数值计算方法试题
《数值计算办法》试题集及参考答案

精心整理《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,式为。
答案:-1,)3)(1(2)3)(2(21)(2-----=x x x x x L 4、近似值5、设)(x f ();答案1n x =+6、对)(x f =]4,3,2,1(0);78n 次后的误差限为(12+-n ab ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。
14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 代矩阵的谱半径)(M ρ=121。
15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l (1l )1(716)(2-+=x x x x N 。
16、(高斯型)求积公式为最高,具有(12+n )次代21]内的根精确到三位小数,需对分(10)次。
22、已知≤≤≤≤3110(x x S 是三次样条函数,则a =(3 ),b 23、(),(10l x l Lagrange 插值基函数,则∑==nk kx l)((1),=k 0(j),当时=++=)()3(204x l x xk k k k (324++x x )。
(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值计算方法试题及答案

(2)用n8的复化梯形公式(或复化Simpson公式)计算出该积分的近似值。
e
2
x
数值试题
四、1、(15分)方程x3x10在x不同的等价形式(1)x3对应迭代格式
xn1
1xn
1.5附近有根,把方程写成三种
x1对应迭代格式xn1xn1;(2)
x1
1x
;(3)x
3
x1对应迭代格式xn1xn1。判
出其代数精度:
1xfxdxAfA1f10021
(3) (3) (6分)用幂法求矩阵10A111的模最大的特征值及其
相应的单位特征向量,迭代至特征值的相邻两次的近似值的距
8
数值试题
离小于0.05,取特征向量的初始近似值为1,0。
T
(4) (4) (6分)推导求解常微分方程初值问题
y’xfx,yx,axb,yay0
x1
x
(x1)的形式,使计
6
数值试题
(3) (3) (2分)设(4) (4)
则
2
x12x2
fx
xx12
,则f’x
1x2是3次样条函数,
2x3,0x1
Sx3
2
xaxbxc,(3分)设
(5) (5) (3分)若用复化梯形公式计算0
10
6
1
edx
x
,要求误差不超过
,利用余项公式估计,至少用个求积节点。
x11.6x21
分)写出求解方程组0.4x1x22的
(6) (6) (6
代公式
Gauss-Seidel迭
,为此迭代法是否收敛。
5A
4
43
迭代矩阵
(7) (7) (4分)设
数值计算方法总结计划试卷试题集及答案

一、选择题(每题2分,共20分)1.数值计算的基本思想是()。
A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。
A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。
7.数值计算的主要目的是将_______问题转化为_______问题。
8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。
9.有限差分法的核心思想是将偏微分方程转化为_______方程。
10.牛顿法是一种_______方法,适用于求解非线性方程组。
三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。
()12.在数值计算中,误差只能通过增加计算精度来减小。
()13.迭代法求解线性方程组时,需要预先知道方程组的解。
()14.数值计算方法在实际应用中具有较高的可靠性。
()15.有限元法适用于求解所有类型的偏微分方程。
()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。
17.请简要介绍有限差分法的原理及应用。
18.请简要说明牛顿法求解非线性方程组的原理。
五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。
数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。
(完整版)《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。
答案:2.367,0.253、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( )],(),([2111+++++=n n n n n n y x f y x f hy y );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
数值计算方法测试题

数值计算方法测试题一一、填空题(每空1分,共17分)1、如果用二分法求方程在区间内的根精确到三位小数,需对分( )次。
2、迭代格式局部收敛的充分条件是取值在( )。
3、已知是三次样条函数,则=( ),=( ),=( )。
4、是以整数点为节点的Lagrange 插值基函数,则( ),( ),当时( )。
5、设和节点则 和 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。
8、给定方程组,为实数,当满足 ,且时,SOR迭代法收敛。
9、解初值问题的改进欧拉法是阶方法。
10、设,当( )时,必有分解式,其中为下三角阵,当其对角线元素满足( )条件时,这种分解是唯一的。
二、选择题(每题2分)1、解方程组的简单迭代格式收敛的充要条件是( )。
(1), (2) , (3) , (4)2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。
(1), (2), (3), (4),043=-+x x ]2,1[)2(21-+=+k k k x x x αα⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S a b c )(,),(),(10x l x l x l n Λnx x x ,,,10Λ∑==n k kx l)(∑==nk k jk x lx 0)(2≥n =++∑=)()3(204x l x xk k nk k 1326)(247+++=x x x x f ,,2,1,0,2/Λ==k k x k =],,,[10n x x x f Λ=∆07f {}∞=0)(k kx ϕ]1,0[x x =)(ρ1)(0=x ϕ⎰=14)(dx x x ϕ⎩⎨⎧=+-=-221121b x ax b ax x a a 20<<ω00(,)()y f x y y x y '=⎧⎨=⎩⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ∈a T LL A =L )3,2,1(=i l ii b Ax =g Bx x k k +=+)()1(1)(<A ρ1)(<B ρ1)(>A ρ1)(>B ρ⎰∑=-≈bani i n i x f C a b dx x f 0)()()()()(n i C 8≥n 7≥n 10≥n 6≥n3(1)二次; (2)三次; (3)四次; (4)五次4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。
《数值计算方法》试题与答案

习题一1.设x >0相对误差为2%4x 的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352 ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =0.3456210⨯易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少? 解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x>>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x =,(B )1cos2xy x-=;(4)(A)9y =-(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值计算方法试题
重庆邮电大学数理学院
一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收
敛
2、迭代过程(k=1,2,…)收敛的充要条件是
2、已知y=f(x)的数据如下 ,,, x 0 2 3
3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,,
4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5)
3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过。
4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,,
,
5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算
y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式
三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定
积分近似计算的抛物线公式
具有三次代数精度至少具有,,,次代
数精度.
7、插值型求积公式的求积
2、若,证明用梯形公式计算积分所
系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。
参考答案:
T8、 ,为使A可分解为A=LL, 其中L一、填空题
1、局部平方收敛
2、< 1
3、 4 为对角线元素为正的下三角形,a的取值范围,
4、
5、三阶均差为0
6、n
7、b-a 9、若则矩阵A的谱半径(A)= ,,,
8、
9、 1 10、二阶方法
10、解常微分方程初值问题的梯形二、计算题
格式
1、是,,,阶方法
二、计算题(每小题15分,共60分)
修德博学求实创新
李华荣
1
重庆邮电大学数理学院
2、
右边:
3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度
4、y(0.2)?0.01903
A卷三、证明题
一、填空题(本大题共8小题,每小题3分,共9×31、证明:当 =1时,公式左
,27分)
边: 1、要使的近似值的相对误差不超过0.1%,11
公式右应取______________有效数字。
2、设是真值经过x*,1.21和y*,,0.123x和y边: 左边==右边
四舍五入得到的近似值,则的绝对误x*,y*当 =x时左边:
差限为 _________________。
l(x)x(i,0,1,2,3)3、设为互异节点,为对应ii
的三次Lagrange插值基函数,则右边:
33=_______________。
xl(1),iii,0左边==右边
1114、求积公式的代f(x)dx,f(,),f(),,当时左边: 133
数精度为_________。
5、用牛顿迭代法求解方程的f(x),cosx,x,0
右边: 迭代格式为___________。
bf(x)dx,(b,a)f(a)6、左矩形公式的截断误,a左边==右边
差为__________。
7、设解线性方程组的迭代格式为
(k,1)(k)当时左边: ,则迭代法收敛的充要条x,Bx,f
右边: 件为____________。
120,,
,,左边==右边 A,,12,18、已知矩阵,则,,
,,011,,当时左边:
修德博学求实创新
李华荣
2
重庆邮电大学数理学院
4x,,,,, ;
121A,______Cond(A),______1,,,,,,,,,,B,6X,xA,213,, ,,,,2,,,,,,,,y',,20y 311,5x,,3,,,,9、对初值问题,则步长h满足,y(0),1,
_______________时,Euler法是稳定的。
8、用改进的Euler法解下列初值问题: 二、计算题(本大题共8小题,每小题8分,共8×82x,y',y,, ,
(0,x,1)y,,64分) ,y(0),1,
1、已知过三点(1,0),(2,-5),(3,-6),试f(x)
取步长h=0.1,计算。
y,y12求其二次Lagrange插值多项式,并求的近f(1.5)
三、证明题(9分):对于线性方程组似值。
x,2x,2x,1,1232、观察下列数据,写出求取这些数据的线性最小二乘,x,x,x,1 证明用Jacobi迭代法收敛。
,123
,拟合的法方程组。
2x,2x,x,1123,
B卷 ,1 ,0.5 0 0.5 1 xi
一、填空题(本大题共7小题,每小空3分,共8×3 ,0.2 0.8 2.00 3.0 4 yi
,24分)
2,10,,,,1、用,3. 1416作为=3. 1415926…的近似值,x,A,02,13、用乘幂法计算按模最大特征值,,
,,其有效数字有位。
0,12,,
与特征向量,取初值 2、设是真值经过x*,1.21和y*,,0.123x和y(0,0,1),迭代两次。
四舍五入得到的近似值,则的绝对误x*,y*32x,x,1,04、求方程的正根,对于下列迭代格式,
差限为 _________________。
判定其收敛性,并说明理由。
123AXb,A3、若线性方程组的系数矩阵为严格对x,1,x,1,x(1) (2) 2x
角占优阵, 则雅可比迭代和高斯-塞德尔迭代1,xI,edx5、用辛普生公式计算积分(用e表达) 。
,0_________________。
x,x,x6、求3个不同求积节点使公式:4、设解线性方程组的迭代格式为012 (k,1)(k)1,则迭代法收敛的充要条x,Bx,ff(x)dx,C[f(x),f(x),f(x)]具有3次012,,1
件为____________。
代数精度。
,31,, T5、已知,则XA,,,(,),12,,AX,B7、用Doolittle法的紧凑格式求解矩阵方程:,,21,,其中
AXA= ; = 。
11
修德博学求实创新
李华荣
3
重庆邮电大学数理学院
1, 使方程4、试确定迭代函数11g(x)6、求积公式的f(x)dx,f(,),f(),,133 对任意的,相x,02,fxxx()ln(),,,,20,,0代数精度为_________。
应的迭代过程收敛。
27、求的Newton迭代法格式为x,2x,1,05、用Doolittle分解法求方程组AX=b, 其中
10316,,,,_____________。
,,,,6A,213, b=。
,,,,二、计算题(本大题共7小题,每小题10分,共7×,,,,3111,,,,
10,70分) 6、用GS迭代方法求解下列方程组,写出其迭代格式,
并判定其敛散性。
1、已知,求的fff(),(),(),,,,,131024fx()
1023xxx,,,,123,二次插值多项式,及并用所求的插值多项式计
算,,,,21015xxx ,123
,的值。
f(.)15,,,,xxx2510123,
2、已知函数表如下,试构造出差商表。
,yy,,15,7、讨论欧拉公式求初值问题的稳定域。
,ya()0,x 0.4 0.5 0.6 0.7 0.8 ,
-0.916-0.693-0.510-0.356-0.223三、证明题(6分): lnx 291 147 826 675 144 证明数值求积公式 :
b,f(,)21f(x)dx,(b,a)f(b),(b,a), ,Ifxdx,()3、对积分,试: 2,a0
(1)构造以为节点的辛浦生xxx,,,0051,., ,,,,a,b012
求积公式。
(2)指出所构造公式的代数精度。
修德博学求实创新
李华荣4。