一般线性回归分析案例
线性回归案例分析

线性回归案例分析【篇一:线性回归案例分析】散布图—练习总评估价某建筑公司想了解位于某街区的住宅地产的销房产 79,760售价格y与总评估价x之 98,480间的相关程度到底有多 110,655大?于是从该街区去年 96,859售出的住宅中随机抽10 94,798的总评估价和销售资料 139,850如右表 170,34110 corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 相关分析案例justin tao 销售价格y美元 95,000 116,500 156,900 111,000 110,110 100,000 130,000 170,400 211,500 185,000 绘制散布图,观察其相关关系输入数据点击graph scatterplot 弹出对话框,依次对应x、y输入变量列点击ok 散布图及关系分析从散布图可以看出:总评估价值x与销售价格y存在线性正相关,相关程度较大;随x增大,y有增长趋corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 计算相关系数输入数据点击stat basic statistics correlation… 弹出对话框,输入x、y变量列点击ok 散布图(相关分析)案例下面是表示某公司广告费用和销售额之间关系的资试求这家公司的广告费和销售额的相关系数广告费 (10万) 销售额 (100万) 2022 15 17 23 18 25 10 20 得出相关系数及检验p值corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 0.002 0.05 (留意水准) ,广告费和销售额的相关关系是有影响的 corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 回归分析案例通过下例观察回归分析和决定系数。
回归分析实验案例数据

回归分析实验案例数据引言:回归分析是一种常用的统计方法,用于探索一个或多个自变量对一个因变量的影响程度。
在实际应用中,回归分析有很多种,例如简单线性回归、多元线性回归、逻辑回归等。
本文将介绍一个回归分析实验案例,并分析其中的数据。
案例背景:一家汽车制造公司对汽车的油耗进行研究。
他们收集了一些汽车的相关数据,并希望通过回归分析来探究这些数据之间的关系。
数据收集:为了进行回归分析,他们收集了以下数据:1. 汽车型号:不同汽车型号的标识符。
2. 汽车价格:每辆汽车的价格,单位为美元。
3. 汽车速度:以每小时英里的速度来衡量。
4. 引擎大小:汽车引擎的容量大小,以升为单位。
5. 油耗:每加仑汽油行驶的英里数。
数据分析:通过对收集的数据进行回归分析,可以得出以下结论:1. 汽车价格与汽车引擎大小之间存在正相关关系。
即引擎越大,汽车价格越高。
2. 汽车速度与油耗之间呈现负相关。
即速度越高,油耗越大。
3. 汽车引擎大小与油耗之间存在正相关关系。
即引擎越大,油耗越大。
结论:基于以上分析结果,可以得出以下结论:1. 汽车价格受到引擎大小的影响,即引擎越大,汽车价格越高。
这一结论可以帮助汽车制造公司在制定价格策略时做出合理的决策。
2. 汽车速度与油耗之间呈现负相关。
这一结论可以帮助消费者在购买汽车时考虑速度对油耗的影响,从而选择更经济的汽车。
3. 汽车引擎大小与油耗之间存在正相关关系。
这一结论可以帮助汽车制造公司在设计引擎时考虑油耗因素,从而提高汽车的燃油效率。
总结:回归分析是一种有效的统计方法,可以用于探索数据间的关系。
通过对汽车制造公司收集的数据进行回归分析,我们发现了汽车价格、速度和引擎大小与油耗之间的关系。
这些分析结果对汽车制造公司制定价格策略、消费者购车以及提高燃油效率都具有重要的指导意义。
线性回归分析经典例题

1. “团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x 亿件:精确到0.1)及其增长速度(y %)的数据(Ⅰ)试计算2012年的快递业务量;(Ⅱ)分别将2013年,2014年,…,2017年记成年的序号t :1,2,3,4,5;现已知y 与t 具有线性相关关系,试建立y 关于t 的回归直线方程a x b yˆˆˆ+=; (Ⅲ)根据(Ⅱ)问中所建立的回归直线方程,估算2019年的快递业务量附:回归直线的斜率和截距地最小二乘法估计公式分别为:∑∑==--=ni ini ii x n xy x n yx b1221ˆ, x b y aˆˆ-=2.某水果种植户对某种水果进行网上销售,为了合理定价,现将该水果按事先拟定的价格进行试销,得到如下数据:单价元 7 8 9 11 12 13 销量120118112110108104已知销量与单价之间存在线性相关关系求y 关于x 的线性回归方程; 若在表格中的6种单价中任选3种单价作进一步分析,求销量恰在区间内的单价种数的分布列和期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:, .3. (2018年全国二卷)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.4.(2014年全国二卷) 某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.93.33.64.44.85.25.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-5(2019 2卷)18.11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.。
线性回归案例

线性回归案例线性回归是统计学中一种常见的建模方法,用于研究自变量和因变量之间的关系。
在本文中,我们将通过一个实际的案例来介绍线性回归的应用和分析过程。
假设我们是一家房地产公司的数据分析师,公司希望了解房屋的售价与其面积之间的关系,以便更好地定价和销售房屋。
我们收集了一些房屋的数据,包括房屋的面积和售价,现在我们将利用线性回归模型来分析这些数据。
首先,我们需要对数据进行可视化分析,以便更直观地了解变量之间的关系。
我们可以绘制散点图来展现房屋面积与售价之间的关系,通过观察散点图,我们可以大致判断出是否存在线性关系,并初步了解数据的分布情况。
接下来,我们可以利用线性回归模型来拟合数据,建立房屋面积与售价之间的数学模型。
线性回归模型的数学表达式为,Y = β0 + β1X + ε,其中Y表示因变量(售价),X表示自变量(面积),β0和β1分别表示截距和斜率,ε表示误差。
通过拟合线性回归模型,我们可以得到最优的截距和斜率的估计值,从而建立起房屋面积与售价之间的线性关系。
同时,我们还可以利用拟合的模型对房屋售价进行预测,从而帮助公司更好地制定定价策略。
除了建立模型和进行预测,我们还需要对模型的拟合效果进行评估。
常用的评估指标包括均方误差(MSE)、决定系数(R-squared)等,这些指标可以帮助我们判断模型的拟合程度和预测精度,从而更好地理解房屋面积与售价之间的关系。
最后,我们需要对线性回归模型的结果进行解释和分析,从统计学的角度来解释房屋面积对售价的影响程度。
通过对模型结果的解释,我们可以为公司提供更深入的市场分析和房屋定价建议,从而更好地满足客户的需求。
通过以上实例,我们可以看到线性回归在实际数据分析中的应用和重要性。
通过建立数学模型、进行预测和评估,线性回归可以帮助我们更好地理解变量之间的关系,为决策提供更有力的支持。
希望本文的案例分析能够帮助读者更好地理解线性回归的应用和分析过程,为实际工作中的数据分析提供一些启发和帮助。
一般线性回归分析案例

一般线性回归分析案例
案例背景:
在本案例中,我们要研究一个公司的运营数据,并探究它们之间的关
联性。
这家公司的运营数据包括:它的营业额(单位:万元)、产品质量
指数(QI)、客户满意度(CSI)和客户数量。
我们的目标是建立营业额
与其他变量之间的关联性模型,来预测公司未来的营业额。
资料收集:
首先,我们需要收集有关营业额、QI、CSI和客户数量的数据,以进
行分析。
从历史记录上可以收集到过去六个月的数据。
数据预处理:
接下来,我们需要对数据进行预处理,可以使用Excel进行格式整理,将数据归类分组,并计算总营业额。
建立模型:
接下来,我们就可以利用SPSS软件来建立一般线性回归模型,模型
表示为:Y=β0+β1X1+β2X2+…+βnXn。
其中,Y代表营业额,X1、
X2…Xn代表QI、CSI和客户数量等因素。
模型检验:
接下,我们要对模型进行检验,确定哪些因素与营业额有关联性,检
验使用R方和显著性检验确定系数的有效性。
线性回归经典假设的分析(案例)

线性回归经典假设的分析(案例)多重共线性分析财政收入是一个国家政府部门的公共收入。
国家财政收入的规模大小往往是衡量其经济实力的重要标志。
近20年来,我国财政收入一直保持着快速增长态势,经济总体发展良好。
一个国家财政收入的规模要受到经济规模等诸多因素的影响。
因此我们以财政收入为被解释变量,建立财政收入影响因素模型,分析影响财政收入的主要因素及其影响程度。
财政收入的因素众多复杂,但是通过研究经济理论对财政收入的解释以及对实践的考察,我们选取影响财政收入的因素为工业总产值、农业总产值、建筑业总产值、社会商品零售总产值、人口总数和受灾面积。
将这六个变量作为解释变量,财政收入作为被解释变量,利用1989~2003年数据建立中国国家财政收入计量经济模型,资料如下表。
表1 影响财政收入的因素资料(资料来源:《中国统计年鉴2004》)使用上述数据建立多元线性模型,采用普通最小二乘法得到国家财政收入估计方程为:1234562(0.46)(0.44)(8.59)(0.03)(3.80)(0.65)( 1.53)6922.5880.1260.9360.0400.5720.0920.0470.998620.56Y X X X X X X R F ---=-+-+++-==由上可以看出模型的拟合优度2R 和F 值都较大,说明建立的回归方程显著。
但在显著性水平为5%下, t (15)=2.131,大多数回归参数的t 检验不显著,若据此判断大部分因素对财政收入的影响不显著。
因此可以判定解释变量之间存在严重的多重共线性。
采用逐步回归法对解释变量进行筛选。
分别将Y 与各解释变量作一元线性回归方程,以拟合优度值最大的模型为基础,将其余变量依次引入方程中。
经过我们多次比较各模型的F 值和各参数的t 值,最终确定的模型为:242(1.79)(13.42)(35.57)519.6780.8120.7230.9971943.91Y X X R F -=-+==该模型的经济意义十分明显,即财政收入主要取决于农业总产值和社会商品零售总产值,各因素数量的变化引起财政收入总量变化的程度由各自的系数来反映。
第一讲线性回归案例分析

第一讲线性回归案例分析参与本讲的嘉宾姓名单位职称、职务罗强江苏省苏州五中特级教师张饴慈首都师范大学数学科学学院教授张思明北大附中特级教师杨彬陕西省户县一中高级教师张红娟江苏省苏州五中高级教师主持人:各位老师大家好,在前面的课里面我们主要结合算法做了一些案例的展示和讨论,从今天的课里开始进入统计概率。
今天主要围绕回归分析,最小二乘法,线性回归方程这些内容展开我们的案例和讨论。
这里我们请来的两位点评嘉宾。
我身边的这位是江苏省苏州市五中的特级教师罗强老师,也是苏州五中的校领导。
一位是首都师范大学的数学系教授(张饴慈)老师,也是我们每次培训都能见到的数学专家。
首先问张老师,在回归分析里面老师会提到很多问题。
一个是必修也有,选修也有,他们两个的差别是什么?还有回归分析的核心思想是我们要教给学生什么是最重要的。
张老师:我想回归分析主要讨论的是相关关系,在统计里面这是一个非常有用的一件事情,可以说在统计之中运用最广的就是回归思想。
在我们必修和选修之间的区别,我们必修是通过孩子们初步认识,通过例子来认识什么是相关关系?它跟函数关系有什么不一样?简单介绍一下线性回归的方程,理解找一个线性回归的直线是有用,只是初步的思想。
在选修阶段就要详细讨论,这个方程是不是有意义?如果用我们的公式来做是不是任何问题都可以套公式来做?怎样判断是不是比较符合一个线性关系?是不是要引入相关系数的概念。
在选修里面还介绍一下非线性的回归,这是从内容定位来讲。
主持人:作为这样的把控,包括在推导过程中,很多老师在我们教材里面或者标准里面对于回归方程的结果,推导要求不要求?张老师:我们在必修里面没有要求推导,在选修里面可能用到配方来推导。
公式能得到这个数,其实是二次函数的极值等问题,它计算比较麻烦,不是在这个公式本身上下工夫,也不要求孩子背这些公式。
只是希望他们会运用这样一个东西来做这个问题。
主持人:张老师对回归分析的定位做了一些分析。
下面一起来看老师们提供的两个教学片段,一个是陕西省户县一中(杨彬)老师提供,最小二乘法的教学设计。
数据分析线性回归报告(3篇)

第1篇一、引言线性回归分析是统计学中一种常用的数据分析方法,主要用于研究两个或多个变量之间的线性关系。
本文以某城市房价数据为例,通过线性回归模型对房价的影响因素进行分析,以期为房地产市场的决策提供数据支持。
二、数据来源与处理1. 数据来源本文所采用的数据来源于某城市房地产交易中心,包括该城市2010年至2020年的房价、建筑面积、交通便利度、配套设施、环境质量等指标。
2. 数据处理(1)数据清洗:对原始数据进行清洗,去除缺失值、异常值等。
(2)数据转换:对部分指标进行转换,如交通便利度、配套设施、环境质量等指标采用五分制评分。
(3)变量选择:根据研究目的,选取建筑面积、交通便利度、配套设施、环境质量等指标作为自变量,房价作为因变量。
三、线性回归模型构建1. 模型假设(1)因变量与自变量之间存在线性关系;(2)自变量之间不存在多重共线性;(3)误差项服从正态分布。
2. 模型建立(1)选择合适的线性回归模型:根据研究目的和数据特点,采用多元线性回归模型。
(2)计算回归系数:使用最小二乘法计算回归系数。
(3)检验模型:对模型进行显著性检验、方差分析等。
四、结果分析1. 模型检验(1)显著性检验:F检验结果为0.000,P值小于0.05,说明模型整体显著。
(2)回归系数检验:t检验结果显示,所有自变量的回归系数均显著,符合模型假设。
2. 模型结果(1)回归系数:建筑面积、交通便利度、配套设施、环境质量的回归系数分别为0.345、0.456、0.678、0.523,说明这些因素对房价有显著的正向影响。
(2)R²:模型的R²为0.876,说明模型可以解释约87.6%的房价变异。
3. 影响因素分析(1)建筑面积:建筑面积对房价的影响最大,说明在房价构成中,建筑面积所占的比重较大。
(2)交通便利度:交通便利度对房价的影响较大,说明在购房时,消费者对交通便利性的需求较高。
(3)配套设施:配套设施对房价的影响较大,说明在购房时,消费者对生活配套设施的需求较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般线性回归分析案例
1、案例
为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。
这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。
表一血红蛋白与钙、铁、铜必需元素含量
(血红蛋白单位为g;钙、铁、铜元素单位为ug)
case y(g)ca fe cu
17.0076.90295.300.840
27.2573.99313.00 1.154
37.7566.50350.400.700
48.0055.99284.00 1.400
58.2565.49313.00 1.034
68.2550.40293.00 1.044
78.5053.76293.10 1.322
88.7560.99260.00 1.197
98.7550.00331.210.900
109.2552.34388.60 1.023
119.5052.30326.400.823
129.7549.15343.000.926
1310.0063.43384.480.869
1410.2570.16410.00 1.190
1510.5055.33446.00 1.192
1610.7572.46440.01 1.210
1711.0069.76420.06 1.361
1811.2560.34383.310.915
1911.5061.45449.01 1.380
2011.7555.10406.02 1.300
2112.0061.42395.68 1.142
2212.2587.35454.26 1.771
2312.5055.08450.06 1.012
2412.7545.02410.630.899
2513.0073.52470.12 1.652
2613.2563.43446.58 1.230
2713.5055.21451.02 1.018
2813.7554.16453.00 1.220
2914.0065.00471.12 1.218
3014.2565.00458.00 1.000 2、回归分析
表2 变量说明表
输入/移去的变量a
模型输入的
变量移去的
变量
方法
1cu, fe,
ca b
.输入
a. 因变量: y
b. 已输入所有请求的变量。
表2说明了应变量和自变量及自变量进入方程的情况
由表3可知,相关系数R为0.902,说明自变量与因变量有比较好的相关性。
R方为0.813,接近于1,说明总体回归效果较好。
++++
表4 回归方差分析表(1)
Anova a
模型平方和df均方F Sig.
1回归
111.58
7
337.19637.743.000b 残差25.62326.986
总计
137.21
29
a. 因变量: y
b. 预测变量: (常量), cu, fe, ca。
表4是用方差分析对整个回归方程做了显著性检验,其中F=37.743,对应的概率P值近似为0。
若显著性水平ᵅ为0.05,则因概率小于ᵅ,拒绝回归方程显著性检验的原假设,即回归系数不同时为0,解释变量全体与被解释变量存在显著的线性关系,选择线性模型具有合理性。
表5 回归系数及显著性检验表(1)
表5用方差分析对每个因变量做了偏回归分析,是关于回归系数及显著性检验的计算结果如下:
在表中,常数项的t的显著性概率0.364大于0.05,表示常数项与0没有显著性差异,它不应出现在方程中。
钙含量的t的显著性概率0.026小于0.05,表示钙含量的系数与0有显著性差异,钙含量应作为解释变量存在于方程中。
铁含量的t的显著性概率0.000小于0.05,表示钙含量的系数与0有显著性差异,钙含量应作为解释变量存在于方程中。
铜含量的t的显著性概率0.305大于0.05,表示铜含量的系数与0有显著性差异,铜含量应作为解释变量存在于方程中。
由此可见,钙含量和铁含量可以作为解释变量在方程中来解释血红蛋白含
量的变化,而铜含量则应该被剔除。
将铜含量从解释变量中剔除再次做回归分析,的到如下分析结果:
自变量减少了一个“铜”含量后,R方由0.813变为0.805,由此可见,去掉铜元素含量后,线性回归方程中的自变量对因变量的影响变化不大;
表7 回归方差分析表(2)
由表7看出,F值由原来的37.743上升为55.865,F值越大越好,表明整体回归效果更好。
表8 回归系数及显著性检验表(2)
B
标准
误差
试用版零阶偏部分容
1(常
量)
1.528 1.474 1.037.309
fe.030.003.91510.570.000.879.897.897 ca-.041.020-.184-2.124.043-.006-.378-.180
a. 因变量: y(g)
表7 多重共线性检验的特征值及条件指数
共线性诊断a
模型维数特征值条件索
引
方差比例(常量)fe ca
11 2.969 1.000.00.00.00
2.02112.016.01.72.47
3.01017.185.99.28.53
a. 因变量: y(g)
表6中,最大特征值为2.969,其余依次快速减小。
第三列各个条件指数均不大,可认为多重共线性较弱。
图1:
图1是残差正态性的图形结果,可以看到参数围绕基准线仍存在一定规律性。
图2 回归方程标准化预测值与标准化残差散点图
图2表明,不存在明显的异方差现象。
最终的回归方程为:
Z=-0.184X+0.915Y
其中,Z表示儿童梅100毫升血中的血红蛋白的含量,单位为g;
X表示儿童每100毫升血中钙元素的含量,单位为ug;
Y表示儿童每100毫升血中铁元素的含量,单位为ug。
方程表明,铁元素含量与血红蛋白含量存在正相关,而钙元素含量与血红蛋白含量存在负相关性,由此,当人体内血红蛋白浓度偏低时,就需要补充铁元素,减少钙元素的摄入量,铜元素则没有显著性影响。