 ;
顿写一封内容尖刻的信回敬那家伙。 “可以狠狠地骂他一顿。”林肯说。 斯坦顿立刻写了一封措辞强烈的信,然后拿给总统看。 “对了,对了。”林肯高声叫好,“要的就是这个!好好训他一顿,真写绝了,斯坦顿。” 但是当斯坦顿把信叠好装进信封里时,林肯却 叫住他,问道:“你要干什么?” “寄出去呀。”斯坦顿有些摸不着头脑了。 “不要胡闹。”林肯大声说,“这封信不能发,快把它扔到炉子里去。凡是生气时写的信,我都是这么处理的。这封信写得好,写的时候你己经解了气,现在感觉好多了吧,那么就请你把它烧掉,再 写第二封信吧。” 6、果断 有一个6岁的小男孩,一天在外面玩耍时,发现了一个鸟巢被风从树上吹掉在地,从里面滚出了一个嗷嗷待哺的小麻雀。小男孩决定把它带回家喂养。 当他托着鸟巢走到家门口的时候,他突然想起妈妈不允许他在家里养小动物。于是,他轻轻地把小 麻雀放在门口,急忙走进屋去请求妈妈。在他的哀求下妈妈终于破例答应了。 小男孩兴奋地跑到门口,不料小麻雀已经不见了,他看见一只黑猫正在意犹未尽舔着嘴巴。小男孩为此伤心了很久。但从此他也记住了一个教训:只要是自己认定的事情,决不可优柔寡断。这个小男孩长 大后成就了一番事业,他就是华裔电脑名人—王安博士。 7、将军和驴子 古罗马皇帝哈德良曾经碰到过这样一个问题。 皇帝手下的一位将军,觉得他应该得到提升,便在皇帝面前提到这件事,以他的长久服役为理由。“我应该升更重要的领导岗位”,他报告,“因为,我的经 验丰富,参加过10次重要战役。” 哈德良皇帝是一个对人及才华有着高明判断力的人,他不认为这位将军有能力担任更高的职务,于是他随意指着绑在周围的战驴说: “亲爱的将军,好好看这些驴子,它们至少参加过20次战役,可他们仍然是驴子。” 8、马蝇效应 1860 年美国总统大选结束后,林肯当选为总统。他任命参议员萨蒙?蔡斯为财政部长。 有许多人反对这一任命。因为蔡斯虽然能干,但十分狂妄自大,他本想入主白宫,却输给了林肯,他认为自己比林肯要强得多,对林肯也非常不满,并且一如既往地追求总统职位。 林肯对关心他 的朋友讲了这样一个故事: “在农村长大的朋友们一定知道什么是马蝇了。有一次,我和我的兄弟在肯塔基老家的一个农场犁玉米地,我吆马,他扶犁。这匹马很懒,但有一段时间它却在地里跑得飞快,连我这双长腿都差点跟不上。到了地头,我发现有一只很大的马蝇叮在它身上 ,我随手就把马蝇打落了。我兄弟问我为什么要打落它,我说我不忍心看着这匹马那样被咬。我兄弟说:“唉呀,正是这家伙才使马跑得快嘛。” 然后,林肯说:“如果现在有一只叫‘总统欲’的马蝇正叮着蔡斯先生,那么只要它能使蔡斯和他的那个部不停地跑,我就不想去打落 它。” 9、潜水艇中的15个小时 二战快结束时,有个叫罗勃?摩尔的小伙子正在海军服役。他讲述了亲身经历的一件事。 "1945年3月,我在中南半岛附近276英尺的海下,学习到了人生最重要的一课。当时我正在一艘潜水艇上,我们从雷达上发现了一支日本舰队—— 一艘驱逐 护航舰、 一艘油轮和一艘布雷舰朝我们这边开过来。我们发射了五枚鱼雷,都没有击中。突然那艘布雷舰直朝我们开来 (一架日本飞机把我们的位置用无线电通知了它)。我们潜到150英尺深的地方,以免被它侦察到,同时做好应付深水炸弹的准备,还关闭了冷却系统和所有的发电机。 "3分钟后,天崩地裂。6枚深水炸弹在四周炸开,把我们直压海底 276英尺的地方。深水炸弹不停地投下,整整15个小时,有十几个二十个就在离我们50英尺左右的地方爆炸 要是深水炸弹距离潜水艇不到17英尺的话,潜艇就会炸出洞来。 "当时,我们奉命静静地躺在自己的床上,保 持镇定。 我吓得几乎无法呼吸,不停地对自己说: 。这下可死定了。潜水艇的温度几乎有摄氏40度,可我却怕得全身发冷,一阵阵冒冷汗。15个小时后,攻击停止了,显然那艘布雷舰用光了所有的炸弹而离开了。 "这15个小时,在我感觉好像有1500万年,我过去的生活一一在眼前 出现,我记起了做过的所有坏事和曾经担心过的一些很无聊的小事。我曾经担心过:没有钱买自己的房子,没有钱买车,没有钱给妻子买衣服。下班回家,常常和妻子为一点芝麻小事而争吵。我还为我额头上的一个小疤——一次车祸留下的伤痕——发过愁。 "所有这些年来的愁苦烦 恼,在此时此刻都显得那么荒谬、渺小,而我过去居然对他们很在意。" 10、参照标准 一个人去买碗,他懂得一些识别瓷器质量的方法,即用一只碗轻撞其它碗,发出清脆声音的碗肯定是质地好的。但来到店里,他却发现每一只碗发出的声音都不够清脆。最后店员拿出价格高昂的 工艺碗,结果还是让他不甚满意。店员最后不解地问:“你为什么拿着碗轻撞它呢?”那人说这是一种辨别瓷器质量的方法。 店员一听,立即取过一只质量上好的碗交给他:“你用这只碗去试试。”他换了碗,再去轻撞其它的碗,声音变得铿锵起来。 原来他手中拿着的是一只 质地很差的碗,它去轻碰每一只碗,都会发出混浊之音。合作者变了,参照标准变了,一切也就变了。 生活也是如此,你的参照标准如果错了,那么你眼中的整个世界也就错了。 11、最深刻的记忆 美国普林斯顿大学教授丹尼尔?卡尼曼将心理学的知识引入经济学,并因此获得2002 年诺贝尔经济学奖。 卡尼曼得出的结论看上去颇为荒谬,甚至违反直觉。1996 年,卡尼曼做了一个最为有名的实验,他研究了682 名做结肠镜检查的患者。他将病人随机分为两组,其中一组病人的结肠镜检查稍做延长,即检查结束后,先不抽出管子,而是静静地放一会儿,这时候 病人会感到不舒服,但已没什么大痛。做延长检查的病人(不管开始阶段有多么痛苦)事后都反应不错,觉得下次选择还是要选结肠镜而不是钡餐和X光。而那些没有延长检查时间的病人下来后则大叫:“真像下地狱啊。” 卡尼曼由此得出结论:“我们在评价某种经验时,有一个时 间长短的因素。也就是说,最后阶段的痛苦(或欣悦)程度决定了我们对整个事件的记忆与评价。这对我们预期某种决策以及每天利用这一“捷径”做出上百个决定极为有用。 12、热爱的奇迹 美国西部电器公司委托著名的梅奥教授,希望他能使下属的一家工厂里的女工提高生产效 率。 根据这些工人从事的非常单调的电磁铁绕线圈的工作,梅奥提出下午让工人们有10分钟的喝咖啡的休息时间,结果产量立刻增长。这时,梅奥进一步在上午也给工人10分钟喝咖啡的休息时间,生产再次增长。 但是,梅奥没有就此罢手,他开始宣布取消了下午的休息时间, 产量仍在增长;接着他又取消了上午的喝咖啡时间,但是产量继续增长着,工人们没有抱怨和怠工现象。这是为什么呢? 这项工作的确是单调枯燥的。当有了休息后,工人们都喜欢这一段轻松愉快的时间,他们互相说笑着,谈论着感兴趣的话题。当听到梅奥向她们解释了她们在参 与一个实验。她们就感到自己正在一个有意义的程序中工作,有光荣的参与感。不知不觉中她们热爱上了这项工作,热爱上了这个集体。 于是这推动了工业心理学一个新的探索:热爱或兴趣似乎比休息、增加报酬等更能提高人们的生产力。热爱让我们无论身处什么样的环境,而精 神都住在一个自由、美丽的天堂里。热爱应该成为我们的生存内容之一。 13、看着我的眼睛 2002年,德国发生了一桩血案。一个19岁的小伙子,2001年留级,2002年又因伪造假条,被校方开除。他决心报复学校。4月26日上午,他戴着恐怖的面具,一手握一支手枪,一手拎着连发 猎枪,闯进学校,见人就打,主要是瞄准老师,他觉得是他们让他蒙受了羞辱。在20分钟的疯狂射击中,他的手枪共打出了40发子弹,将17人打死,其中有13名老师。他还有大量的子弹,足够把数百人送进坟墓。这时候,他的历史老师海泽先生走过来,抓住他的衬衣,试图同他说话。这 个血洗了母校的学生认出了他的老师,他摘掉了自己的面具。海泽先生叫着他的名字说,罗伯特,扣动你的扳机吧。如果你现在向我射击,那就看着我的眼睛!那个杀人杀红了眼的学生,盯着海泽先生看了一会儿,缓缓地放下了手枪,说,先生,我今天已经足够了。后来海泽先生把凶手 推进了一间教室,猛地关门,上了锁。此后不久,凶手在教室里饮弹自杀。 我惊讶海泽先生的勇敢,更惊讶他在这种千钧一发之时说出的这句话。 正是这句话,唤起了凶手残存的最后一丝良知,停止了暴行。 海泽先生是非常自信的。这不是一种技巧,而是一种坚定的修 养。是一种长期潜移默化修炼提升的结果。一位老师所有的岁月和经验,就化成了超人的勇气和智慧。 14、命令是这样传递的 据说,美军1910 年的一次部队的命令传递是这样的: 营长对值班军官:明晚大约8点钟左右,哈雷彗星将可能在这个地区被看到,这种彗星每隔76年 才能看见一次。命令所有士兵着野战服在操场上集合,我将向他们解释这一罕见的现象。如果下雨,就在礼堂集合,我为他们放一部有关彗星的影片。 值班军官对连长:根据营长的命令,明晚8点哈雷彗星将在操场上空出现。如果下雨,就让士兵穿着野战服列队前往礼堂,这一罕见 的现象将在那里出现。 连长对排长:根据营长的命令,明晚8点,非凡的哈雷彗星将身穿野战服在礼堂中出现。如果操场上下雨,营长将下达另一个命令,这种命令每隔76年才会出现一次。 排长对班长:明晚8点,营长将带着哈雷彗星在礼堂中出现,这是每隔76年才有的事。如 果下雨,营长将命令彗星穿上野战服到操场上去。 班长对士兵:在明晚8点下雨的时候,著名的76岁哈雷将军将身着野战服,开着他那“彗星”牌汽车,经过操场前往礼堂。 15、死亡暗示 非洲刚果有个黑人青年在朋友家作客,朋友准备了一只野鸡作为早餐。黑人青年的部落严 禁吃野鸡,他就问朋友,早点是不是野鸡。朋友答,不是野鸡。黑人青年便享受了一顿美味的早餐。数年后,他们二人再次见面。那位朋友问他想不想吃野鸡,青年回答说那是不可能的,因为巫师郑重警告过他绝不可以吃野鸡。

欧拉公式的内容及意义

欧拉公式的内容及意义

欧拉公式是复变函数中一条非常重要的公式,它把自然对数的底数e、虚数单位i和圆周率π联系起来。

具体来说,欧拉公式表述为:e^(ix) = cos x + isin x。

这个公式具有深远的意义。

首先,它将三个基本的数学常量——自然对数的底数e、虚数单位i和圆周率π——联系在一起,这本身就表明了它在数学中的重要地位。

其次,欧拉公式在复数域中建立了极坐标系与直角坐标系之间的联系,这一点在物理学、工程学以及其他的科学领域中都有着广泛的应用。

在物理学中,欧拉公式可以用于描述交流电路中的电流和电压,以及在量子力学中描述波粒二象性。

在工程学中,欧拉公式被广泛应用于电子工程、信号处理以及控制系统等领域。

此外,由于e^(ix)可以通过欧拉公式表示为cos x + isin x,因此欧拉公式也是傅里叶变换和拉普拉斯变换的基础。

在拓扑学中,欧拉公式也具有重大意义。

在任何一个规则球面地图上,可以用R表示区域个数,V表示顶点个数,E表示边界个数。

根据欧拉定理,这三个数之间存在一个关系:R + V - E = 2。

这就是著名的欧拉定理,它是由Descartes 首先给出证明的,后来Euler(欧拉)于1752年又独立地给出证明。

在国外也有人称其为D...(这里缺失了部分内容)。

总的来说,欧拉公式不仅具有深远的数学意义,也在物理、工程等领域有着广泛的应用和影响。

四个欧拉公式范文

四个欧拉公式范文

四个欧拉公式范文1. 欧拉公式(Euler's formula)是一项与数学中的复数、指数函数和三角函数相关的重要公式。

它可以通过以下等式表示:e^ix = cos(x) + i * sin(x)这个公式的一个重要推论是欧拉等式(Euler's identity):e^iπ+1=0也被称为欧拉等式(Euler's equation),它涵盖了五个重要的数学常数:0、1、π、e和i。

欧拉等式被广泛认为是数学中最美丽的公式之一,并被描述为“数学的黄金标准”。

2. 欧拉多面体公式(Euler's polyhedron formula)是描述平面图形中的多面体、棱和顶点之间的关系的公式。

它由欧拉于1750年发现,被称为欧拉的F + V - E = 2公式。

对于一个多面体,F表示面的数量,V表示顶点的数量,E表示边的数量。

根据这个公式,一个拥有F个面、V个顶点和E个边的多面体,满足F+V-E=2、这个公式在数学和物理学领域被广泛应用,并且证明了它的正确性。

欧拉多面体公式也可以扩展到二维平面图形,即V=E-F+2、这个公式描述了连通平面图形中顶点、边和面的关系。

3. 欧拉积分公式(Euler's integral formula)是由欧拉发现的,用于表示复变函数与实变函数之间的关系。

它可以用以下等式表示:e^(ix) = cos(x) + i * sin(x)这个公式在复分析和实分析中有广泛应用,可用于求解微分方程、傅里叶级数等,提供了一种将指数函数与三角函数相互转换的方法。

4. 欧拉回路和欧拉路径(Eulerian circuit and Eulerian path)是图论中与连通图中边的走法相关的概念。

它们由欧拉在18世纪提出,并被称为欧拉定理(Euler's theorem)。

欧拉回路是一个简单回路,它通过图中的每条边一次且仅一次,且最终回到起始点。

欧拉路径是一条在图中经过每条边一次且仅一次的路径,但不一定需要回到起始点。

欧拉公式和球(整理2019年11月)

欧拉公式和球(整理2019年11月)

二、球的概念和性质
(1)球的概念 定义:半圆以它的直径为旋转轴旋转所 成的曲面叫做球面,球面所围成的几何 体叫球体,简称球。
(2)球的元素
球心:球中形成球的半圆的圆心叫做球心, 一个球用表示它的球心的字母来表示,如球O,
O R
球的半径 :
连接球心和球面上的任意一点的线段 叫做球的半径,如半径OA、OB等
球的直径:
连接球面上的两点并
A
且经过球心的线段叫
做球的直径。如直径
AB
B
球面仅仅指球的表面,而球体不仅包括球的表面,同时 还包括球面所包围的空间。
用一个平面去截一个球,截面是圆面, 球的截面有如下性质:
性质1:球心和截面圆心的连线垂直于截面。
离与球的半径R及 截面的半径,有如下关系式:
多面体欧拉公式、球
一、多面体欧拉公式
1、欧拉公式V+F-E=2,是描述简单多面 体的顶点数、面数、棱数之间特有规律的一 个公式,这个规律是简单多面体的一种拓扑 不变性。
V是顶点数,F是面数,E是棱数。
多面体和正多面体:
棱柱和棱锥都是一些平面多边形围成的几 何体,若干个平面多边形围成的几何体, 叫做多面体。围成多面体的各个多边形叫 做多面体的面。两个面的公共边叫做多面 体的棱。若干个面的公共顶点叫做多面体 的顶点。
把多面体的任何一个面伸展为平面,如果所有其他 各面都在这个平面的同侧,这样的多面体叫做凸多 面体.否则叫非凸多面体.
一个多面体至少有四个面,多面体依照 它的面数分别叫做四面体、五面体、六 面体。(三棱锥是四面体、三棱柱是五 面体,正方体是六面体。)
一般的,每个面都是有相同边数的正多 边形,且以每个顶点为其一端都有相同 数目的棱的凸多面体,叫正多面体。例 如,正方体就是一种正多面体。

欧拉公式PPT课件

欧拉公式PPT课件
信号处理
物理学
ห้องสมุดไป่ตู้工程学
在物理学中,欧拉公式用于描写波动、振动和波动方程的解。
在电气工程、控制系统等领域,欧拉公式用于分析交流电和交流信号的特性。
03
02
01
03
CHAPTER
欧拉公式的证明
通过解析几何的方法,利用向量和复数的几何意义,推导欧拉公式。
解析几何法
利用三角函数的周期性和对称性,通过三角恒等式推导出欧拉公式。
在量子力学中,波函数是描写粒子状态的重要工具。通过波函数的模平方,可以计算出粒子在某个位置出现的概率。欧拉公式在量子力学中的波函数计算中发挥了重要的作用,它可以将复指数函数转化为三角函数,使得波函数的计算变得更加简单和准确。
总结词:欧拉公式在量子力学中的波函数计算中发挥了关键的作用,使得波函数的计算更加准确和高效。
05
CHAPTER
欧拉公式的应用实例
VS
傅里叶变换是信号处理和通讯领域中的重要工具,它可以将时间域的信号转换为频域的信号,从而更好地分析信号的特性和频率成分。欧拉公式在傅里叶变换中扮演着关键的角色,它提供了将复指数函数转化为三角函数的方法,使得傅里叶变换的计算变得简单和高效。
总结词:欧拉公式在傅里叶变换中的应用使得信号处理和通讯领域的研究更加便利和高效。
三角函数法
利用幂级数的性质和运算规则,通过幂级数展开式推导出欧拉公式。
幂级数法
通过代数运算和恒等变换,利用复数的代数情势和性质,推导欧拉公式。
代数法
利用微积分的基本定理和性质,通过微积分运算推导出欧拉公式。
微积分法
利用矩阵的运算规则和性质,通过矩阵变换推导出欧拉公式。
矩阵法
通过几何图形和空间向量的性质,利用几何图形变换和向量运算,推导欧拉公式。

欧拉公式是怎么发现的?

欧拉公式是怎么发现的?

欧拉公式是怎么发现的?欧拉公式指的是近代数学的伟大先驱之一莱昂哈德·欧拉(1707-1783)所发明的一系列公式。

这些公式分布在数学这颗大树的众多分支领域中,比如复变函数中的欧拉幅角公式、初等数论中的欧拉函数公式、拓扑学中的欧拉多面体公式、分式公式等等。

我们在学习中,最先接触到的欧拉公式就是著名的欧拉多面体公式:V-E+F=2。

下面简单介绍下这个公式的发现过程。

早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。

但在当时这个规律并未广泛流传。

过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。

欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。

进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。

把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。

欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。

事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。

欧拉是一位不折不扣的数学天才。

但是他的非凡成就也和他对数学的热爱有关。

在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。

这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将下列复数化成三角形式和代数形式: (1)e 4;(2)3e 3;(3) 5e
i

i

i
3 4
.
设 z rei, 则 z1 z2 r1e r2e r1r2ei(1 2 ) . i1 z1 r1e r1 i(1 2 ) i 2 e . z2 r2 e r2 z n (rei )n r n ei n .
复数的商的模等于模的商, 复数的商的辐角等于辐角的差.
z [r (cos isin )] r (cos n isin n )
n n n
复数的n次幂的模等于模的n次幂, 复数的n次幂的辐角等于辐角的n倍.
我们已学习了复数的代数形式 与三角形式,
复数还有表示形式—指数形式. 欧拉在棣莫弗的基础上,创造 性地给出了如下欧拉公式: 欧拉 Leonhard Euler cos i sin ei . 1707—1783 于是,有 瑞士数学家 力学家 i r (cos isin ) re . 天文学家 这种形式叫做复数的指数形式. 物理学家 变分法的奠基人 流体力学创始人 ……
复数及其应用
§16.4.2欧拉公式
复数的三角形式 z r (cos i sin )
z1 z2 r1r2 [cos(1 2 ) isin(1 2 )
复数的积的模等于模的积, 复数的积的辐角等于辐角的和.
z2 r2 [cos( 2 1 ) i sin( 2 1 )] z1 r1
i

10 (2)10e 5e = e 5
i 2 i 4 i
ቤተ መጻሕፍቲ ባይዱ


i( ) 2 4

2e 4
i
i

(3)( 2e 8 )4 = ( 2)4 e

i4

8
4e 2

计算并将结果化成代数形式:
i
(1)e 3e ;(2) 6e 3e ;(3)(2e ) .
4 2 3 6 6 3

i

i

i

i

电学中,常用r 来表示模为r、辐角为的复数. 我们将复数的这种形式叫做复数的极坐标形式, 即: r r (cos i sin ) rei 显然,我们有: r11 r22 r1r2(1 2 ) r1 r11 r22 (1 2 ) (r22 0) r 2 n n (r ) r n
i
计算( 3e 2 )2 并将结果化成极坐标形式和代数形式.

本节课 学到了哪些知识?
掌握了哪些方法?
何处还需要注意?
将下列复数化成三角形式和代数形式: (1) 2e ;(2)3e 6;(3)10e 2 .
i i

i

解: (1) 2ei = 2(cos isin ) 2(1 i 0) 2 i 3 1 3 3 3 6 3(cos isin ) 3( i ) i (2)3e = 6 6 2 2 2 2 i 2 10(cos isin ) 10(0 i 1) 10i (3)10e = 2 2
这些其实与复数的三角形式得到的结论一致, 但运算要方便得多.
i1 i 2
计算: (1) 2e 12 3e 6; (2)10e 2 5e 4; (3)( 2e 8 ) 4 . (1) 2e 3e 2 3e 解:
12 6 i
i

i

i

i

i


i

i(
) 12 6

6e 4
相关文档
最新文档