2014年高考文科数学(上海)模拟试卷

合集下载

2014年全国高考上海市数学(文)试卷及答案【精校版】

2014年全国高考上海市数学(文)试卷及答案【精校版】

2014年上海市高考数学试卷(文科)解析一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z+z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6.若实数x,y 满足xy=1,则2x +22y 的最小值为______________.7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 .10.设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .11.若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .12.方程sin 1x x +=在区间[0,2]π上的所有解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C:x =l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b += ( ) (A )2 (B )1 (C )0 (D )1-17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 三.解答题(本大题共5题,满分74分) 19、(本题满分12分)底面边长为2的正三棱锥P ABC -, zxxk 其表面展开图是三角形321p p p ,如图,求△321p p p 的各边长及此三棱锥的体积V.20.(本题满分14分)本题有2个小题, 第一小题满分6分,第二小题满分1分。

2014年上海高考文科数学试题及参考答案

2014年上海高考文科数学试题及参考答案

2014年普通高等学校招生统一考试上海市一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数212cos (2)y x =-的最小正周期是 . 2.若复数12z i =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅= ⎪⎝⎭. 3.设常数a R ∈,函数2()1f x x x a =-+-.若(2)1f =,则(1)f = .4.若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 .5.某校高一、高二、高三分别有学生1600名、1200名、800名.为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样.若高三抽取20名学生,则高一、高二共需抽取的学生数为 .6.若实数,x y 满足1xy =,则222x y +的最小值为 .7.若圆锥的侧面积是底面积的3倍,则其母线与轴所成的角的大小为 (结果用反三角函数值表示).8.在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小长方体的体积之和等于 .9.设,0,()1,0.x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围为 .10.设无穷等比数列{}n a 的公比为q ,若)(431lim n n a a aa +++=∞→ ,则q = .11.若2132()f x x x-=-,则满足()0f x <的x 的取值范围是 .12.方程sin 3cos 1x x +=在区间[0,2]π上的所有的解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示).14.已知曲线24:y x C --=,直线:6l x =.若对于点(,0)A m ,存在C 上的点P 和l上的Q 使得0=+AQ AP ,则m 的取值范围为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.设,a b ∈R ,则“4a b +>”是“2a >且2b >”的( )(A) 充分非必要条件 (B) 必要非充分条件 (C) 充分必要条件(D) 既非充分又非必要条件16.已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +=( )(A) 2(B) 1 (C) 0 (D) 1-17.如图,四个边长为1的小正方体排成一个大正方形,AB 是 大正方形的一条边,)7,,2,1( =i P i 是小正方形的其余顶点, 则)7,,2,1( =⋅i AP AB i 的不同值的个数为( )(A) 7 (B) 5 (C) 3 (D) 118.已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A) 无论12,,k P P 如何,总是无解 (B) 无论12,,k P P 如何,总有唯一解 (C) 存在12,,k P P ,使之恰有两解(D) 存在12,,k P P ,使之有无穷多解三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求123PP P ∆的各边长及此三棱锥的体积V .20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0≥a ,函数aax f x x -+=22)(.(1)若4a =,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米.设点A B 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差.现在实测得38.1218.45αβ==,,求CD 的长(结果精确到0.01米).22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在平面直角坐标系xOy 中,对于直线:0l ax by c ++=和点111222(,),(,)P x y P x y ,记1122()()ax by c ax by c η=++++.若0η<,则称点12,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点12,P P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线. (1)求证;点(1,2),(1,0)A B -被直线10x y +-=分隔;(2)若直线y kx =是曲线2241x y -=的分隔线,求实数k 的取值范围;(3)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E .求E 的方程,并证明y 轴为曲线E 的分隔线.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1133n n n a a a +≤≤,*n N ∈,11a =.(1)若1342,,9a a x a ===,求x 的取值范围; (2)设{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比;(3)若10021,,,a a a 成等差数列,求数列10021,,,a a a 的公差的取值范围.参考答案一、填空题(本大题共有14题,满分56分) 1.2π2.6 3.3 4.2x =- 5.70 6.22 7.1arcsin 3 8.24 9.(],2-∞ 10.512- 11.(0,1) 12.73π 13.11514.[2,3]二、选择题(本大题共有4题,满分20分)15.B 16.D 17.C 18.B三、解答题(本大题共有5题,满分74分) 19.(本题满分12分)解:在123PP P ∆中,13PA P A =,23PC PC =,所以AC 是中位线,故1224PP AC ==. 同理,234P P =,314P P =.所以123PP P ∆是等边三角形,各边长均为4. 设Q 是ABC ∆的中心,则PQ ⊥平面ABC ,所以233AQ =,22263PQ AP AQ =-=. 从而,12233ABC V S PQ ∆=⋅=.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.解:(1)因为2424x x y +=-,所以()4121x y y +=-,得1y <-或1y >,且()241log 1y x y +=-.因此,所求反函数为()1241()log 1x f x x -+=-,()(),11,x ∈-∞-+∞.(2)当0a =时,()1f x =,定义域为R ,故函数()y f x =是偶函数;当1a =时,21()21x x f x +=-,定义域为()(),00,-∞+∞,2121()()2121x x x x f x f x --++-==-=---,故函数()y f x =为奇函数;当0a >且1a ≠时,定义域为()()22,log log ,a a -∞+∞关于原点不对称,故函数()y f x =既不是奇函数,也不是偶函数.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 解:(1)记CD h =.根据已知得tan tan 20αβ≥>,tan 35h α=,tan 80hβ=, 所以2280035180hh h ⨯≥>⎛⎫- ⎪⎝⎭,解得20228.28h ≤≈.因此,CD 的长至多约为28.28米. (2)在ABD ∆中,由已知,56.57αβ+=,115AB =, 由正弦定理得()sin sin BD ABααβ=+ ,解得85.064BD ≈. 在BCD ∆中,有余弦定理得2222cos CD BC BD BC BD β=+-⋅⋅, 解得26.93CD ≈. 所以,CD 的长约为26.93米.22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.(1)证:因为40η=-<,所以点,A B 被直线10x y +-=分隔.(2)解:直线y kx =与曲线2241x y -=有公共点的充要条件是方程组2241x y y kx⎧-=⎨=⎩有解,即12k <. 因为直线y kx =是曲线2241x y -=的分隔线,故它们没有公共点,即12k ≥. 当12k <时,对于直线y kx =,曲线2241x y -=上的点()1,0-和()1,0满足20k η=-<, 即点()1,0-和()1,0被y kx =分隔.故实数k 的取值范围是11(,][,)22-∞-+∞.(3)证:设M 的坐标为(,)x y ,则曲线E 的方程为22(2)1x y x +-⋅=,即22[(2)]1x y x +-⋅=.对任意的0y ,()00,y 不是上述方程的解,即y 轴与曲线E 没有公共点.又曲线E 上的点()1,2-和()1,2对于y 轴满足0η<,即点()1,2-和()1,2被y 轴分隔. 所以y 轴为曲线E 的分隔线.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.解:(1)由条件得263x ≤≤且933xx ≤≤,解得36x ≤≤.所以x 的取值范围是[3,6]x ∈. (2)设{}n a 的公比为q .由133n n a a ≤,且110n n a a q -=≠,得0n a >.因为1133n n n a a a +≤≤,所以133q ≤≤.从而111111()10003m m m a q q ---==≥,131000m -≥,解得8m ≥.8m =时,711[,3]10003q =∈.所以,m 的最小值为8,8m =时,{}n a 的公比为741010. (3)设数列10021,,,a a a 的公差为d .由133n n na a d a ≤+≤,223n n a d a -≤≤,99,,2,1 =n . ① 当0d >时,129899a a a a >>>> ,所以102d a <≤,即02d <≤. ② 当0d =时,129899a a a a ==== ,符合条件. ③ 当0d <时,129899a a a a <<<< ,所以9999223a d a -≤≤,2(198)2(198)3d d d -+≤≤+, 又0d <,所以20199d -≤<. 综上,10021,,,a a a 的公差的取值范围为2[,2]199-.。

上海市2014届高三高考数学系列模拟卷(10)--含答案

上海市2014届高三高考数学系列模拟卷(10)--含答案

上海市2013—2014学年度高考数学模拟试卷一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数)2(log 1)(2-=x x f 的定义域为2.复数z 满足iiz 1=i +1,则i z 31-+= 3.底面边长为2m ,高为1m 的正三棱锥的全面积为 m 24.某工厂生产10个产品,其中有2个次品,从中任取3个产品进行检测,则3个产品中至多有1个次品的概率为5.若非零向量,a b 满足32a b a b ==+,则,a b 夹角的余弦值为_______6.已知圆O :522=+y x ,直线l :)20(1sin cos πθθθ<<=+y x ,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =7.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为8.已知{}n a 为等比数列,其前n 项和为n S ,且2n n S a =+*()n ∈N ,则数列{}n a 的通项公式为9.设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值范围为_____________10.已知F 是抛物线42y x =的焦点,B A ,是抛物线上两点,线段AB 的中点为)2,2(M ,则ABF ∆的面积为 11.如图,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树 米时,看A 、B 的视角最大 12.将函数()2sin()3f x x πω=-(0ω>)的图象向左平移3πω个单位,得到函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,则ω的最大值为13.如图,矩形n n n n D C B A 的一边n n B A 在x 轴上,另外两个顶点nn D C 第11题图在函数)0(1)(>+=x xx x f 的图象上.若点n B 的坐标),2)(0,(+∈≥N n n n ,记矩形n n n n D C B A 的周长为n a ,数列{}n a 的前m ()+∈Nm 项和为m S,则2limnmn a S +∞→=14.已知定义域为R 的偶函数)(x f ,对于任意R x ∈,满足)2()2(x f x f -=+。

数学_2014年上海市某校高考数学二模试卷(六)(文科)_(含答案)

数学_2014年上海市某校高考数学二模试卷(六)(文科)_(含答案)

2014年上海市某校高考数学二模试卷(六)(文科)一、填空题(共14小题,每小题0分,满分39分) 1. 方程组{x −2y −5=03x +y =8的增广矩阵为________.2. 已知集合M ={x|x 2<4, x ∈R},N ={x|log 2x >0},则集合M ∩N =________.3. 若Z 1=a +2i ,Z 2=|12i23|,且z 1z 2为实数,则实数a 的值为________.4. 用二分法研究方程x 3+3x −1=0的近似解x =x 0,借助计算器经过若干次运算得下表:05. 已知e →1、e →2是夹角为π2的两个单位向量,向量a →=e →1−2e →2,b →=ke →1+e →2,若a → // b →,则实数k 的值为________.6. 某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间[96, 106],样本中净重在区间[96, 100)的产品个数是24,则样本中净重在区间[100, 104)的产品个数是________.7. 一个圆锥的底面积为4π,且该圆锥的母线与底面所成的角为π3,则该圆锥的侧面积为________.8. 公差为d ,各项均为正整数的等差数列{a n }中,若a 1=1,a n =65,则n +d 的最小值等于________.9. 设双曲线x 2−y 2=6的左右顶点分别为A 1、A 2,P 为双曲线右支上一点,且位于第一象限,直线PA 1、PA 2的斜率分别为k 1、k 2,则k 1⋅k 2的值为________.10. 设△ABC 的三个内角A ,B ,C 所对的边长依次为a ,b ,c ,若△ABC 的面积为S ,且S =a 2−(b −c)2,则sinA 1−cosA=________.11. 袋中装有7个大小相同的小球,每个小球上标记一个正整数号码,号码各不相同,且成等差数列,这7个号码的和为49,现从袋中任取两个小球,则这两个小球上的号码均小于7的概率为________.12. 设f(x)=ax 2+bx ,且1≤f(−1)≤2,2≤f(1)≤4,则f(2)的最大值为________. 13. 已知△ABC 的重心为O ,AC =6,BC =7,AB =8,则AO →⋅BC →=________.14. 设f(x)是定义在R 上的函数,若f(0)=18,且对任意的x ∈R ,满足f(x +2)−f(x)≤3x ,f(x +4)−f(x +2)≥9×3x ,则f(8)=________.二、选择题(共4小题,每小题3分,满分12分) 15. 二项式(x −1x )6展开式中x 4的系数为( )A 15B −15C 6D −616. 在△ABC 中,“AB →⋅AC →<0”是“△ABC 是钝角三角形”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 17. 设函数f(x)=|sinx|+cos2x,x ∈[−π2,π2],则函数f(x)的最小值是( ) A −1 B 0 C 12D 9818. 给出下列四个命题:①如果复数z 满足|z +i|+|z −i|=2,则复数z 在复平面的对应点的轨迹是椭圆.②若对任意的n ∈N ∗,(a n+1−a n −1)(a n+1−2a n )=0恒成立,则数列{a n }是等差数列或等比数列.③设f(x)是定义在R 上的函数,且对任意的x ∈R ,|f(x)|=|f(−x)|恒成立,则f(x)是R 上的奇函数或偶函数. ④已知曲线C :√x 29−√y 216=1和两定点E(−5, 0)、F(5, 0),若P(x, y)是C 上的动点,则||PE|−|PF||<6.上述命题中错误的个数是( ) A 1 B 2 C 3 D 4三、解答题(共5小题,满分74分) 19.如图,在直三棱柱ABC −A 1B 1C 1中,∠BAC =π2,AB =AC =2,AA 1=6,点E 、F 分别在棱AA 1、CC 1上,且AE =C 1F =2.(1)求三棱锥A 1−B 1C 1F 的体积;(2)求异面直线BE 与A 1F 所成的角的大小.20. 如图,在半径为20cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上.(1)请你在下列两个小题中选择一题作答即可:①设∠BOC=θ,矩形ABCD的面积为S=g(θ),求g(θ)的表达式,并写出θ的范围.②设BC=x(cm),矩形ABCD的面积为S=f(x),求f(x)的表达式,并写出x的范围.(2)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积.21. 已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过M(2,1),N(2√2,0)两点.(1)求椭圆E的方程;(2)若平行于OM的直线l在y轴上的截距为b(b<0),直线l交椭圆E于两个不同点A、B,直线MA与MB的斜率分别为k1、k2,求证:k1+k2=0.22. 已知函数f(x)=x|x−a|−1,x∈R.4(1)当a=1时,指出f(x)的单调递减区间和奇偶性(不需说明理由);(2)当a=1时,求函数y=f(2x)的零点;(3)若对任何x∈[0, 1]不等式f(x)<0恒成立,求实数a的取值范围.23. 过坐标原点O作倾斜角为60∘的直线交抛物线Γ:y2=x于P1点,过P1点作倾斜角为120∘的直线交x轴于Q1点,交Γ于P2点;过P2点作倾斜角为60∘的直线交x轴于Q2点,交Γ于P3点;过P3点作倾斜角为120∘的直线,交x轴于Q3点,交Γ于P4点;如此下去….又设线段OQ1,Q1Q2,Q2Q3,…,Q n−1Q n,…的长分别为a1,a2,a3,…,a n,…,数列{a n}的前n项的和为S n.(1)求a1,a2;(2)求a n,S n;(3)设b n=a a n(a>0且a≠1),数列{b n}的前n项和为T n,若正整数p,q,r,s成等差数列,且p<q<r<s,试比较T p⋅T s与T q⋅T r的大小.2014年上海市某校高考数学二模试卷(六)(文科)答案]1. [1−253182. {x|1<x<2}3. −324. 5.35. −126. 447. 8π8. 179. 1 10. 4 11. 1712. 14 13. −283 14.6561815. D 16. A 17. B 18. B19. 解:(1)在直三棱柱ABC −A 1B 1C 1中,FC 1⊥平面A 1B 1C 1, 故FC 1=2是三棱锥A 1−B 1C 1F 的高.而直角三角形的S △A 1B 1C 1=12A 1B 1×A 1C 1=12×2×2=2.∴ 三棱锥A 1−B 1C 1F 的体积=V F−A 1B 1C 1 =13S △A 1B 1C 1×FC 1 =13×2×2=43. (2)连接EC ,∵ A 1E // FC ,A 1E =FC =4, ∴ 四边形A 1ECF 是平行四边形, ∴ A 1C // EC ,∴ ∠BEC 是异面直线A 1F 与BE 所成的角或其补角.∵ AE ⊥AB ,AE ⊥AC ,AC ⊥AB ,AE =AB =AC =2, ∴ EC =EB =BC =2√2. ∴ △BCE 是等边三角形.∴ ∠BEC =60∘,即为异面直线BE 与A 1F 所成的角.20. 解:如图所示,(1)①连接OC ,设∠BOC =θ,矩形ABCD 的 面积为S ,则BC =20sinθ,OB =20cosθ(其中0<θ<π2);∴ S =AB ⋅BC =2OB ⋅BC =400sin2θ,且当sin2θ=1,即θ=π4时,S 取最大值为400,此时BC =10√2;所以,取BC =10√2时,矩形ABCD 的面积最大,最大值为400cm 2.②连接OC ,设BC =x ,矩形ABCD 的面积为S ;则AB =2√400−x 2(其中0<x <30), ∴ S =2x√400−x 2=2√x 2(400−x 2)≤x 2+(400−x 2)=400,当且仅当x 2=400−x 2,即x =10√2时,S 取最大值400;所以,取BC =10√2cm 时,矩形ABCD 的面积最大,最大值为400cm 2.(2)由(1)知,取∠BOC =π4时,得到C 点,从而截得的矩形ABCD ,此时截得的矩形ABCD 的面积最大,最大值为400cm 2. 21. 解:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0, n >0, m ≠n) 将M(2,1),N(2√2,0)代入椭圆E 的方程,得{4m +n =18m =1解得m =18,n =12,所以椭圆E 的方程为x 28+y 22=1.(2)∵ 直线l 平行于OM ,且在y 轴上的截距为b ,又k OM =12, ∴ 直线l 的方程为y =12x +b .由{y =12x +bx 28+y 22=1得x 2+2bx +2b 2−4=0,设A(x 1, y 1)、B(x 2, y 2),则x 1+x 2=−2b ,x 1x 2=2b 2−4. 又k 1=y 1−1x 1−2,k 2=y 2−1x 2−2,故k 1+k 2=y 1−1x 1−2+y 2−1x 2−2=(y 1−1)(x 2−2)+(y 2−1)(x 1−2)(x 1−2)(x 2−2).又y 1=12x 1+b ,y 2=12x 2+b ,所以上式分子=(12x 1+b −1)(x 2−2)+(12x 2+b −1)(x 1−2)=x 1x 2+(b −2)(x 1+x 2)−4(b −1)=2b 2−4+(b −2)(−2b)−4(b −1)=0 故k 1+k 2=0.22. 解:(1)当a=1时,函数的单调递减区间为[12,1]…函数f(x)既不是奇函数也不是偶函数.…(2)当a=1时,f(x)=x|x−1|−14,由f(2x)=0得2x|2x−1|−14=0…即{2x≥1(2x)2−2x−14=0或{2x<1(2x)2−2x+14=0…解得2x=1+√22或2x=1−√22(舍),或2x=12所以x=log21+√22=log2(1+√2)−1或x=−1.…(3)当x=0时,a取任意实数,不等式f(x)<0恒成立,故只需考虑x∈(0, 1],此时原不等式变为|x−a|<14x即x−14x <a<x+14x…故(x−14x )max<a<(x+14x)min,x∈(0,1]又函数g(x)=x−14x 在(0, 1]上单调递增,∴ (x−14x)max=g(1)=34…函数ℎ(x)=x+14x 在(0,12]上单调递减,在[12,1]上单调递增,∴ (x+14x )min=ℎ(12)=1;所以34<a<1,即实数a的取值范围是(34,1).…23. 解:(1)如图,由△OQ1P1是边长为a1的等边三角形,得点P1的坐标为(a12,√3a12),又∵ P1(a12,√3a12)在抛物线y2=x上,∴ 3a124=a12,得a1=23…同理根据P2(23+a22,−√3a22)在抛物线y2=x上,可得a2=43…(2)如图,因为点Q n−1的坐标为(a 1+a 2+a 3+...+a n−1, 0),即点(S n−1, 0)(点Q 0与原点重合,S 0=0), 所以直线Q n−1P n 的方程为y =√3(x −S n−1)或y =−√3(x −S n−1),因此,点P n 的坐标满足{y 2=x|y|=√3(x −S n−1)消去x 得√3y 2−|y|−√3S n−1=0,所以|y|=√1+12S n−12√3…又|y|=a n ⋅sin60∘=√32a n,故3a n =1+√1+12S n−1从而3a n 2−2a n =4S n−1…①由①有3a n+12−2a n+1=4S n …②②-①得3(a n+12−a n 2)−2(a n+1−a n )=4a n即(a n+1+a n )(3a n+1−3a n −2)=0,又a n >0,于是a n+1−a n =23 所以{a n }是以23为首项、23为公差的等差数列,a n =a 1+(n −1)d =23n由此可得:S n =(a 1+a n )n2=13n(n +1)…(3)∵b n+1b n=a2(n+1)3a 2n 3=a 23,∴ 数列{b n }是正项等比数列,且公比q 0=a 23≠1,首项b 1=a 23=q 0,∵ 正整数p ,q ,r ,s 成等差数列,且p <q <r <s ,设其公差为d ,则d 为正整数, ∴ q =p +d ,r =p +2d ,s =p +3d 则T p =b 1(1−q 0p)1−q 0,T q =b 1(1−q 0p+d)1−q 0,T r =b 1(1−q 0p+2d)1−q 0,T s =b 1(1−q 0p+3d)1−q 0…T p ⋅T s −T q ⋅T r =b 12(1−q0)2⋅[(1−q 0p)(1−q 0p+3d)−(1−q 0p+d)(1−q 0p+2d )]=b 12(1−q0)2⋅[(q 0p+d+q 0p+2d)−(q 0p+q 0p+3d)]…而(q 0p+d +q 0p+2d )−(q 0p +q 0p+3d )=q 0p (q 0d −1)−q 0p+2d (q 0d −1)=(q 0d −1)(q 0p −q 0p+2d )=(q 0d −1)q 0p (1−q 02d )=−q 0p (q 0d −1)(q 02d−1)… 由于a >0且a ≠1,可得q 0=a 23>0且q 0≠1,又∵ d 为正整数,∴ (q 0d −1)与(q 02d −1)同号,因此,−q 0p (q 0d −1)(q 02d−1)<0,可得T p ⋅T s <T q ⋅T r .综上所述,可得若正整数p ,q ,r ,s 成等差数列,且p <q <r <s ,必定有T p ⋅T s <T q ⋅T r .…。

数学_2014年上海市某校高考数学模拟试卷(文科)_(含答案)

数学_2014年上海市某校高考数学模拟试卷(文科)_(含答案)

2014年上海市某校高考数学模拟试卷(文科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 不等式1≤2x ≤8的解是________. 2. 计算limn→∞2+3+⋯+n n(n+2)=________.3. 已知在等差数列{a n }中,a 3=3,a 4=5,则a 13=________.4. 已知复数z =√2+i(i 为虚数单位),则z ⋅z ¯=________. 5. 已知两条直线l 1:ax −2y −3=0,l 2:4x +6y −1=0.若l 1的一个法向量恰为l 2的一个方向向量,则a =________.6. 函数y =cos 2x +√3sinxcosx 的最小值为________.7. 二项式(3√x 3+1x )4的展开式的各项系数的和为p ,所有二项式系数的和为q ,则p:q 的值为________.8. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则这个棱柱的表面积为________.9. 在5张卡片上分别写上数字1,2,3,4,5,然后把它们混合,再任意排成一行,组成5位数,则得到能被5整除的5位数的概率为________.10. 已知实数x ,y 满足{x ≤3x +y −3≥0x −y +1≥0,则x 2+y 2的最小值是________.11. 设P 为双曲线x 23−y 2=1虚轴的一个端点,Q 为双曲线上的一个动点,则|PQ|的最小值为________.12. 已知曲线C:x 2+y 2=9(x ≥0, y ≥0)与直线x +y =4相交于点A(x 1, y 1),B(x 2, y 2),则x 1y 2+x 2y 1的值为________.13. 已知正方形ABCD 的边长为1,记以A 为起点,其余顶点为终点的向量分别为a 1→,a 2→,a 3→.若i ,j∈{1, 2, 3}且i ≠j ,则(a →i+a →j )⋅CD →的所有可能取值为________.14. 定义一个对应法则f:P /(m,n)→P(√m,√n),(m ≥0,n ≥0).现有点A′(1, 3)与点B′(3, 1),点M′是线段A′B′上一动点,按定义的对应法则f:M′→M .当点M′在线段A′B′上从点A′开始运动到点B′结束时,点M′的对应点M 所经过的路线长度为________.二.选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 已知向量a →,b →都是非零向量,“a →⋅b →=|a →|⋅|b →|”是“a → // b →”的( )A 必要非充分条件B 充分非必要条件C 充要条件D 既非充分也非必要条件 16. 函数f(x)=52sin(π2x)−log 2x 的零点个数为( )A 1B 2C 3D 417. 对于任意两个正整数m ,n ,定义某种运算“※”,法则如下:当m ,n 都是正奇数时,m※n =m +n ;当m ,n 不全为正奇数时,m※n =mn .则在此定义下,集合M ={(a, b)|a※b =16, a ∈N ∗, b ∈N ∗}中的元素个数是( ) A 7 B 11 C 13 D 14 18. 方程x|x|16+y|y|9=−1的曲线即为函数y =f(x)的图象,对于函数y =f(x),有如下结论:①f(x)在R 上单调递减;②函数F(x)=4f(x)+3x 不存在零点; ③函数y =f(x)的值域是R ;④若函数g(x)和f(x)的图象关于原点对称,则函数y =g(x)的图象就是方程y|y|16+x|x|9=1确定的曲线.其中所有正确的命题序号是( )A ①②B ②③C ①③④D ①②③三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19. 已知向量a →=(12, 12sinx +√32cosx)和向量b →=(1, f(x)),且a → // b →.(1)求函数f(x)的最小正周期和最大值;(2)已知△ABC 的三个内角分别为A ,B ,C ,若有f(A −π3)=√3,BC =√7,sinB =√217,求AC 的长度.20. 如图,在四棱锥P −ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2AB =2,E 是PB 的中点.(1)求三棱锥P −ABC 的体积;(2)求异面直线EC 和AD 所成的角(结果用反三角函数值表示).21. 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx −120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由. 22. 已知椭圆x 24+y 22=1的两焦点分别为F 1,F 2,P 是椭圆在第一象限内的一点,并满足PF 1→⋅PF 2→=1,过P 作倾斜角互补的两条直线PA ,PB 分别交椭圆于A ,B 两点. (1)求P 点坐标;(2)当直线PA 经过点(1, √2)时,求直线AB 的方程; (3)求证直线AB 的斜率为定值.23. 已知数列{a n }的前n 项和为S n ,且对于任意的n ∈N ∗,恒有S n =2a n −n ,设b n =log 2(a n +1).(1)求证数列{a n +1}是等比数列;(2)求数列{a n },{b n }的通项公式a n 和b n ; (3)设c n =2b n ⋅,①判定数列{c n }的单调性,并求数列{c n }的最大值. ②求lim n →∞(c 1+c 2+...+c n ).2014年上海市某校高考数学模拟试卷(文科)答案1. [0, 3]2. 12 3. 23 4. 13 5. 3 6. −127. 16 8. 72+18√3 9. 15 10. 9211.√15212. 913. −1,−2 14. π3 15. B 16. C 17. C 18. D19. 解:(1)∵ a → // b →,∴ 12f(x)−(12sinx +√32cosx)=0,化为f(x)=sinx +√3cosx =2sin(x +π3).∴ 函数f(x)的周期为2π,最大值为2. (2)∵ f(A −π3)=√3得2sinA =√3,即sinA =√32, 由正弦定理得BC sinA =AC sinB,又BC =√7,sinB =√217,则AC =BCsinB sinA=2.20. 解:(1)∵ PA ⊥平面ABCD ,底面ABCD 是矩形, 高PA =2,BC =AD =2,AB =1, ∴ S △ABC =12×2×1=1.故V P−ABC =13×S ABC ×PA =13×1×2=23.(2)∵ BC // AD ,∴ ∠ECB 或其补角为异面直线EC 和AD 所成的角θ, 又∵ PA ⊥平面ABCD , ∴ PA ⊥BC ,又BC ⊥AB ,∴ BC ⊥平面PAB ,∴ BC ⊥PB ,于是在Rt △CEB 中,BC =2,BE =12PB =√52, tanθ=BE BC=√54, ∴ 异面直线EC 和AD 所成的角是arctan √54. 21. 在 y =kx −120(1+k 2)x 2(k >0)中,令y =0,得 kx −120(1+k 2)x 2=0.由实际意义和题设条件知x >0,k >0. ∴ x =20k1+k 2=201k+k≤202=10,当且仅当k =1时取等号.∴ 炮的最大射程是10千米.∵ a >0,∴ 炮弹可以击中目标等价于存在 k >0,使ka −120(1+k 2)a 2=3.2成立,即关于k的方程a2k2−20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2−4a2(a2+64)≥0得a≤6.此时,k=20a±√△2a>0.∴ 当a不超过6千米时,炮弹可以击中目标.22. 解:(1)由椭圆x24+y22=1可得c=√2,∴ 两焦点分别为F1(−√2,0),F2(√2,0).设P((x, y),由题意可得{x24+y22=1(−√2−x,−y)⋅(√2−x,−y)=1x>0,y>0,解得{x=√2y=1,∴ P(√2,1).(2)∵ k PA=√2√2−1=−1,两条直线PA,PB倾斜角互补,∴ k PA+k PB=0,解得k PB=1.因此直线PA,PB,的方程分别为y−1=−(x−√2),y−1=x−√2,化为x+y−√2−1=0,x−y−√2+1=0.联立{x+y−√2−1=0x2+2y2=4,解得{x=√2y=1(舍去),{x=√2+43y=2√2−13,即A(√2+43,2√2−13).同理解得B(√2−43,−1+2√23).∴ k AB=−1+2√23−2√2−13√2−43−√2+43=√22,∴ 直线AB的方程为y−2√2−13=√22(x−√2+43),化为3√2x−6y−4=0.(3)S设A(x1, y1),B(x2, y2).设直线PA的方程为:y−1=k(x−√2),则直线PB的方程为y−1=−k(x−√2).联立{y−1=k(x−√2)x2+2y2=4,解得A(2√2k2−4k−√21+2k2,−2k2−2√2k+11+2k2).同理B(2√2k 2+4k−√21+2k2,−2k2+2√2k+11+2k2),∴ k AB=y2−y1x2−x1=4√2k8k=√22.即直线AB的斜率为定值√22.23. (1)证明:由S n=2a n−n,当n=1时,S1=2a1−1,得a1=1.∵ S n=2a n−n,∴ 当n≥2时,S n−1=2a n−1−(n−1),两式相减得:a n=2a n−2a n−1−1,∴ a n=2a n−1+1.∴ a n+1=2(a n−1+1),∴ {a n+1}是以a1+1=2为首项,2为公比的等比数列;(2)解:由(1)得a n+1=2n,∴ a n =2n −1,n ∈N ∗.∴ b n =log 2(a n +1)=log 22n =n ; (3)解:∵ c n =2b n ⋅,∴ c n+1=2b n+1a n+1a n+2,①∵c n+1c n=2b n+1a n+1a n+12b n a n a n+1=a nan+1⋅2b n+1−b n=2n −12n+1−1⋅2=1−12n+1−1<1,∴ 数列{c n }单调递减.当n =1时数列{c n }的最大值为c 1=21×3=23.②由c n =2n(2n −1)(2n+1−1)=12n −1−12n+1−1,∴ c 1+c 2+...+c n =(1−13)+(13−17)+⋯+(12n −1−12n+1−1)=1−12n+1−1.∴lim n →∞(c 1+c 2+...+c n )=limn →∞(1−12n+1−1)=1.。

2014年上海市闵行区高考数学一模试卷(文科)含详解

2014年上海市闵行区高考数学一模试卷(文科)含详解

2014年上海市闵行区高考数学一模试卷(文科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)若复数Z=(i为虚数单位),则其共轭复数在复数平面上对应的点位于象限.2.(4分)已知函数f(x)=,则f﹣1(4).3.(4分)如果一个圆锥的高不变,要使它的体积扩大为原来的9倍,那么他的底面半径应该扩大为原来的倍.4.(4分)二项式(x+y)5的展开式中,含x3y2的项的系数是.(用数字作答)5.(4分)函数y=sin2x+2sin2x最小正周期T为.6.(4分)已知双曲线k2x2﹣y2=1(k>0)的一条渐近线的法向量是(1,2),那么k=.7.(4分)(如图)已知△ABC中,∠ABC=30°,AB=2,AD是BC边上的高,则•=.8.(4分)已知f(x)是定义在R上的偶函数,当x≤0时,f(x)=x2+2x,那么不等式f(x+1)<3的解集是.9.(4分)在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设S n为前n个圆的面积之和,则s n=.10.(4分)掷两颗骰子得两数,则事件“两数之和大于4”的概率为.11.(4分)函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,那么ω等于.12.(4分)设、分别表示平面直角坐标系x、y轴上的单位向量,且|﹣|+|﹣2|=,则|+2|的取值范围是.13.(4分)(文)已知函数f(x)=||x﹣1|﹣1|,若关于x的方程f(x)=t(t∈R)恰有四个互不相等的实数根x1、x2、x3、x4(x1<x2<x3<x4),则x1+x2+x3•x4的取值范围是.14.(4分)已知函数.则f(x)的最大值与最小值的乘积为.二.选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面16.(5分)测试上海样本中有42所一般普通高中和32所中等职业技术学校,为了某项问题的研究,用分层抽样的方法需要从这两类学校中在抽取一个容量为37的样本,则应该抽取一般普通高中学校数为()A.37B.5C.16D.2117.(5分)如果函数y=f(x)图象上任意一点的坐标(x,y)都满足方程lg(x+y)=lgx+lgy,那么正确的选项是()A.y=f(x)是区间(0,+∞)上的减函数,且x+y≤4B.y=f(x)是区间(1,+∞)上的增函数,且x+y≥4C.y=f(x)是区间(1,+∞)上的减函数,且x+y≥4D.y=f(x)是区间(1,+∞)上的减函数,且x+y≤418.(5分)(文)若数列{a n}的前n项和为S n,有下列命题:(1)若数列{a n}是递增数列,则数列{S n}也是递增数列;(2)无穷数列{a n}是递增数列,则至少存在一项a k使得a k>0;(3)若{a n}是等差数列(公差d≠0),则S1•S2•…•S k=O的充要条件是a1•a2•…•a k=O;(4)若{a n}是等比数列,则S1•S2•…•S k=O(k≥2)的充要条件是a n+a n+1=0.其中,正确命题的个数()A.0B.1C.2D.3三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.20.(14分)已知椭圆Γ:=1(a>b>0)的焦距为2,一个焦点与短轴两端点构成一个等边三角形,直线l:y=2x+b(b∈R)与椭圆Γ相交于A、B两点,且∠AOB为钝角.(1)求椭圆Γ的方程;(2)求b的取值范围.21.(14分)设足球场宽65米,球门宽7米,当足球运动员沿边路带球突破,距底线多远处射门,对球门所张的角最大?(保留两位小数)22.(16分)已知f(x)=x+.(1)指出的f(x)值域;(2)求函数g(x)=f(x)﹣p(p∈R)的零点的个数.(3)若函数f(x)对任意x∈[﹣2,﹣1],不等式f(mx)+mf(x)<0恒成立,求实数m的取值范围.23.(18分)已知非零数列{a n}的递推公式为a1=1,a n=a n•a n+1+2a n+1(n∈N*)(1)求证:数列{1+}是等比数列;(2)若关于n的不等式++…+<m﹣有解,求整数m的最小值.(3)在数列{+1﹣(﹣1)n}(1≤n≤11)中,是否一定存在首项、第r项、第s项(1<r<s≤11),使得这三项依次成等差数列?若存在,请指出r、s 所满足的条件;若不存在,请说明理由.2014年上海市闵行区高考数学一模试卷(文科)参考答案与试题解析一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)若复数Z=(i为虚数单位),则其共轭复数在复数平面上对应的点位于四象限.【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】利用复数的运算法则化简z,即可得到,根据复数的几何意义即可得出.【解答】解:∵复数Z====1+2i.则其共轭复数=1﹣2i在复数平面上对应的点(1,﹣2)位于第四象限.故答案为:四.【点评】本题考查了复数的运算法则、共轭复数、复数的几何意义,属于基础题.2.(4分)已知函数f(x)=,则f﹣1(4)1.【考点】4R:反函数;O1:二阶矩阵.【专题】17:选作题;5R:矩阵和变换.【分析】先求出函数,令3x+1=4,可得x.【解答】解:函数f(x)==3x+1,令3x+1=4,可得x=1故答案为:1.【点评】本题考查二阶矩阵,考查学生的计算能力,比较基础.3.(4分)如果一个圆锥的高不变,要使它的体积扩大为原来的9倍,那么他的底面半径应该扩大为原来的3倍.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】5F:空间位置关系与距离.【分析】设圆锥的高为h,底面半径为r,根据圆锥的高不变,其体积扩大为原来的9倍,可得底面半径应该扩大为原来的3倍.【解答】解:设圆锥的高为h,底面半径为r,则9×πr2h=π(3r)2×h,∴底面半径应该扩大为原来的3倍.故答案为:3.【点评】本题考查了圆锥的体积公式,熟练掌握圆锥的体积公式是关键.4.(4分)二项式(x+y)5的展开式中,含x3y2的项的系数是10.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令r=2,可得含x3y2的项的系数.【解答】解:二项式(x+y)5的展开式的通项为T r+1=C5r x5﹣r y r,令r=2,可得含x3y2的项的系数是C52=10故答案为:10.【点评】二项展开式的通项公式是解决二项展开式的特定项问题的工具.5.(4分)函数y=sin2x+2sin2x最小正周期T为π.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数;H1:三角函数的周期性.【专题】57:三角函数的图像与性质.【分析】函数解析式第二项利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的最小正周期.【解答】解:y=sin2x+2×=sin2x﹣cos2x+=2(sin2x﹣cos2x)+=2sin(2x﹣)+,∵ω=2,∴T=π.【点评】此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的余弦函数公式,两角和与差的正弦函数公式,熟练掌握公式是解本题的关键.6.(4分)已知双曲线k2x2﹣y2=1(k>0)的一条渐近线的法向量是(1,2),那么k=.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】已知双曲线k2x2﹣y2=1(k>0)的一条渐近线的法向量是(1,2),可求出渐近线的斜率,由此求出k的值即可.【解答】解:由题意双曲线k2x2﹣y2=1(k>0)的一条渐近线的法向量是(1,2),可得渐近线的斜率为﹣,由于双曲线的渐近线方程为y=±kx故k=,故答案为:【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线的法向量是(1,2),由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证.7.(4分)(如图)已知△ABC中,∠ABC=30°,AB=2,AD是BC边上的高,则•=3.【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用直角三角形的边角关系可得BD,再利用数量积定义即可得出.【解答】解:∵在△ABC中,∠ABC=30°,AB=2,AD是BC边上的高,∴BD=ABcos30°==.∴•===3.【点评】本题考查了直角三角形的边角关系、数量积定义,属于基础题.8.(4分)已知f(x)是定义在R上的偶函数,当x≤0时,f(x)=x2+2x,那么不等式f(x+1)<3的解集是(﹣4,2).【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】首先,求解当x>0时,函数的解析式,然后,求解不等式即可.【解答】解:设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x,∵f(﹣x)=f(x),∴f(x)=x2﹣2x,∴,∵函数f(x)为偶函数,∴f(|x|)=f(x),∴f(x+1)=f(|x+1|)<3,∴f(|x+1|)=(x+1)2﹣2|x+1|<3,∴,解得﹣4<x<2,故答案为(﹣4,2).【点评】本题重点考查函数的奇偶性、分段函数、不等式的解法等知识,考查比较综合,属于中档题.9.(4分)在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设S n为前n个圆的面积之和,则s n=4πr2.【考点】8J:数列的极限.【专题】15:综合题;54:等差数列与等比数列.【分析】先确定内切圆半径组成以r为首项,为公比的等比数列,从而圆的面积组成以πr2为首项,为公比的等比数列,进而可求极限的值.【解答】解:依题意可知,图形中内切圆半径分别为:r,r•cos30°,(r•cos30°)cos30°,(r•cos30°cos30°)cos30°,…,即内切圆半径组成以r为首项,为公比的等比数列∴圆的面积组成以πr2为首项,为公比的等比数列∴S n==4πr2故答案为:4πr2.【点评】本题考查数列的极限,解题时要认真审题,仔细计算,避免出错.解题的关键是熟练掌握正六边形的性质10.(4分)掷两颗骰子得两数,则事件“两数之和大于4”的概率为.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题.【分析】根据掷两颗骰子得两数a和b,所有的(a,b)共有36个,不满足“两数之和大于4”的(a,b)有共有6个,故满足“两数之和大于4”的共有30个,由此求得事件“两数之和大于4”的概率.【解答】解:掷两颗骰子得两数a和b,所有的(a,b)共有6×6=36个,其中不满足“两数之和大于4”的有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)共有6个,故满足“两数之和大于4”的共有30个,故事件“两数之和大于4”的概率为=.故答案为:.【点评】本题主要考查等可能事件的概率,得到不满足“两数之和大于4”的(a,b)有共有6个,是解题的关键.11.(4分)函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,那么ω等于.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】57:三角函数的图像与性质.【分析】根据函数f(x)=2sinωx在上单调递增,可得0<ω≤2,结合在上的最大值是,可得sin(ω)=,进而求出ω值.【解答】解:∵函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,∴0<ω≤2且sin(ω×)=解得ω=故答案为:【点评】本题考查的知识点是正弦型函数的单调性,三角函数的值,其中根据已知分析出ω的范围是解答的关键.12.(4分)设、分别表示平面直角坐标系x、y轴上的单位向量,且|﹣|+|﹣2|=,则|+2|的取值范围是.【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】设==(x,y).B(1,0),C(0,2),D(2,0).由于|BC|=,|﹣|+|﹣2|=,可知:点A在线段BC上,得到,(x∈[0,1]).于是|+2|==,利用二次函数的单调性即可得出.【解答】解:设==(x,y).B(1,0),C(0,2),D(2,0).∵|BC|=,|﹣|+|﹣2|=,∴点A在线段BC上,∴,化为2x+y=2(x∈[0,1]).∴|+2|====,令f(x)=,∵x∈[0,1],∴当x=时,f(x)取得最小值,即|+2|取得最小值.又f(0)=,f(1)=3,.∴|+2|的最大值为3.∴|+2|的取值范围是.故答案为:.【点评】本题考查了向量的运算法则、模的几何意义、二次函数的单调性,考查了转化思想方法,属于难题.13.(4分)(文)已知函数f(x)=||x﹣1|﹣1|,若关于x的方程f(x)=t(t∈R)恰有四个互不相等的实数根x1、x2、x3、x4(x1<x2<x3<x4),则x1+x2+x3•x4的取值范围是(3,4).【考点】53:函数的零点与方程根的关系.【专题】51:函数的性质及应用.【分析】作出函数f(x)的图象,根据方程f(x)=t(t∈R)恰有四个互不相等的实数根,用t表示出四个根,然后计算即可得到结论.【解答】解:由||x﹣1|﹣1|=t,则t≥0,即|x﹣1|﹣1=±t,|x﹣1|=1±t;∴1+t≥0且1﹣t≥0,解得0≤t≤1;∵关于x的方程f(x)=t(t为实数)恰有四个不相等的实数根x1、x2、x3、x4,∴0<t<1,这四个根是x1=﹣t,x2=t,x3=2﹣t,x4=2+t,则x1+x2+x3•x4=﹣t+t+(2﹣t)(2+t)=4﹣t2,∵0<t<1,∴3<4﹣t2<4,即x1+x2+x3•x4的取值范围是(3,4),故答案为:(3,4)【点评】本题主要考查函数交点个数的应用,利用数形结合,确定四个根之间的关系是解决本题的关键.14.(4分)已知函数.则f(x)的最大值与最小值的乘积为.【考点】7F:基本不等式及其应用.【专题】59:不等式的解法及应用.【分析】利用分子常数法,将函数转化为分数函数,利用分式函数的单调性和基本不等式的性质求函数的最大值和最小值.【解答】解:,当x=0时,f(x)=1,当k=1时,f(x)=1当x≠0时,f(x)=1+,∵,∴,若k>1,则,∴,∴此时.当k<1时,,∴,此时.即当k≥1时,;当k<1时,.因此f max(x)•f min(x)=.故答案为:.【点评】本题主要考查函数的最值的求法,利用分数函数的性质是解决本题的关键,对应对k要进行分类讨论.二.选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【考点】LJ:平面的基本性质及推论;LO:空间中直线与直线之间的位置关系.【专题】14:证明题.【分析】通过两条直线垂直的充要条件两条线所成的角为90°;判断出B对;通过举常见的图形中的边、面的关系说明命题错误.【解答】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;对于B,∵l1⊥l2,∴l1,l2所成的角是90°,又∵l2∥l3∴l1,l3所成的角是90°∴l1⊥l3,B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选:B.【点评】本题考查两直线垂直的定义、考查判断线面的位置关系时常借助常见图形中的边面的位置关系得到启示.16.(5分)测试上海样本中有42所一般普通高中和32所中等职业技术学校,为了某项问题的研究,用分层抽样的方法需要从这两类学校中在抽取一个容量为37的样本,则应该抽取一般普通高中学校数为()A.37B.5C.16D.21【考点】B3:分层抽样方法.【专题】5I:概率与统计.【分析】根据分层抽样的定义,按照比例即可得到结论.【解答】解:∵样本中有42所一般普通高中和32所中等职业技术学校,∴抽取一个容量为37的样本,则应该抽取一般普通高中学校数为,【点评】本题主要考查分层抽样的应用,根据分层抽样的定义是解决本题的关键,比较基础.17.(5分)如果函数y=f(x)图象上任意一点的坐标(x,y)都满足方程lg(x+y)=lgx+lgy,那么正确的选项是()A.y=f(x)是区间(0,+∞)上的减函数,且x+y≤4B.y=f(x)是区间(1,+∞)上的增函数,且x+y≥4C.y=f(x)是区间(1,+∞)上的减函数,且x+y≥4D.y=f(x)是区间(1,+∞)上的减函数,且x+y≤4【考点】3E:函数单调性的性质与判断.【专题】51:函数的性质及应用.【分析】由给出的方程得到函数y=f(x)图象上任意一点的横纵坐标x,y的关系式,利用基本不等式求出x+y的范围,利用函数单调性的定义证明函数在(1,+∞)上的增减性,二者结合可得正确答案.【解答】解:由lg(x+y)=lgx+lgy,得,由x+y=xy得:,解得:x+y≥4.再由x+y=xy得:(x≠1).设x1>x2>1,则=.因为x1>x2>1,所以x2﹣x10,x2﹣1>0.则,即f(x1)<f(x2).所以y=f(x)是区间(1,+∞)上的减函数,综上,y=f(x)是区间(1,+∞)上的减函数,且x+y≥4.【点评】本题考查了函数单调性的判断与证明,考查了利用基本不等式求最值,训练了利用单调性定义证明函数单调性的方法,是基础题.18.(5分)(文)若数列{a n}的前n项和为S n,有下列命题:(1)若数列{a n}是递增数列,则数列{S n}也是递增数列;(2)无穷数列{a n}是递增数列,则至少存在一项a k使得a k>0;(3)若{a n}是等差数列(公差d≠0),则S1•S2•…•S k=O的充要条件是a1•a2•…•a k=O;(4)若{a n}是等比数列,则S1•S2•…•S k=O(k≥2)的充要条件是a n+a n+1=0.其中,正确命题的个数()A.0B.1C.2D.3【考点】83:等差数列的性质;87:等比数列的性质.【专题】15:综合题;54:等差数列与等比数列.【分析】利用等差数列、等比数列的定义和性质,数列的前n项和的意义,通过举反例可得(1)(2)(3)不正确.经过检验,只有(4)正确,从而得出结论.【解答】解:(1)数列{a n}的前n项和为S n,故S n =a1+a2+a3+…+a n,若数列{a n}是递增数列,则数列{S n}不一定是递增数列,如a n=n﹣60,当a n<0 时,数列{S n}是递减数列,故(1)不正确.(2)无穷数列{a n}是递增数列,则不一定存在一项a k使得a k>0,不正确;(3)若{a n}是等差数列(公差d≠0),则由S1•S2…S k=0不能推出a1•a2…a k=0,例如数列:﹣3,﹣1,1,3,满足S4=0,但a1•a2•a3•a4≠0,故(3)不正确.(4)一方面:若{a n}是等比数列,则由S1•S2…S k=0(k≥2,k∈N),从而当k=2时,有S1•S2=0⇒S2=0⇒a1+a2=0,∴a2=﹣a1,从而数列的{a n}公比为﹣1,故有a k+a k+1=a k﹣a k=0.另一方面,由a k+a k+1=0可得a k=﹣a k+1,∴a2=﹣a1,可得S2=0,∴S1•S2…S k=0(k≥2,k∈N),故(4)正确.故选:B.【点评】本题主要考查等差数列、等比数列的定义和性质,数列的前n项和的意义,举反例来说明某个命题不正确,是一种简单有效的方法,属于中档题.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)记关于x的不等式的解集为P,不等式|x﹣1|≤1的解集为Q.(Ⅰ)若a=3,求P;(Ⅱ)若Q⊆P,求正数a的取值范围.【考点】18:集合的包含关系判断及应用;7E:其他不等式的解法;R5:绝对值不等式的解法.【分析】(I)分式不等式的解法,可转化为整式不等式(x﹣a)(x+1)<0来解;对于(II)中条件Q⊆P,应结合数轴来解决.【解答】解:(I)由,得P={x|﹣1<x<3}.(II)Q={x||x﹣1|≤1}={x|0≤x≤2}.由a>0,得P={x|﹣1<x<a},又Q⊆P,结合图形所以a>2,即a的取值范围是(2,+∞).【点评】对于条件Q⊆P的问题,应结合数轴来解决,这样来得直观清楚,便于理解.20.(14分)已知椭圆Γ:=1(a>b>0)的焦距为2,一个焦点与短轴两端点构成一个等边三角形,直线l:y=2x+b(b∈R)与椭圆Γ相交于A、B两点,且∠AOB为钝角.(1)求椭圆Γ的方程;(2)求b的取值范围.【考点】KH:直线与圆锥曲线的综合.【专题】15:综合题;5D:圆锥曲线的定义、性质与方程.【分析】(1)根据椭圆Γ:=1(a>b>0)的焦距为2,一个焦点与短轴两端点构成一个等边三角形,求出a,b,即可求椭圆Γ的方程;(2)直线l:y=2x+b(b∈R)代入椭圆Γ,利用韦达定理,结合∠AOB为钝角,即可求b的取值范围.【解答】解:(1)由已知,解得a=2,b=1,∴椭圆Γ的方程为;(2)设A(x1,y1),B(x2,y2),则直线l:y=2x+b(b∈R)代入椭圆Γ,可得17x2+16bx+4b2﹣4=0,∴△=256b2﹣16×17(b2﹣1)>0,即b2<17,且x1+x2=﹣,x1x2=∴y1y2=4x1x2+2b(x1+x2)+b2=.∵∠AOB为钝角,∴x1x2+y1y2=<0,∴﹣2<b<2,∵b=0时,∠AOB为平角,∴b的取值范围为(﹣2,0)∪(0,2).【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.21.(14分)设足球场宽65米,球门宽7米,当足球运动员沿边路带球突破,距底线多远处射门,对球门所张的角最大?(保留两位小数)【考点】HU:解三角形.【专题】11:计算题.【分析】先设∠AMB=α,∠AMC=β,MC=x得到,再结合两角差的正切公式求出tanα,最后结合基本不等式即可求出结论.【解答】解:如图设∠AMB=α,∠AMC=β,MC=x则,=当且仅当最大,因为α是锐角,所以此时α最大,即对球门的张角最大.【点评】本题主要考查三角知识在解三角形中的实际应用.解决这类问题的关键在于对公式的熟练掌握以及灵活运用.22.(16分)已知f(x)=x+.(1)指出的f(x)值域;(2)求函数g(x)=f(x)﹣p(p∈R)的零点的个数.(3)若函数f(x)对任意x∈[﹣2,﹣1],不等式f(mx)+mf(x)<0恒成立,求实数m的取值范围.【考点】34:函数的值域;3R:函数恒成立问题;53:函数的零点与方程根的关系.【专题】51:函数的性质及应用.【分析】(1)分当x>0和当x<0时两种情况,分别根据函数的解析式求得函数的值域,综合可得结论.(2)函数g(x)=f(x)﹣p(p∈R)的零点的个数,即函数f(x)的图象和直线y=p的交点个数.结合(1)的结论,分类讨论求得结果.(3)由题意可得,对于任意x∈[﹣2,﹣1],不等式f(mx)+mf(x)=2mx﹣<0恒成立,再分m>0和m<0两种情况,分别求得m的范围,再取并集,即得所求.【解答】解:(1)当x>0时,≥2,当x<0时,,所以,f(x)值域为R.(2)函数g(x)=f(x)﹣p(p∈R)的零点的个数,即函数f(x)的图象和直线y=p的交点个数.由(1)可得,当x>0时f(x)=x+≥2.当x<0时f(x)=x﹣,由>0,可得f(x)在(﹣∞,0)上是增函数.故当p>2时,函数g(x)=f(x)﹣p(p∈R)的零点的个数是3.当p=2时,函数g(x)=f(x)﹣p(p∈R)的零点的个数是2,当p<2时,函数g(x)=f(x)﹣p(p∈R)的零点的个数是1.(3)显然,m≠0,函数f(x)=x﹣在[﹣2,﹣1]上是增函数,再由不等式f(mx)+mf(x)=2mx﹣<0恒成立,可得①当m>0时,2m2x2﹣m2﹣1>0恒成立,即m2>恒成立,而在[﹣2,﹣1]上的最大值为1,∴m>1.②当m<0时,,即2m2x2﹣m2+1<0.由于x∈[﹣2,﹣1]时,2x2﹣1>0,不等式左边恒正,该式不成立.综上可得,m的范围为m>1.【点评】本题主要考查函数零点与方程根的关系,函数的恒成立问题,体现了分类讨论、转化的数学思想,属于中档题.23.(18分)已知非零数列{a n}的递推公式为a1=1,a n=a n•a n+1+2a n+1(n∈N*)(1)求证:数列{1+}是等比数列;(2)若关于n的不等式++…+<m﹣有解,求整数m的最小值.(3)在数列{+1﹣(﹣1)n}(1≤n≤11)中,是否一定存在首项、第r项、第s项(1<r<s≤11),使得这三项依次成等差数列?若存在,请指出r、s 所满足的条件;若不存在,请说明理由.【考点】8K:数列与不等式的综合.【专题】54:等差数列与等比数列.【分析】(1)由已知条件推导了=1,从而得到,由此能证明{1+}是等比数列.(2)由(1)知1+=2n,由题设条件得到<m﹣,令f(n)=,由f(n)是增函数,能求出整数m的最小值.(3)由已知条件推导出=2n+(﹣1)n=b n,要使b1,b r,b s成等差数列,只需b1+b s=2b r,由此求出存在首项、第r项、第s项(1<r<s≤11),使得这三项依次成等差数列.【解答】(1)证明:∵非零数列{a n}的递推公式为a1=1,a n=a n•a n+1+2a n+1(n∈N*),∴=1,∴,∴{1+}是首项为2,公比为2的等比数列.(2)解:∵{1+}是首项为2,公比为2的等比数列,∴1+=2n,∵++…+<m﹣,∴++…+=<m﹣,令f(n)=,则f(n+1)﹣f(n)==>0,∴f(n)是增函数,∴f(n)min=f(1)=,∴.解得m>3,∴整数m的最小值为4.(3)∵1+=2n,∴,∴=2n+(﹣1)n=b n,要使b1,b r,b s成等差数列,只需b1+b s=2b r,即2s﹣2r+1=(﹣1)s﹣2(﹣1)r﹣3,∵s≥r+1,∴2s﹣2r+1≥0,∵(﹣1)s﹣2(﹣1)r﹣3≤0,∴当且仅当s=r+1,且s为不小于的偶数时,存在首项、第r项、第s项(1<r<s≤11),使得这三项依次成等差数列.【点评】本题考查等比数列的证明,考查最小值的求法,考查数列中存在首项、第r项、第s项(1<r<s≤11),使得这三项依次成等差数列的证明,解题时要注意等价转化思想的合理运用.。

2014年高考文科数学上海卷-答案

2014年高考文科数学上海卷-答案

x2 y2 1的右焦点重合,故 p 2 得 p 4 ,∴抛物线的准线方程为 x p 2 .故答案为: x 2 .
95
2
2
【提示】由题设中的条件 y2 2 px (p 0)的焦点与椭圆 x2 y2 1的右焦点重合,故可以先求出椭圆的右 95
焦点坐标,根据两曲线的关系求出 p,再由抛物线的性质求出它的准线方程.
即可. 【考点】一次函数的性质与图象. 三、解答题 19.【答案】 2 2
3 【解析】依题意:△P1P2P3 是边长为 4 的正三角形,折叠后是棱长为 2 的正四面体 y f (x) (如图).
设顶点 A、B 在底面 C 内的投影为 CD ,连接 D ,
则 B 为△ABC 的重心,和 底面 CD . BO 3 , AB 2 3 ,
【提示】建立适当的平面直角坐标系,利用坐标分别求出数量积,由结果可得答案.
【考点】平面向量数量积的运算.
18.【答案】B
【解析】解:P(a1,b1) 与 P2 (a1,b1) 是直线 y kx 1(k 为常数)上两个不同的点,直线 y kx 1 的斜率存在,

k
b2 a2
b1 a1
,即
a1
a2
a b
a2 b2
①或
a b
b2 a2
②,由①得
a b
0或a 0或b
1 ,
1
∵ ab 0 ,∴ a 0 且 b 0 ,即 a 1, b 1,此时集合{1,1}不满足条件. 由②得,若 b a2 , a b2 ,则两式相减得 a2 b2 b a ,即 (a b)(a b) (a b) , ∵互异的复数 a,b,∴ a b 0 ,即 a b 1 ,故选:D. 【提示】根据集合相等的条件,得到元素关系,即可得到结论. 【考点】集合的相等. 17.【答案】C 【解析】解:如图建立平面直角坐标系,则 A(0,0) ,B(0,2) ,P1(0,1) ,P2 (1,0) ,P3 (1,1) ,P4 (1,2) ,P5 (2,0) ,

2014年上海市高考数学试卷(文科)答案与解析

2014年上海市高考数学试卷(文科)答案与解析

2014年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是.=故答案为:2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.z+=4.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=)的焦点与椭圆+解:由题意椭圆++=1得=牙齿健康状况2y=y=≥=2,=±27.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为arcsin(结果用反三角函数值表示)==3==arcsinarcsin9.(4分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为(﹣∞,x综合得出x+x+≥10.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.,由此能求出((﹣,q=q=故答案为:11.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).﹣,若满足<,y=的解集为:(12.(4分)(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于.x+==2k+=2k+sinx+sinx+cosx=x+=x+=2k,或x+,x=,+=故答案为:.选择的3天恰好为连续3天的概率是(结果用最简分数表示).天共有种情况,,故答案为:.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].通过曲线方程判断曲线特征,通过+,说明﹣+=,∈则17.(5分)(2014•上海)如图,四个边长为1的小正方形排成一个大正方形,AB是大正方形的一条边,P i(i=1,2,…,7)是小正方形的其余顶点,则•(i=1,2,…,7)的不同值的个数为()∴=),),),),==∴=0=2,=4=0,,=4∴(18.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()k=,19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3=20.(14分)(2014•上海)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);的位置可得=,整理可得=,整理可得21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC 长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?,tan,,由正弦定理得a=≈22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为)联立.当≥,﹣][,23.(18分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)若{a n}是等比数列,且a m=,求正整数m的最小值,以及m取最小值时相应{a n}的公比;)由题意可得:,,由已知可得,,由于,可得,可得,由已知可得,解出即可.)由题意可得:;,由已知可得,,又.因此,1000===,由已知可得,时,不等式即,..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年全国普通高等学校招生统一考试(上海)数学模拟试卷(文史类)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 已知,2παπ⎛⎫∈⎪⎝⎭,4sin 5α=,则tan α= .2. 已知集合{}1,A m =-,{}|1B x x =>,若AB ≠∅,则实数m 的取值范围是 .3.设等差数列{}n a 的前项和为n S ,若911a =,119a =,则19S 等于 .4. 若()()2i i a ++是纯虚数(i 是虚数单位),则实数a 的值为 .5. 抛物线24y x =的焦点到双曲线2214x y -=的渐近线的距离是 .6. 已知向量2a =,1b =,1a b ⋅=,则向量a 与a b -的夹角为 .7. 执行右图的程序框图,如果输入6i =,则输出的S 值为 . 8. 不等式1011ax x <+对任意R x ∈恒成立,则实数a 的取值范围是 . 9. 若n a 是()()*2,2,nx n n x +∈≥∈N R 展开式中2x项的系数,则2323222lim n n n a a a →∞⎛⎫++⋅⋅⋅+= ⎪⎝⎭ . 10. 已知一个圆锥的侧面展开图是一个半径为3,圆心角为23π的扇形,则此圆锥的体积为 .11. 设,x y ∈R ,若不等式组320,220,10x y x y ax y -+≥⎧⎪--≤⎨⎪-+≥⎩所表示的平面区域是一个锐角三角形,则实数a 的取值范围是 .12. 从1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数作为二次函数()2f x ax bx c =++的系数,则使得()12f ∈Z 的概率为 . 13. 已知点F 为椭圆:C 2212x y +=的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为()4,3,则PQ PF +取最大值时,点P 的坐标为 .14. 已知A 、B 、C 为直线l 上不同的三点,点O ∉直线l ,实数x 满足关系式220x OA xOB OC ++=,有下列命题:① 20OB OC OA -⋅≥; ② 20OB OC OA -⋅<;③ x 的值有且只有一个; ④ x 的值有两个; ⑤ 点B 是线段AC 的中点.则正确的命题是 .(写出所有正确命题的编号)二、选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.(C )充要条件 (D )既非充分又非必要条件 16. 下列函数中,既是偶函数,又在区间()1,2内是增函数的为 (A )2log y x = (B )cos 2y x =(C )222x x y --=(D )22log 2xy x -=+ 17. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是A )αβ⊥且m α⊂≠(B )αβ⊥且m ∥α(C )m ∥n 且n β⊥ (D )m n ⊥且α∥β18. 对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”. 下列函数中存在唯一“可等域区间”的“可等域函数”为 (A )()sin 2f x x π⎛⎫=⎪⎝⎭(B )()221f x x =- (C )()21xf x =+ (D )()()2log 22f x x =-三、解答题(本大题共5题,满分74分)每题均需写出详细的解答过程.19. (本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c , 且1cos22A C +=. (1)若3a =,b =c 的值;(2)若())sin sin f A A A A =-,求()f A 的取值范围.20. (本题满分14分)本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.如图,几何体EF ABCD -中,CDEF 为边长为2的正方形,ABCD 为直角梯形,//AB CD ,AD DC ⊥,2AD =,4AB =,90ADF ∠=.(1)求异面直线BE 和CD 所成角的大小; (2)求几何体EF ABCD -的体积.A21. (本题满分14分) 本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为:250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.(1)当[]10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润; 如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损? (2)当处理量为多少吨时,每吨的平均处理成本最少?22. (本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知各项为正数的数列{}n a 中,11a =,对任意的*k N ∈,21221,,k k k a a a -+成等比数列,公比为k q ;22122,,k k k a a a ++成等差数列,公差为k d ,且12d =. (1)求2a 的值; (2)设11k k b q =-,证明:数列{}k b 为等差数列; (3)求数列{}k d 的前k 项和k D .23. (本题满分18分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,圆O与直线20x +=相切于点P ,与x 正半轴交于点A,与直线y 在第一象限的交点为B . 点C 为圆O 上任一点,且满足OC xOA yOB =+,动点(),D x y 的轨迹记为曲线Γ. (1)求圆O 的方程及曲线Γ的轨迹方程;(2)若直线y x =和y x =-分别交曲线Γ于点A 、C 和B 、D ,求四边形ABCD 的周长;(3)已知曲线Γ为椭圆,写出椭圆Γ的对称轴、顶点坐标、范围和焦点坐标.参考答案一、填空题1. 43-2. ()1,+∞3. 1904. 126、6π 7. 21 8. (]4,0- 9. 8 10. 311、1[2,]3-- 12. 419013. ()0,1- 14.①③⑤二、选择题15. C 16. A 17. C 18. B三、解答题 19. 解:(1)在△ABC 中,A B C π++=. 所以coscos 22A C B π+-=1sin 22B ==. 26B π=,所以3B π=. ………………3分 由余弦定理2222cos b a c ac B =+-,得2320c c -+=.解得1c =或2c =. ………………6分(2)()sin sin )f A A A A =-1cos 2222AA -=-1sin 262A π⎛⎫=+- ⎪⎝⎭. ………………9分由(1)得3B π=,所以23A C π+=,20,3A π⎛⎫∈ ⎪⎝⎭, 则32,662A πππ⎛⎫+∈ ⎪⎝⎭.∴sin 2(1,1]6A π⎛⎫+∈- ⎪⎝⎭.∴()31,22f A ⎛⎤∈- ⎥⎝⎦.∴()f A 的取值范围是31,22⎛⎤- ⎥⎝⎦. ………………12分20. 解:(1)解法一:在CD 的延长线上延长至点M 使得CD DM =,连接,,ME MB BD .由题意得,AD DC ⊥,AD DF ⊥,,DC DF ⊂≠平面CDEF ,∴AD ⊥平面CDEF ,∴AD DE ⊥,同理可证DE ⊥面ABCD .∵ //CD EF ,CD EF DM ==, ∴EFDM 为平行四边形, ∴//ME DF .则MEB ∠(或其补角)为异面直线DF 和BE 所成的角. ………………3分 由平面几何知识及勾股定理可以得ME BE BM ===在MEB △中,由余弦定理得222cos 2ME BE BM MEB ME BE +-∠==⋅. ∵ 异面直线的夹角范围为0,2π⎛⎤⎥⎝⎦,∴ 异面直线DF 和BE所成的角为arccos 6.………………7分解法二:同解法一得,,AD DC DE 所在直线相互垂直,故以D 为原点,,,DA DC DE 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系,………………2分可得()()()()0,0,0,0,2,2,2,4,0,0,0,2D F B E , ∴ (0,2,2),(2,4,2)DF BE ==--,得22,26DF BE ==………………4分 设向量,DF BE 夹角为θ,则022422cos DF BE DF BEθ⋅-+⋅-+⋅⋅===⋅ ∵ 异面直线的夹角范围为0,2π⎛⎤⎥⎝⎦,∴ 异面直线DF 和BE 所成的角为arccos6.………………7分(2)如图,连结EC ,过B 作CD 的垂线,垂足为N ,则BN ⊥平面CDEF ,且2BN =.………………9分∵EF ABCD V -E ABCD B ECF V V --=+ ……………11分 1133ABCD EFC S DE S BN =⋅+⋅△△ 1111(42)222223232=⋅⋅+⋅⋅+⋅⋅⋅⋅ 163=. ∴ 几何体EF ABCD -的体积为163.……14分MNA21. 解:(1)根据题意得,利润P 和处理量x 之间的关系: (1010)P x y =+-22050900x x x =-+-270900x x =-+-………………2分()235325x =--+,[10,15]x ∈.∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数, 可求得[300,75]P ∈--.………………5分∴ 国家只需要补贴75万元,该工厂就不会亏损.………………7分 (2)设平均处理成本为90050y Q x x x==+-………………9分5010≥=,………………11分当且仅当900x x=时等号成立,由0x > 得30x =.因此,当处理量为30吨时,每吨的处理成本最少为10万元.…………14分 22. 解:(1)由题意得2213322a a a a a ⎧=⎪⎨=+⎪⎩,2222a a =+,22a =或21a =-.………………2分 故数列{}n a 的前四项为1,2,4,6或1,1,1,3-.………………4分(2)∵21221,,k k k a a a -+成公比为k q 的等比数列, 212223,,k k k a a a +++成公比为1k q +的等比数列∴212k k k a a q +=,22211k k k a a q +++= 又∵22122,,k k k a a a ++成等差数列, ∴212222k k k a a a ++=+. 得21212112k k k k k a a a q q ++++=+,112k kq q +=+,………………6分 111k k kq q q +-=-, ∴1111111k k k k q q q q +==+---,111111k k q q +-=--,即11k k b b +-=. ∴ 数列数列{}k b 为公差1d =等差数列,且11111b q ==-或111112b q ==--.…8分∴()111k b b k k =+-⋅=或32k b k =-.………………10分(3)当11b =时,由(2)得11,1k k k k b k q q k+===-.221211k k a k a k +-+⎛⎫= ⎪⎝⎭,()22222121321121231121111k k k k k a a a k k a a k a a a k k +-+--+⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, ()2121k k kaa k k q +==+,()2121231,2k k k k k k k k ad a a k D q +++=-==+=.………………13分 当112b =-时,同理可得42k d k =-,22k D k =.………………16分解法二:(2)对1,1,1,3,-这个数列,猜想()*2123N m m q m m -=∈-, 下面用数学归纳法证明:ⅰ)当1m =时,12111213q ⋅-==-⋅-,结论成立.ⅱ)假设()*N m k k =∈时,结论成立,即2123k k q k -=-.则1m k =+时,由归纳假设,222121212121,2323k k k k k k a a a a k k -+---⎛⎫== ⎪--⎝⎭. 由22122,,k k k a a a ++成等差数列可知()()()222122122121223k k k k k k a a a a k ++--+=-=⋅-,于是221212121k k k a k q a k ++++==-, ∴ 1m k =+时结论也成立.所以由数学归纳法原理知()*2123N m m q m m -=∈-. ………………7分 此时11312123k k b k q k ===----.同理对1,2,4,6,这个数列,同样用数学归纳法可证1k k q k+=. 此时11111k k b k k q k===+--.∴k b k =或32k b k =-. ………………10分(3)对1,1,1,3,-这个数列,猜想奇数项通项公式为()22123k a k -=-.显然结论对1k =成立. 设结论对k 成立,考虑1k +的情形. 由(2),()211,23k k q k k k -=≥∈-N 且21221,,k k k a a a -+成等比数列,故()()22222121212123212323k k k k a a k k k k +---⎛⎫⎛⎫=⋅=-⋅=- ⎪ ⎪--⎝⎭⎝⎭,即结论对1k +也成立. 从而由数学归纳法原理知()22123k a k -=-.于是()()22321k a k k =--(易见从第三项起每项均为正数)以及21242k k k d a a k +=-=-,此时()22422k D k k =++-=. ………………13分对于1,2,4,6,这个数列,同样用数学归纳法可证221k a k -=,此时()22121,1k k k k a k k d a a k +=+=-=+.此时()()32312k k k D k +=++++=.………………16分 23. 解:(1)由题意圆O 的半径1r ==,故圆O 的方程为221x y +=. ………………2分 由OC xOA yOB =+得,()22OC xOA yOB =+, 即222222cos60OC x OA y OB xy OA OB =++,得221xy xy ++=(,33x y ⎡∈-⎢⎣⎦)为曲线Γ的方程.(未写,x y 范围不扣分)4分 (2)由221yx x y xy =⎧⎨++=⎩解得:3x y ⎧=⎪⎪⎨⎪=⎪⎩3x y ⎧=-⎪⎪⎨⎪=⎪⎩所以,A (3,3),C (-3,-3) 同理,可求得B (1,1),D (-1,-1) 所以,四边形ABCD 的周长为:179(3)曲线Γ的方程为221xy xy ++=(,x y ⎡∈⎢⎣⎦), 它关于直线y x =、y x =-和原点对称,下面证明:设曲线Γ上任一点的坐标为()00,P x y ,则2200001x y x y ++=,点P 关于直线y x =的对称点为()100,P y x ,显然2200001y x y x ++=,所以点1P在曲线Γ上,故曲线Γ关于直线y x =对称,同理曲线Γ关于直线y x =-和原点对称.可以求得221x y xy ++=和直线y x =的交点坐标为12,B B ⎛ ⎝⎭⎝⎭221x y xy ++=和直线y x =-的交点坐标为()()121,1,1,1A A --,1OA =1OB ==3=.在y x =-上取点12,F F ⎛ ⎝⎭⎝⎭ . 曲线Γ为椭圆:其焦点坐标为12,F F ⎛ ⎝⎭⎝⎭.。

相关文档
最新文档