第十二章 线性回归分析

合集下载

线性回归分析PPT

线性回归分析PPT

分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。

第12章-多重线性回归分析

第12章-多重线性回归分析
8
6 因变量总变异的分解
P
(X,Y)

Y
(Y Y) (Y Y)

(Y Y)
Y X

Y
Y
9
Y的总变异分解
Y Y Yˆ Y Y Yˆ
Y Y 2 Yˆ Y 2 Y Yˆ 2
总变异 SS总
回归平方和 剩余平方和
SS回
SS剩
10
Y的总变异分解
病程 (X2)
10.0 3.0 15.0 3.0 4.0 6.0 2.9 9.0 5.0 2.0 8.0 20.0
表 12-1 脂联素水平与相关因素的测量数据
空腹
回归模空型腹 ?
瘦素
脂联 BMI 病程 瘦素
脂联
(X3)

血糖 (X4)
素(Y)
(X1)
(X2)
(X3)
血糖 素(Y) (X4)
5.75 13.6 29.36 21.11 9.0 4.90 6.0 17.28
H 0: 1 2 3 4 0 ,即总体中各偏回归系数均为0; H 1:总体中各偏回归系数不为0或不全为0;
= 0.05。
2 计算检验统计量: 3 确定P值,作出推断结论。
拒绝H0,说明从整体上而言,用这四个自变量构成 的回归方程解释糖尿病患者体内脂联素的变化是有统 计学意义的。
的平方和 (Y Yˆ)2为最小。
只有一个自变量
两个自变量
例12-1 为了研究有关糖尿病患者体内脂联素水平的影响因 素,某医师测定30例患者的BMI、病程、瘦素、空腹血糖, 数据如表12-1所示。
BMI (X1)
24.22 24.22 19.03 23.39 19.49 24.38 19.03 21.11 23.32 24.34 23.82 22.86

线性回归分析的基本原理

线性回归分析的基本原理

线性回归分析的基本原理线性回归分析是一种常用的统计分析方法,用于研究两个变量之间的线性关系。

它通过拟合一条直线来描述两个变量之间的关系,并利用这条直线进行预测和推断。

本文将介绍线性回归分析的基本原理,包括模型假设、参数估计、模型评估等内容。

一、模型假设线性回归分析的基本假设是:自变量和因变量之间存在线性关系,并且误差项服从正态分布。

具体来说,线性回归模型可以表示为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。

线性回归模型假设误差项ε服从均值为0、方差为σ^2的正态分布。

二、参数估计线性回归模型的参数估计通常使用最小二乘法。

最小二乘法的基本思想是通过最小化观测值与模型预测值之间的差异来估计模型的参数。

具体来说,最小二乘法的目标是最小化残差平方和:min Σ(Yi - (β0 + β1Xi))^2通过对残差平方和进行求导,可以得到参数的估计值:β1 = Σ(Xi - X̄)(Yi - Ȳ) / Σ(Xi - X̄)^2β0 = Ȳ - β1X̄其中,Xi和Yi分别表示观测值的自变量和因变量,X̄和Ȳ分别表示自变量和因变量的均值。

三、模型评估线性回归模型的拟合程度可以通过多个指标进行评估,包括决定系数(R^2)、标准误差(SE)和F统计量等。

决定系数是用来衡量模型解释变量变异性的比例,其取值范围为0到1。

决定系数越接近1,说明模型对观测值的解释能力越强。

标准误差是用来衡量模型预测值与观测值之间的平均误差。

标准误差越小,说明模型的预测精度越高。

F统计量是用来检验模型的显著性。

F统计量的计算公式为:F = (SSR / k) / (SSE / (n - k - 1))其中,SSR表示回归平方和,SSE表示残差平方和,k表示模型的自由度,n表示观测值的个数。

F统计量的值越大,说明模型的显著性越高。

四、模型应用线性回归分析可以用于预测和推断。

通过拟合一条直线,可以根据自变量的取值来预测因变量的值。

12章 多元线性回归

12章 多元线性回归

统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。

在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。

线性回归分析

线性回归分析

线性回归分析线性回归是一种用来建立和预测变量间线性关系的统计分析方法。

它可以帮助我们了解变量之间的相互影响和趋势,并将这些关系用一条直线来表示。

线性回归分析常被应用于经济学、社会科学、自然科学和工程等领域。

一、概述线性回归分析是一个广泛使用的统计工具,用于建立变量间的线性关系模型。

该模型假设自变量(独立变量)与因变量(依赖变量)之间存在线性关系,并通过最小化观测值与模型预测值之间的误差来确定模型的参数。

二、基本原理线性回归分析基于最小二乘法,通过最小化观测值与模型预测值之间的残差平方和来确定模型的参数。

具体来说,线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1到Xn是自变量,β0到βn是回归系数,ε是误差项。

回归系数表示自变量对因变量的影响程度。

三、应用步骤进行线性回归分析时,通常需要以下几个步骤:1. 收集数据:获取自变量和因变量的样本数据。

2. 建立模型:根据数据建立线性回归模型。

3. 评估模型的准确性:通过计算残差、决定系数等指标来评估模型的准确性。

4. 进行预测和推断:利用模型对未知数据进行预测和推断。

四、模型评价指标在线性回归分析中,有几个常用的指标用于评价模型的准确性:1. R平方值:R平方值表示因变量的变异性能够被模型解释的比例,数值范围为0到1。

R平方值越接近1,表示模型对数据的拟合程度越好。

2. 残差分析:进行残差分析可以帮助我们判断模型是否符合线性回归的基本假设。

一般来说,残差应该满足正态分布、独立性和等方差性的假设。

五、优缺点线性回归分析有以下几个优点:1. 简单易懂:线性回归模型的建立和解释相对较为简单,无需复杂的数学知识。

2. 实用性强:线性回归模型适用于很多实际问题,可以解决很多预测和推断的需求。

然而,线性回归分析也存在以下几个缺点:1. 假设限制:线性回归模型对于变量间关系的假设比较严格,不适用于非线性关系的建模。

线性回归分析

线性回归分析

线性回归分析线性回归分析是一种经典的数学方法,用于建立和分析因变量和自变量之间线性关系的模型。

该模型通常表示为y = β0 + β1x1 + β2x2 + ... + βpxp + ε,其中y表示因变量,x1,x2,...,xp表示自变量,β0,β1,β2,...,βp表示回归系数,ε表示误差。

线性回归分析的基本思想是,通过寻找自变量与因变量之间的线性关系,建立一个最合适的拟合直线或平面,并将自变量与因变量之间的关系量化成回归系数。

该方法可用于解决许多实际问题,如价格预测,销售趋势分析,财务预测等。

线性回归分析的实现过程如下:1. 收集数据:首先,需要收集与分析目标有关的数据,包括自变量和因变量的数据,这些数据可以来自样本或整体数据集。

2. 数据预处理:数据预处理是数据分析的一个重要环节,包括数据清洗、缺失值填充、异常值检查等。

这样可以提高数据的可靠性和准确性。

3. 变量选择:此步骤可以用来减少模型的复杂性和捕捉最有效的自变量,以获得更好的模型拟合。

常见的变量选择方法有前向逐步回归,后向逐步回归和Lasso等。

4. 模型建立:利用线性回归模型,可以根据收集的数据实现自变量和因变量之间的线性拟合,即利用最小二乘法求出回归系数。

5. 模型评价:评估模型的好坏有很多方法,其中最常用的是确定决定系数R²和调整决定系数R²_adj的值,用于衡量模型的预测能力是否接近实际情况,以及模型误差的大小。

6. 预测:完成模型评估后,可以使用该模型对新数据进行预测。

此时,只需要将新数据输入到线性回归模型中,通过回归系数计算出新的预测值。

线性回归分析的优点是简单直观,易于理解和解释。

在数据结构和相关变量之间遵循线性关系的情况下,该模型可以提供较为准确的预测结果。

缺点是不能解决非线性关系问题,也不能考虑多个自变量之间的相互作用。

此外,在应用中也需要注意防止过度拟合或欠拟合的情况。

最后,线性回归分析在许多领域都得到了广泛应用,如经济学、统计学、金融学、自然科学等领域。

线性回归分析教案

线性回归分析教案

线性回归分析教案一、引言线性回归是一种常用的统计分析方法,用于研究两个连续型变量之间的线性关系。

在实际应用中,线性回归广泛用于经济学、社会学、医学等领域,用于预测和解释变量之间的关系。

本教案将介绍线性回归的基本原理、模型设定和参数估计方法,以帮助学生深入理解线性回归的概念和应用。

二、教学目标1.了解线性回归的基本原理和假设。

2.学习线性回归模型的设定和参数估计方法。

3.能够使用统计软件实现线性回归模型的计算。

4.掌握线性回归模型的解释和预测能力。

5.理解线性回归模型的运用场景和限制条件。

三、教学内容1.线性回归的基本原理1.1 线性关系的定义1.2 线性回归模型的基本假设1.3 线性回归模型的优点和局限性2.线性回归模型的设定2.1 简单线性回归模型及其参数估计2.2 多元线性回归模型及其参数估计2.3 线性回归模型的变量选择方法3.线性回归模型的参数估计3.1 最小二乘法估计3.2 参数估计的性质和假设检验3.3 模型评估和诊断4.线性回归模型的解释和预测4.1 理解回归系数的含义4.2 判断模型对观测数据的拟合程度4.3 利用回归模型进行预测五、教学方法1.理论讲解与示范通过讲解线性回归的基本原理和模型设定,带领学生了解线性回归模型的概念和应用。

同时,通过实例演示和统计软件的使用展示线性回归模型的计算过程。

2.实践操作与练习在课堂上,安排学生利用统计软件进行线性回归模型的实际计算,并结合具体数据集进行模型拟合和预测操作。

通过实际操作提高学生对线性回归模型的应用能力。

3.案例分析与讨论将一些实际问题、经济数据或社会调查数据与线性回归模型结合,引导学生对模型结果进行解读和讨论,提高学生对模型解释和应用的理解。

六、教学评估1.课堂小测验在课程结束前进行一次小测验,考察学生对线性回归的理解程度和应用能力。

2.作业和项目布置线性回归相关的作业和项目,要求学生独立完成线性回归模型的建立和分析,以检验学生对所学知识的掌握程度。

线性回归分析

线性回归分析
例1:李明想开一家社区超市, 前期去了很多小区做实地调查 。经调研得到小区超市的年销 售额(百万元)与小区常住人 口数(万人)的数据资料如表 所示,请对超市的年销售额与 小区常住人口数进行回归分析 ,帮助:
表:小区超市的年销售额(百万元)与小区常住人口数(万人)统计表
24
10
01-03 回归分析的应用
分析步骤:(一)
11
01-03 回归分析的应用
分析步骤:(二)
反映模型的拟合度
12
01-03 回归分析的应用
分析步骤:(三) • 一元线性回归 y=kx+b
第三组数据的第1个数据(301.665)是回归直线的截距b,第2个数据( 44.797)也叫回归系数,其实就是回归直线的斜率k。
某一类回归方程的总称回归分析的概念50102?分类1回归分析按照涉及的变量多少分为一一元回归分析多元回归分析2按照自变量和因变量之间的关系类型可分为线性回归分析非线性回归分析回归分析的概念60102?步骤回归分析的概念1
Contents 内 容
01 回归分析的起源 02 回归分析的概念 03 回归分析的应用
22
01-03 回归分析的应用
想一想 做一做:
已 知 2009 — 2015 年 淘 宝 “ 双 11 ” 当天销量统计如图所示,请利用散 点图进行回归分析,模拟淘宝“双 11 ” 的 销 量 变 化 规 律 , 并 预 测 2016年的销量。
23
01-03 回归分析的应用
两种回归分析工具使用总结: • 利用回归分析工具进行线性回归的优缺点如下: ① 优点:可以进行一元线性回归,也可以进行多元线性回归。 ② 缺点:只能进行线性回归,不能直接进行非线性回归。 • 利用散点图和趋势线进行回归分析的优缺点如下: ① 优点:不仅能进行线性回归,还能进行非线性回归。 ② 缺点:只能进行一元回归,不能进行多元回归。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回归是回归分析中最基本、最简单的一种,
回归方程
一、直线回归方程的一般表达式为
ˆ a bX Y

(12 1)
ˆ Y 为各X处Y的总体均数的估计。
回归方程的应用
一、线性回归的主要用途 1.研究因素间的依存关系 自变量和应变 量之间是否存在线性关系,即研究一个或多个 自变量对应变量的作用,或者应变量依赖自变 量变化而变化的规律。
否存在实际意义。 3.两变量间存在直线关系时,不一定
表明彼此之间就存在因果关系。
4.建立回归方程后,须对回归系数
进行假设检验。
5. 使用回归方程进行估计与预测时,
一般只适用于原来的观测范围,即自变量
的取值范围,不能随意将范围扩大。
6. 在线性回归分析时,要注意远离
群体的极端值对回归效果的影响。
表12-1 12只大白鼠的进食量(g)与体重增加量(g)测量结果
序号 (1) 1 2 3 4 5 6 7 8 9 10 11 12 合计
X 进食量(g)
(2) 305.7 188.6 277.2 364.8 285.3 244.7 255.9 149.8 268.9 247.6 168.8 200.6 2957.9 (Σ X)
目前,“回归”已成为表示变量 之间某种数量依存关系的统计学术语, 并且衍生出“回归方程”“回归系数”
等统计学概念。如研究糖尿病人血糖
与其胰岛素水平的关系,研究儿童年 龄与体重的关系等。
两相关变量的散点图
一、直线回归的概念
目的:研究应变量Y对自变量X的数量依 存关系。
特点:统计关系。 X值和Y的均数的关系,
不同于一般数学上的X 和Y的函数 关系。
为了直观地说明两相关变量的线性 依存关系,用表12-1第(2)、(3)
列中大白鼠的进食量和体重增加量
的数据在坐标纸上描点,得图12-1所
示的散点图(scatter plot)。
例12-1 用某饲料喂养12只大白鼠, 得出大白鼠的进食量与体重增加量 如表12-1,试绘制其散点图。
(4) 93452.49 35569.96 76839.84 133079.04 81396.09 59878.09 65484.81 22440.04 72307.21 61305.76 28493.44 40240.36 770487.13 2
(5) 556.96 216.09 368.64 767.29 357.21 259.21 295.84 166.41 334.89 313.29 187.69 243.36 4066.9 2
( X
)
( Y )
30 25 20 15 10 5 130
图 12-1
体重增加量(g),Y
180
230 280 进食量(g),X
330
380
12只大白鼠进食量与体重增重量散点图
在定量描述大白鼠进食量与体重增
加量数量上的依存关系时,习惯上将进
食量作为自变量(independent variable), 用X表示;体重增加量作为应变量
Y 体重增加量(g)
(3) 23.6 14.7 19.2 27.7 18.9 16.1 17.2 12.9 18.3 17.7 13.7 15.6 215.6 (Σ Y)
X
2
Y
2
XY
(6) 7214.52 2772.42 5322.24 10104.96 5392.17 3939.67 4401.48 1932.42 4920.87 4382.52 2312.56 3129.36 55825.2 (Σ XY)
(dependent variable),用Y表示。
由图12-1可见,体重增加量有随进食 但并非12个点都在直线上 ,此与两变量间
严格的直线函数关系不同,称为直线回归
(linear regression) ,其方程叫直线回归方程,以
量增加而增大的趋势,且散点呈直线趋势,
区别严格意义的直线方程。 故又称简单回归。
2.估计与预测 可用易测定的一组给定的 自变量的观测值来推算较难测定的Y值 。 3.统计控制 是利用回归方程进行逆估计, 即应变量Y给出一个确定的值或在一定范围内 波动时,通过控制自变量的取值来实现 。
二、线性回归应用的注意事项
1.在进行直线回归分析之前,应绘制 散点图。
2.作回归分析时,要注意两变量间是
线性回归分析
双变量计量资料:每个个体有两个变量值 总体:无限或有限对变量值 样本:从总体随机抽取的n对变量值
(X1,Y1), (X2,Y2), …, (Xn,Yn)
目的:研究X和Y的数量关系
方法:回归与相关
简单、基本——直线回归、直线相关
历史背景:
英国人类学家 F.Galton首次在《自然遗传》 一书中,提出并阐明了“相关”和“相关系数” 两个概念,为相关论奠定了基础。其后,他和 英国统计学家 Karl Pearson对上千个家庭的身 高、臂长、拃长(伸开大拇指与中指两端的最 大长度)做了测量,发现:
儿子身高(Y,英寸)与父亲身高(X, 英寸)存在线性关系: 。
ˆ 33.73 0.516 X Y也即高个子父代的子代在成年之后的身
高平均来说不是更高,而是稍矮于其父代水 平,而矮个子父代的子代的平均身高不是更 矮,而是稍高于其父代水平。 Galton 将这种 趋向于种族稳定的现象称之“回归”。
相关文档
最新文档