数值分析课程第五版课后习题答案(李庆扬等)
李庆扬 数值分析第五版 习题答案

第2章 复习与思考题01ii i ii kx x x x 的基函数称为主要性质有 0,()1,k i kx i k()1n l x、什么是牛顿基函数?它与单项式基答:牛顿差值基函数为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n 牛顿差值基函数中带有常数项01,,...n x x x ,这有单项式基不同。
阶均差?它有何重要性质 01n 2n 01n 2n -11[,,...,,][,,...,,]n n f x x x f x x x x x xk j 0j 0j-1j j+1j -k x x x x x x x ()...()()...()和k 阶均差的性质0101k-10[,,...,][,,...,]k kf x x x f x x x x x (分子前项多xk )[a,b]上存在阶导数,且节点2n ,[a,b]x ,则1()!f n0()nn n ik k kk k i i ki kx x y l x y x x ,(j 1,2,....,n)个点的牛顿插值多项式01[,,...,]k f x x x ,(k 1,2,....,n)两者的主要差异是未知数不一致。
拉格朗日插值多项式是系数知道,但基函数不知道。
牛顿插值多项式是函数知道,但系数不知道。
与一般多项式基本相同。
y ,其中系数矩阵用下列基底作多项式插值时,120001211112222121...1...1 (1)...n n n n n nnx x x x x x x x x x x x ,无非零元素。
)拉格朗日基底为01{(),(),...,()}n l x l x l x ,已知数为未知数为01{(),(),...,()}n l x l x l x ,则系数矩阵为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n ,已,未知数为012{,,,...,}n a a a a ,则系数矩阵为102020211010100...010...01()()...0...............1()()...()n nnnnj j x x x x x x x x x x x x x x x x ,为下三角矩阵,矩阵的上三角元0。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳育创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x ,相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳美创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x ,相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳与创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e nk k kεεεε;(3)*4*2/x x 。
数值分析课程课后习题答案(李庆扬等)1

第一章 绪论1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳学创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而xln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e nk k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e nk k kεεεε;(3)*4*2/x x 。
数值分析第五版_李庆扬_王能超_易大义主编课后习题答案

1 u * 4 2
故
6
y *
u * * u
1 gu * 0.0167 3
若改用等价公式
ln( x x 2 1) ln( x x 2 1)
则 f (30) ln(30 899) 此时,
* * * (1) ( x1 x2 x4 ) * * * ( x1 ) ( x2 ) ( x4 )
1 1 1 104 103 103 2 2 2 3 1.05 10
* * * x2 x3 ) (2) ( x1 * * * * * * * * * x2 ( x3 x3 ( x1 x3 ( x2 ) x2 ) x1 ) x1
1 1 1 1.1021 0.031 101 0.031 385.6 104 1.1021 385.6 103 2 2 2 0.215
* * (3) ( x2 / x4 )
* * * * x2 ( x4 ) x4 ( x2 ) * x4 2
* * * * * * * *
其中 x1 , x2 , x3 , x4 均为第 3 题所给的数。 解:
*
*
*
*
1
1 ( x1* ) 104 2 1 * ) 103 ( x2 2 1 * ( x3 ) 101 2 1 * ( x4 ) 103 2 1 * ( x5 ) 101 2
2 1.41 (三位有效数字) ,计算到 y10 时误差有多大?这个计算过程稳定吗? 2 1.41
解:Q y0
1 ( y0 *) 102 2
又Q yn 10 yn1 1
y1 10 y0 1 ( y1*) 10 ( y0 *)
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳理创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e nk k kεεεε;(3)*4*2/x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
[解]53232323*42*4*2*2*41***4*2*1088654.01021)430.56(461.561021)430.56(461.561021)430.56(031.01021430.561)()()(1)()/(-----=⨯≈⨯⨯=⨯⨯=⨯⨯+⨯⨯=+=⎪⎪⎭⎫⎝⎛∂∂=∑x x x x x x x f x x e n k k kεεε。
5、计算球体积要使相对误差限为1%,问度量半径R 允许的相对误差是多少?[解]由3*3**3**)(34))(34())(34(%1R R R r ππεπε==可知,)()(4)()(34)(34%1))(34(**2***3*3*3**R R R R R R επεπππε⨯='⎥⎦⎤⎢⎣⎡=⨯=, 从而***31%1)(R R ⨯=ε,故300131%1)()(*****=⨯==RR R r εε。
6、设280=Y ,按递推公式),2,1(78310011 =-=-n Y Y n n 计算到100Y ,若取982.27783≈(五位有效数字,)试问计算100Y 将有多大误差?[解]令n Y 表示n Y 的近似值,n n n Y Y Y e -=)(*,则0)(0*=Y e ,并且由982.2710011⨯-=-n n Y Y ,78310011⨯-=-n n Y Y 可知, )783982.27(100111-⨯--=---n n n n Y Y Y Y ,即=-⨯-=-⨯-=--)783982.27(1002)()783982.27(1001)()(2*1**n n n Y e Y e Y e ,从而982.27783)783982.27()()(0*100*-=--=Y e Y e ,而31021982.27783-⨯≤-,所以3100*1021)(-⨯=Y ε。
7、求方程01562=+-x x 的两个根,使它至少具有四位有效数字(982.27783≈) [解]由78328±=x 与982.27783≈(五位有效数字)可知,982.55982.2728783281=+=+=x (五位有效数字)。
而018.0982.2728783282=-=-=x ,只有两位有效数字,不符合题意。
但是22107863.1982.55178328178328-⨯==+=-=x 。
8、当N 充分大时,怎样求⎰++1211N Ndx x ? [解]因为N N dx xN Narctan )1arctan(1112-+=+⎰+,当N 充分大时为两个相近数相减,设)1arctan(+=N α,N arctan =β,则αtan 1=+N ,βtan =N ,从而11)1(1)1(tan tan 1tan tan )tan(2++=++-+=+-=-N N N N N N βαβαβα,因此11arctan 11212++=-=+⎰+N N dx x N Nβα。
9、正方形的边长大约为100cm ,应怎样测量才能使其面积误差不超过12cm ? [解]由)(2)(])[())((*****2*2**l l l l l εεε='=可知,若要求1))((2**=l ε,则2001100212))(()(*2****=⨯==l l l εε,即边长应满足2001100±=l 。
10、设221gt S =,假定g 是准确的,而对t 的测量有1.0±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减少。
[证明]因为******1.0)()()()(gt t gt t dtdS S ===εεε, ***2******51)(2)(21)()()(t t t t g t gt S S S r====εεεε,所以得证。
11、序列{}n y 满足递推关系),2,1(1101 =-=-n y y n n ,若41.120≈=y (三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?[解]设n y 为n y 的近似值,n n n y y y -=)(*ε,则由⎪⎩⎪⎨⎧-==-110210n n y y y 与⎩⎨⎧-==-11041.110n n y y y 可知,20*1021)(-⨯=y ε,)(1011---=-n n n n y y y y ,即 )(10)(10)(0*1**y y y n n n εεε==-,从而82100*1010*1021102110)(10)(⨯=⨯⨯==-y y εε,因此计算过程不稳定。
12、计算6)12(-=f ,取4.12≈,利用下列公式计算,哪一个得到的结果最好?6)12(1+,3)223(-,3)223(1+,27099-。
[解]因为1*1021)(-⨯=f ε,所以对于61)12(1+=f , 2417*11*10211054.61021)14.1(6)4.1()(---⨯<⨯=⨯⨯+='=e f f e ,有一位有效数字; 对于32)223(-=f ,1112*22*10211012.01021)4.123(6)4.1()(---⨯<⨯=⨯⨯⨯-='=e f f e ,没有有效数字; 对于33)223(1+=f ,2314*33*10211065.21021)4.123(6)4.1()(---⨯<⨯=⨯⨯⨯+='=e f f e ,有一位有效数字;对于270994-=f ,111*44*10211035102170)4.1()(⨯<⨯=⨯⨯='=--e f f e ,没有有效数字。
13、)1ln()(2--=x x x f ,求)30(f 的值。
若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式)1ln()1ln(22-+-=--x x x x 计算,求对数时误差有多大?[解]因为9833.298991302==-(六位有效数字),4*1021)(-⨯=x ε,所以2442**11*102994.010219833.293011021)13030(1)()()(---⨯=⨯⨯-=⨯⨯---='=x e f f e ,6442**22*108336.010219833.29301102111)()()(---⨯=⨯⨯+=⨯⨯-+-='=x x x e f f e 。
14、试用消元法解方程组⎩⎨⎧=+=+2101021102101x x x x ,假定只有三位数计算,问结果是否可靠?[解]精确解为110210,110101*********--=-=x x 。
当使用三位数运算时,得到1,121==x x ,结果可靠。
15、已知三角形面积c ab s sin 21=,其中c 为弧度,20π<<c ,且测量a ,b ,c 的误差分别为c b a ∆∆∆,,,证明面积的误差s ∆满足ccb b a a s s ∆+∆+∆≤∆。
[解]因为c c ab b c a a c b x x f s nk k k ∆+∆+∆=∆∂∂=∆∑=cos 21sin 21sin 21)()(1, 所以cc b b c c c c b b c c c ab cc ab b c a a c b ss ∆+∆+∆≤∆+∆+∆=∆+∆+∆=∆tan sin 21cos 21sin 21sin 21。
第二章 插值法(40-42)1、根据(2.2)定义的范德蒙行列式,令⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----nn n n n nn n x x xx x x x x x x x x x V21211020110111),,,,(,证明)(x V n 是n 次多项式,它的根是121,,,-n x x x ,且)())(,,,(),,,,(101101110------=n n n n n x x x x x x x V x x x x V 。
[证明]由∏∏∏∏-=---=-=-=--⋅=-⋅-=1110111010110)(),,,()()(),,,,(n j j n n n j j n i i j j i n n x x x x x V x x x x x x x x V 可得求证。