数值分析试题及答案

数值分析试题及答案
数值分析试题及答案

数值分析试题

一、 填空题(2 0×2′)

1.

??

????-=?

?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,

f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,

‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代

函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差

商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n

i i x a 0)( 1 ;所以

当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使

20的近似值的相对误差小于%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)

收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。

10. 由下列数据所确定的插值多项式的次数最高是 5 。

11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

12.线性方程组的松弛迭代法是通过逐渐减少残差r i (i=0,1,…,n)来实现的,其中的残

差r i=(b i-a i1x1-a i2x2-…-a in x n)/a ii,(i=0,1,…,n)。

13.在非线性方程f(x)=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且

f(x)的二阶导数不变号,则初始点x0的选取依据为

f(x0)f”(x0)>0 。

14.使用迭代计算的步骤为建立迭代函数、选取初值、迭代计算。

二、判断题(10×1′)

1、若A是n阶非奇异矩阵,则线性方程组AX=b一定可以使用高斯消元法求解。

( ×)

2、解非线性方程f(x)=0的牛顿迭代法在单根x*附近是平方收敛的。

( ?)

3、若A为n阶方阵,且其元素满足不等式

则解线性方程组AX=b的高斯——塞德尔迭代法一定收敛。

( ×)

4、样条插值一种分段插值。

( ?)

5、如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。

( ?)

6、从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断误

差及舍入误差。

( ?)

7、解线性方程组的的平方根直接解法适用于任何线性方程组AX=b。

( ×)

8、迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一步

迭代计算的舍入误差。

( ×)

9、数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则是

截断误差=舍入误差。

( ?)

10、插值计算中避免外插是为了减少舍入误差。 ( × )

三、计算题(5×10′)

1、用列主元高斯消元法解线性方程组。 解答:

(1,5,2)最大元5在第二行,交换第一与第二行: L 21=1/5=,l 31=2/5= 方程化为:

(,)最大元在第三行,交换第二与第三行: L32==,方程化为: 回代得:

???

??-===00010.1 99999.500005.33

21x x x 2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式P 4(x ),并写出其截断误差的表达式(设f (x )在插值区间上具有直到五阶连续导数)。

解答: 做差商表

P4(x)=1-2x-3x(x-1)-x(x-1)(x-1)(x-2) R4(x)=f(5)(?)/5!x(x-1)(x-1)(x-2)(x-2)

3、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯——赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代法的迭代公式,并简单说明收敛的理由。 解答:

交换第二和第四个方程,使系数矩阵为严格对角占优:

雅克比迭代公式: 《计算机数学基础(2)》数值分析试题 一、单项选择题(每小题3分,共15分) 1. 已知准确值x *与其有t 位有效数字的近似值x =…a n

×10s (a 1

?0)的绝对误差?x *-x ??( ).

(A) ×10

s -1-t

(B) ×10 s -t (C) ×10

s +1-t

(D) ×10 s +t

2. 以下矩阵是严格对角占优矩阵的为( ).

(A) ????

?????

???------21001210012100

12,

(B)?

?

???

????

???2100141101410125 (C) ?

?

???????

???--2100

14121241

0125 (D) ??

???

??

??

???-513

114120141112

4 3. 过(0,1),(2,4),(3,1)点的分段线性插值函数P (x )=( )

(A) ?????≤<+-≤≤+32103201

23

x x x x (B)

??

???≤<+-≤≤+32103201

2

3

2x x x x (C) ?????≤<+-≤≤-3

2103201

23

x x x x (D)

?????≤<+-≤≤+3

24201

2

3

x x x x 4. 等距二点的求导公式是( )

(A) ???

????

-='+-='+++)

(1)()(1)(111k k k k k k y y h x f y y h x f

(B) ???

????

-='-='+++)

(1)()(1)(111k k k k k k y y h x f y y h x f

??????

?=+-=-+=-+-=+-65 8 4 3 3 1

2431432321421x x x x x x x x x x x x

(C) ???

????

-='+-='+++)(1)()(1)(111k k k k k k y y h x f y y h x f

(D)

5. 解常微分方程初值问题的平均形式的改进欧拉法公式是 那么y p ,y c 分别为( ).

(A) ???+=+=+)

,()

,(1k k k c k k k p y x hf y y y x hf y y (B)

????

?+=+=+),()

,(1p k k c

k k k p y x hf y y y x hf y y

(C) ????

?+=+=),()

,(p k k c k k k p y x f y y y x f y y (D)

????

?+=+=+)

,()

,(1p k k c k k k p y x hf y y y x hf y y 二、填空题(每小题3分,共15分) 6. 设近似值x 1,x 2满足?(x 1)=,?(x 2)=,那么?(x 1x 2)= .

7. 三次样条函数S (x )满足:S (x )在区间[a ,b ]内二阶连续可导,S (x k )=y k (已知),k =0,1,2,…,n ,且满足

S (x )在每个子区间[x k ,x k +1]上是 .

8. 牛顿-科茨求积公式

∑?

=≈n k k k b

a

x f A x x f 0

)(d )(,则∑=n

k k A 0

= .

9. 解方程f (x )=0的简单迭代法的迭代函数?(x )满足在有根区间内 ,则在有根区间内任意取一点作为初始值,迭代解都收敛.

10. 解常微分方程初值问题的改进欧拉法预报――校正公式是 预报值:

),(1k k k k y x hf y y +=+,校正值:y k +1= .

三、计算题(每小题15分,共60分) 11. 用简单迭代法求线性方程组

的X (3).取初始值(0,0,0)T ,计算过程保留4位小数.

12. 已知函数值f (0)=6,f (1)=10,f (3)=46,f (4)=82,f (6)=212,求函数的四阶均差f (0,1,3,4,6)和二阶

均差f (4,1,3).

13.将积分区间8等分,用梯形求积公式计算定积分

?

+3

1

2d 1x x ,计算过程保留4位小数.

14. 用牛顿法求115的近似值,取x =10或11为初始值,计算过程保留4位小数. 四、证明题(本题10分)

15. 证明求常微分方程初值问题

在等距节点a =x 0

y (x k +1)?y k +1=y k +

2

h

[f (x k ,y k )+f (x k +1,y k +1)] 其中h =x k +1-x k (k =0,1,2,…n -1)

《计算机数学基础(2)》数值分析试题答案

一、单项选择题(每小题3分,共15分)

1. A

2. B

3. A

4. B

5. D 二、填空题(每小题3分,共15分)

6. ?x 2?+?x 1?

7. 3次多项式

8. b -a 9. ???(x )??r <1 10. y k +)],(),([2

11+++k k k k y x f y x f h

hf (x k +1, 1+k y ) . 三、计算题(每小题15分,共60分)

11. 写出迭代格式 X (0)=(0,0,0)T .

得到X (1)=,3,3)T 得到X (2)=, 7, 0)T 得到X (3)= 4, 6, 6)T .

12.

f (0,1,3,4,6)=

15

f (4, 1, 3)=6 13. f (x )=21x +,h =

25.08

2

=.分点x 0=,x 1=,x 2=,x 3=,x 4=,x 5=,x 6=,x 7=,x 8=.

函数值:f = 2,f = 8,f = 8,f = 6,f = 1,f = 2,f = 6,f = 2,f = 3.

))]()()()()()()((27654321x f x f x f x f x f x f x f +++++++ (9分)

=

2

25

.0×[ 2+ 3+2× 8+ 8+ 6 + 1+ 2+ 6+ 2)]

=× 5+2× 3)= 1

14. 设x 为所求,即求x 2-115=0的正根.f (x )=x 2-115. 因为f ?(x )=2x ,f ?(x )=2,f (10)f ?(10)=(100-115)×2<0,f (11)f ?(11)=(121-115)×2>0

取x 0=11. 有迭代公式

x k +1=x k -)

()(k k x f x f '=k k k k k x x x x x 2115

221152

+

=--(k =0,1,2,…) x 1=

11

2115

211?+= 3 x 2=

3727.102115

23727.10?+= 8 x 3=

8

723.102115

28723.10?+= 8

x *? 8

四、证明题(本题10分)

15. 在子区间[x k +1,x k ]上,对微分方程两边关于x 积分,得

y (x k +1)-y (x k )=

?

+1

d ))(,(k k

x x x x y x f

用求积梯形公式,有

y (x k +1)-y (x k )=

))](,())(,([2

11+++k k k k x y x f x y x f h

将y (x k ),y (x k +1)用y k ,y k +1替代,得到

y (x k +1)?y k +1=y k +

2

h

[f (x k ,y k )+f (x k +1,y k +1)](k =0,1,2,…,n -1) 数值分析期末试题

一、 填空题(20102=

?分)

(1)设????

??????---=283012251

A ,则

=∞A ______13_______。

(2)对于方程组??

?=-=-3

4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?

??

???05.25.20。 (3)

3

*x 的相对误差约是*x 的相对误差的3

1

倍。

(4)求方程)(x f x

=根的牛顿迭代公式是)

('1)

(1n n n n n x f x f x x x +--

=+。

(5)设1)(3

-+=x x x f ,则差商=]3,2,1,0[f 1 。

(6)设n n ?矩阵G 的特征值是n λλλ,,,21Λ,则矩阵G 的谱半径=

)(G ρi n

i λ≤≤1max 。

(7)已知??

?

???=

1021A ,则条件数=∞)(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2--

x x 改写为)1ln(2++-x x 。

(9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。

(10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(313

1

∑==i i x f y 。

二、 (10分)证明:方程组???

??=-+=++=+-1

2112321

321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。

证明:Jacobi 迭代法的迭代矩阵为

J B 的特征多项式为

J B 的特征值为01=λ,i 25.12=λ,i 25.13-=λ,故25.1)(=J B ρ>1,因而迭代法不收

敛性。

三、 (10分)定义内积

试在{}

x Span H ,11=中寻求对于x x f =)(的最佳平方逼近元素)(x p 。

解:1)(0≡x ?,x x ≡)(1?,

1),(1

00==

?

dx ??,2

1

),(1

01==

?

xdx ??,3

1),(1

211=

=

?

dx x ??,3

2

),(1

0=

=

?

dx x f ?,5

2),(1

1=

=?

dx x x f ?。 法方程 解得1540=

c ,15

121=c 。所求的最佳平方逼近元素为 x x p 15

12

154)(+=,10≤≤x 四、 (10分)给定数据表

试用三次多项式以最小二乘法拟合所给数据。 解:3

32

210)(x c x c x c c x y +++=

?????

??

?????????----=84211111000111118421A , ?????

?

??????=

130034003401034010001005A A T 法方程

的解为4086.00=c ,39167.01=c ,0857.02=c ,00833.03=c 得到三次多项式

误差平方和为000194.03=σ

五. (10分) 依据如下函数值表

建立不超过三次的Lagrange 插值多项式,用它计算)2.2(f ,并在假设1)()4(≤x f 下,估计计算误差。

解:先计算插值基函数

所求Lagrange 插值多项式为

12

1445411)(3)(23)(9)()()()(2332103

03+-+-

=+++==∑=x x x x l x l x l x l x l x f x L i i i 从而0683.25)2.2()2.2(3=≈L f 。

据误差公式))()()((!

4)

()(3210)4(3x x x x x x x x f x R ----=

ξ及假设1)()4(≤x f 得误差估计:

六. (10分) 用矩阵的直接三角分解法解方程组

解 设

由矩阵乘法可求出ij u 和ij l 解下三角方程组

有51=y ,32=y ,63=y ,44=y 。再解上三角方程组

得原方程组的解为11=x ,12=x ,23=x ,24=x 。

七. (10分) 试用Simpson 公式计算积分 的近似值, 并估计截断误差。

解:

截断误差为

八. (10分) 用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求

81

10--<-k

k k x x x 。

解:此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。设

则 x x f 11)('-

=, 21

)(''x

x f = Newton 法迭代公式为

1)

ln 1(112ln 1-+=

-

---

=+k k k k

k k k k x x x x x x x x , Λ,2,1,0=k

取30=x ,得146193221.34=≈x s 。

九. (10分) 给定数表

求次数不高于5的多项式)(5x H ,使其满足条件 其中,1i x i +-= 3 ,2 ,1 ,0=i 。

解:先建立满足条件

)()(3i x f x p =, 3,2,1,0=i

的三次插值多项式)(3x p 。采用Newton 插值多项式

[][]))((,,)(,)()(1021001003x x x x x x x f x x x x f x f x p --+-+=+

再设 )2)(1()1)(()()(35--+++=x x x x b ax x p x H ,由 得 解得36059-

=a ,360

161

=b 。 故所求的插值多项式

数值分析第五版全答案chap1

第一章 绪 论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为* **** r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'()||() p xf x C f x = 又1'()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*5 7 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) *** 124x x x ++,(2) ***123x x x ,(3) **24 /x x . 其中****1234,,,x x x x 均为第3题所给的数。 解:

*4 1*3 2*13*3 4*1 51 ()102 1()102 1()102 1()102 1()102x x x x x εεεεε-----=?=?=?=?=? ***124***1244333 (1)() ()()() 111101010222 1.0510x x x x x x εεεε----++=++=?+?+?=? ***123*********123231132143 (2)() ()()() 1111.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ **24****24422 *4 33 5 (3)(/)()() 110.0311056.430102256.43056.430 10x x x x x x x εεε---+≈??+??=?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π= 则何种函数的条件数为 2 3 '4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析第五版答案

第一章 绪论 p19 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又 1 '()n f x nx -=, 1 ||n p x nx C n n -?∴== 又 ((*))(*)r p r x n C x εε≈? 且(*)r e x 为2% ((*))0.02n r x n ε∴≈ 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又 (*)1r V ε= 故度量半径R 时允许的相对误差限为1 (*)10.333 r R ε= ?≈ 7.求方程2 5610x x -+=的两个根,使它至少具有427.982 =)。 解:2 5610x x -+= , 故方程的根应为1,228x =故 128 2827.98255.982x = ≈+= 1x ∴具有5位有效数字 211 280.0178632827.98255.982 x =-= ≈ =≈+ 2x 具有5位有效数字

9.正方形的边长大约为了100cm ,应怎样测量才能使其面积误差不超过2 1cm ? 解:正方形的面积函数为2 ()A x x = p7 当*100x =时,若(*)1A ε≤, 则21 (*)102 x ε-≤ ? 故测量中边长误差限不超过0.005cm 时,才能使其面积误差不超过2 1cm 第二章 插值法p48 1.当1,1,2 x =-时,()0,3,4f x =-, 分别用单项式基底、拉格朗日基底、牛顿基底求() f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23537623 l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算的近似值。 解:由表格知,

数值分析第五版全答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h A h -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析第五版答案

第一章 绪论 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解: *4 1* 3 2* 13* 3 4* 1 51 ()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈

** 24**** 24422 * 4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε= 故度量半径R 时允许的相对误差限为1 (*)10.333 r R ε=?≈ 6.设028Y = ,按递推公式1n n Y Y -= (n=1,2,…) 计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差? 解:1n n Y Y -=- 10099Y Y ∴=- 9998Y Y = 9897Y Y =-…… 10Y Y =- 依次代入后,有1000100Y Y =- 即1000Y Y = 27.982, 100027.982Y Y ∴=-

数值分析第五版答案(全)

第一章 绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为* **** r e x x e x x δ-= = = 而ln x 的误差为()1 ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -=, 1 ||n p x nx C n n -?∴== 又 ((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:* 1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中**** 1234,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又 (*)1r V ε=%1

(完整版)数值分析第五版答案

第一章 绪论 3.下列各数都是经过四舍五入得到的近似数, 即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: x 1* 1.1021 , x 2* 0.031 , x 3 385.6 , x 4 56.430 ,x 5 7 1.0. 解: x 1 1.1021 是五位有效数字; x 2 0.031是二位有效数字; x 3 385.6 是四位有效数字; x 4 56.430 是五位有效数 字; x 5 7 1.0. 是二位有效数字。 4.利用公式 (2.3)求下列各近似值的误差限: (1) x 1 x 2 x 4,(2) x 1 x 2 x 3 ,(3) x 2/ x 4. 其中 x 1* , x *2, x 3* , x 4* 均为第 3题所给的数。 解: (x 1*) (x * 2) (x *3) (x * 4) (x 5) 1 2 1 2 1 2 1 2 1 10 10 10 10 10 (1) (x 1 (x 1*) 1 10 2 1.05 10 x 2 x 4) (x * 2) 1 2 3 10 (x *4) 1 10 3 2 (2) (x 1*x *2x 3*) x 1x 2 (x 3) x 2x 3 (x 1) x 1x 3 (x 2) 1 1.1021 0.031 10 1 0.031 385.6 1 10 4 1.1021 385.6 1 10 3 0.215

又Q r (V*) 计算到 Y 100 。若取 783 27.982 ( 5 位有效数字) 有 Y 100 Y 0 100 1 783 100 0 100 (3) (x *2/ x 4*) x 2* (x *4) x *4 (x 2*) *2 x 4* 1 3 1 3 0.031 10 3 56.430 10 3 22 56.430 56.430 10 5 5 计算球体积要使相对误差限为 1 , 43 解:球体体积为 V R 3 3 则何种函数的条件数为 问度量半径 R 时允许的相对误差限是多 少? C p RgV ' Rg4 R 2 4 R 3 3 r (V*) C p g r (R*) 3 r (R*) 故度量半径 R 时允许的相对误差限 为 6.设 Y 0 28,按递推公式 Y n Y n 1 3 1 783 100 r (R*) 1 0.33 n=1,2,?) 1 解:QY n Y n 1 783 n n 1 100 Y 100 Y 99 1 783 100 99 100 1 783 100 1 783 100 Y 99 Y 98 Y 1 Y 98 Y 97 Y 0 1010 783 即 Y 100 Y 0 783, 若取 783 27.982 , Y 100 Y 0 27.982 ,试问计算 Y 100 将有多大误差? 依次代入后,

相关文档
最新文档