数值计算方法复习题9

合集下载

数值计算方法 练习题

数值计算方法 练习题

数值计算方法练习题习题一1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。

(1);(2);(3);(4);(5);(6);(7);2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字?3. 设均为第1题所给数据,估计下列各近似数的误差限。

(1);(2);(3)4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么?(1);(2);(3)(4)5. 序列满足递推关系式若(三位有效数字),计算时误差有多大?这个计算过程稳定吗?6. 求方程的两个根,使其至少具有四位有效数字(要求利用。

7. 利用等式变换使下列表达式的计算结果比较精确。

(1);(2)(3);(4)8. 设,求证:(1)(2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。

9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

11.下列公式如何才比较准确?(1)(2)12.近似数x*=0.0310,是位有数数字。

13.计算取,利用式计算误差最小。

四个选项:习题二1. 已知,求的二次值多项式。

2. 令求的一次插值多项式,并估计插值误差。

3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。

0.4 0.5 0.6 0.7 0.80.38942 0.47943 0.56464 0.64422 0.717364. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。

5. 已知,求及的值。

6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。

X 1.615 1.634 1.702 1.828 1.921F (x) 2.41450 2.46459 2.65271 3.03035 3.340667. 已知函数的如下函数值表,解答下列问题(1)试列出相应的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。

数值计算方法复习题

数值计算方法复习题

fuxiti例1证明方程1-x-sin x=0在区间[0,1]内有一个根,使用二分法求误差不超过0.5×10-4的根要迭代多少次?证明令f(x)=1-x-sin x,∵f(0)=1>0,f(1)=-sin1<0∴f(x)=1-x-sin x=0在[0,1]有根.又f'(x)=1-c os x>0(x∈[0.1]),故f(x)=0在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,有只要取n=14.例4选择填空题1. 设函数f(x)在区间[a,b]上连续,若满足,则方程f(x)=0在区间[a,b]一定有实根.答案:f(a)f(b)<0解答:因为f(x)在区间[a,b]上连续,在两端点函数值异号,由连续函数的介值定理,必存在c,使得f(c)=0,故f(x)=0一定有根.2. 用简单迭代法求方程f(x)=0的实根,把方程(x)=0表成x=ϕ(x),则f(x)=0的根是( )(A)y=x与y=ϕ(x)的交点(B) y=x与y=ϕ(x)交点的横坐标(C) y=x与x轴的交点的横坐标(D) y=ϕ(x)与x轴交点的横坐标答案:(B)解答:把f(x)=0表成x=ϕ(x), 满足x=ϕ(x)的x是方程的解,它正是y=x与y=ϕ(x)的交点的横坐标.3.为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)(C)(D)答案:(A)解答:在(A)中故迭代发散.在(B)中,故迭代收敛.在(C)中,,故迭代收敛.在(D)中,类似证明,迭代收敛.例3填空选择题:1. 用高斯列主元消去法解线性方程组作第1次消元后的第2,3个方程分别为。

解答1. 选a21=2为主元,作行互换,第1个方程变为:2x1+2x2+3x3=3,消元得到是应填写的内容。

一、解答下列问题:1) 数值计算中,最基础的五个误差概念(术语)是 , , , , .2) 分别用 2.718281, 2.718282 作数e 的近似值 ,它们的有效位数分别有位, 位; 又取73.13≈ (三位有效数字),则≤-73.13 .3)为减少乘除法运算次数,应将算式32)1(7)1(51318---+-+=x x x y 改写成4)为减少舍入误差的影响,应将算式 9910- 改写成 5)递推公式 ⎪⎩⎪⎨⎧=-==-,2,1,110210n y y y n n如果取41.120≈=y 作计算,则计算到10y 时,误差有这个计算公式数值稳定不稳定 ?1) 绝对误差 , 相对误差 , 有效数字 , 截断误差 , 舍入误差 。

(完整版)数值计算方法试题及答案

(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》试题集及答案要点

《数值计算方法》试题集及答案要点

《数值计算⽅法》试题集及答案要点《数值计算⽅法》复习试题⼀、填空题:1、----=410141014A ,则A 的LU 分解为A ?=。

答案:--??--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则⽤⾟普⽣(⾟⼘⽣)公式计算求得?≈31_________)(dx x f ,⽤三点式求得≈')1(f 。

答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的⼆次插值多项式中2x 的系数为,拉格朗⽇插值多项式为。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求⽅程)(x f x =的⽜顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1 ),=]4,3,2,1,0[f ( 0 );7、计算⽅法主要研究( 截断 )误差和( 舍⼊ )误差; 8、⽤⼆分法求⾮线性⽅程f (x )=0在区间(a ,b )内的根时,⼆分n 次后的误差限为(12+-n a b );9、求解⼀阶常微分⽅程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为()],(),([2111+++++=n n n n n n y x f y x f hy y);10、已知f (1)=2,f (2)=3,f (4)=5.9,则⼆次Newton 插值多项式中x 2系数为( 0.15 );11、两点式⾼斯型求积公式?10d )(x x f ≈(?++-≈1)]3213()3213([21d )(f f x x f),代数精度为( 5 );12、解线性⽅程组A x =b 的⾼斯顺序消元法满⾜的充要条件为(A 的各阶顺序主⼦式均不为零)。

数值计算方法试题及答案

数值计算方法试题及答案
(1) (1)试用余项估计其误差。
(2)用n8的复化梯形公式(或复化Simpson公式)计算出该积分的近似值。
e
2
x
数值试题
四、1、(15分)方程x3x10在x不同的等价形式(1)x3对应迭代格式
xn1
1xn
1.5附近有根,把方程写成三种
x1对应迭代格式xn1xn1;(2)
x1
1x
;(3)x
3
x1对应迭代格式xn1xn1。判
出其代数精度:
1xfxdxAfA1f10021
(3) (3) (6分)用幂法求矩阵10A111的模最大的特征值及其
相应的单位特征向量,迭代至特征值的相邻两次的近似值的距
8
数值试题
离小于0.05,取特征向量的初始近似值为1,0。
T
(4) (4) (6分)推导求解常微分方程初值问题
y’xfx,yx,axb,yay0
x1
x
(x1)的形式,使计
6
数值试题
(3) (3) (2分)设(4) (4)

2
x12x2
fx
xx12
,则f’x
1x2是3次样条函数,
2x3,0x1
Sx3
2
xaxbxc,(3分)设
(5) (5) (3分)若用复化梯形公式计算0
10
6
1
edx
x
,要求误差不超过
,利用余项公式估计,至少用个求积节点。
x11.6x21
分)写出求解方程组0.4x1x22的
(6) (6) (6
代公式
Gauss-Seidel迭
,为此迭代法是否收敛。
5A
4
43
迭代矩阵
(7) (7) (4分)设

数值计算方法总结计划试卷试题集及答案

数值计算方法总结计划试卷试题集及答案

一、选择题(每题2分,共20分)1.数值计算的基本思想是()。

A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。

A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。

7.数值计算的主要目的是将_______问题转化为_______问题。

8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。

9.有限差分法的核心思想是将偏微分方程转化为_______方程。

10.牛顿法是一种_______方法,适用于求解非线性方程组。

三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。

()12.在数值计算中,误差只能通过增加计算精度来减小。

()13.迭代法求解线性方程组时,需要预先知道方程组的解。

()14.数值计算方法在实际应用中具有较高的可靠性。

()15.有限元法适用于求解所有类型的偏微分方程。

()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。

17.请简要介绍有限差分法的原理及应用。

18.请简要说明牛顿法求解非线性方程组的原理。

五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题九
1. 取步长h = 0.1,分别用欧拉法与改进的欧拉法解下列初值问题
(1);(2)
准确解:(1)
;(2);
欧拉法:,,,
改进的欧拉法:,,,
2. 用四阶标准龙格—库塔法解第1题中的初值问题,比较各法解的精度。

,,,
处的近似值。

3. 用欧拉法计算下列积分在点
0.5000,1.1420,2.5011,7.2450
4. 求下列差分格式局部截断误差的首项,并指出其阶数。

(1),2
(2),3;
(3),4
(4),4
5.用Euler法解初值问题取步长h=0.1,计算到x=0.3(保留到小数点后4位).
解: 直接将Eulerr法应用于本题,得到
由于,直接代入计算,得到
6.用改进Euler法和梯形法解初值问题取步长
h=0.1,计算到x=0.5,并与准确解相比较.
解:用改进Euler法求解公式,得
计算结果见下表
用梯形法求解公式,得
解得
精确解为
7.证明中点公式(7.3.9)是二阶的,并求其局部截断误差主项.
证明根据局部截断误差定义,得
将右端Taylor展开,得
故方法是二阶的,且局部截断误差主项是上式右端含h3的项。

8.用四阶R-K方法求解初值问题取步长
h=0.2.
解直接用四阶R-K方法
其中
计算结果如表所示:
9.对于初值问题
解因f'(y)=-100,故由绝对稳定区间要求(1)用Euler法解时,
(2)用梯形法解时,绝对稳定区间为,由因f
对y是线性的,故不用迭代,对h仍无限制。

(3)用四阶R-K方法时,
10. (1) 用Euler法求解,步长h应取在什么范围内计算才稳定?(2) 若用梯形法求解,对步长h有无限制? (3) 若用四阶R-K方法求解,步长h如何选取?
解:用四阶显式Adams公式先要算出,而,其余3点可用四阶R-K方法计算。

由,得
由计算得
再由四步四阶Adams显式方法得
11.用四步四阶的Adams显式方法
求解初值问题取h=0.1.(1)用形如
的线性二步法解
(2)试确定参数,使方法具有尽可能高的阶数,并求出局部截断误差主项.
解本题仍利用局部截断误差的Taylor展开,
要确定参数,可令
解得而方法得局部截断
故所求方法是二阶方法,局部截断误差主项为。

相关文档
最新文档