中考试题中的数学文化 实数的相关概念

合集下载

初中中考数学文化素养

初中中考数学文化素养

第一单元数与式第1课时实数中考试题中的数学文化《九章算术》——正负术【文化背景】中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“益”就是“加”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”.题图【中考对接】中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为()A. -2B. +2C. -6D. +6A【解析】∵正放表示正数,斜放表示负数,∴图②中所得的数值为(+2)+(-4)=-2.斐波那契数列【中考对接】斐波那契数列中的第n个数可以用15[(1+52)n-(1-52)n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.根据以上材料,可求出斐波那契数列中的第1个数为________;第2个数为________.第3课时整式及因式分解中考试题中的数学文化杨辉三角【文化背景】杨辉三角,又称贾宪三角形、帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用如图所示的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年.【中考对接】1. (2019烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A. 128B. 256C. 512D. 1024《易经》——结绳记数【文化背景】“结绳记数”是远古时期的人最常用的记数方法,因为那个时候还没有发明阿拉伯数字,人们在记数的时候,就只能借助外物的帮助.所谓“结绳记数”就是用打绳结的办法来记录物体的数量.传说中,古代的国王们出去打仗的时候,因为没有日历,就采取在绳子上打结的办法计算天数,绳子上所有的结都被打开的时候,也就是战争该结束的时候.第2题图【中考对接】2. (2018恩施州)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为________个.1. C【解析】取a=1,b=1,则可以计算(a+b)9展开式中所有项的系数和是29=512.2. 1838【解析】由题意,野果的数量满六进一,可得该图示为六进制数,化为十进制数为1×64+2×63+3×62+0×61+2×60=1838.她一共采集到的野果数量为1838个.第二单元 方程(组)与不等式(组) 第5课时 一次方程与一次方程组中考试题中的数学文化《增删算法统宗》【中考对接】1. (2019福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:“有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?”已知《孟子》一书共有34685个字,设他第一天读x 个字,则下面所列方程正确的是( )A .x +2x +4x =34685B .x +2x +3x =34685C .x +2x +2x =34685D .x +12x +14x =34685《九章算术》——百僧分百馍【中考对接】2.程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是()A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人《孙子算经》——绳度木长【中考对接】3.(2019长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A. ⎩⎨⎧y =x +4.50.5y =x -1B. ⎩⎨⎧y =x +4.5y =2x -1C. ⎩⎨⎧y =x -4.50.5y =x +1D. ⎩⎨⎧y =x -4.5y =2x +1第6课时 一元二次方程中考试题中的数学文化《几何原本》——一元二次方程的图解法【中考对接】第1题图1. (2018嘉兴)欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:画Rt △ABC ,使∠ACB =90°,BC =a 2,AC =b ,再在斜边AB 上截取BD =a 2,则该方程的一个正根是( ) A. AC 的长 B. AD 的长 C. BC 的长 D. CD 的长《田亩比类乘除捷法》【中考对接】2. (2019张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多________步.3. 1. B 【解析】∵x 2+ax =b 2,∴x 2+ax +(a 2)2=b 2+(a 2)2,即(x +a 2)2=b 2+(a 2)2,又∵∠ACB=90°,BC=a2,AC=b,∴AB2=b2+(a2)2,即(x+a2)2=AB2,∴x+a2=AB,∵BD=a2,∴x=AB-BD=AD.2. 12【解析】设宽为x步,则长为(60-x)步.∵矩形田地的面积为864平方步,∴x(60-x)=864.解得x1=36,x2=24.当长x=36时,宽为60-x=24,此时长比宽多36-24=12(步);当长x=24时,宽为60-x=36,此时长比宽多24-36=-12(步),不符合题意,舍去.综上,长比宽多12步.第四单元三角形第16课时三角形及其性质中考试题中的数学文化海伦——秦九韶公式【文化背景】古希腊的几何学家海伦,在他的著作《度量》一书中,给出了如下公式:若一个三角形的三边分别为a,b,c,记p=12(a+b+c),那么三角形的面积为:S=p(p-a)(p-b)(p-c)(海伦公式).我国著名的数学家秦九韶于1274年在《数书九章》给出了如下公式:S=14[a2b2-(a2+b2-c22)2],其中,a,b,c分别表示三角形三边长,S为三角形的面积.海伦公式和秦九韶公式实质上是同一个公式,所以我们一般也称此公式为海伦——秦九韶公式.【中考对接】题图(2019宜昌)古希腊几何学家海伦和我国南宋数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=a+b+c2,那么三角形的面积为S=p(p-a)(p-b)(p-c).如图,在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A. 66B. 63C. 18D. 19 2A【解析】∵a=5,b=6,c=7,∴p=a+b+c2=5+6+72=9,∴S△ABC=p(p-a)(p-b)(p-c)=9×(9-5)×(9-6)×(9-7)=6 6.第17课时特殊三角形中考试题中的数学文化《数书九章》【中考对接】1.(2018长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A. 7.5平方千米B. 15平方千米C. 75平方千米D. 750平方千米《九章算术》——折竹抵地【中考对接】2. (2019德阳改编)《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为________尺.中考试题中的数学文化1. A 【解析】∵52+122=132,∴该沙田为直角三角形沙田,又∵5里=5×500米=2500米=2.5千米,12里=12×500=6000米=6千米,该沙田的面积为=12×6×2.5=7.5平方千米.2. B 【解析】设折断处离地面的距离为x 尺,则折断处离尖端的距离为(10-x )尺,根据题意可得x 2+32=(10-x )2,解得x =4.55.第五单元 四边形第23课时 矩形、菱形、正方形中考试题中的数学文化赵爽弦图【文化背景】赵爽,三国吴人,是三国到南宋时期三百多年间中国杰出的数学家之一.他在注解《周髀算经》中给出的“赵爽弦图”证明了勾股定理的准确性,如图所示,四个全等的直角三角形可以围成一个大的正方形,中间空的是一个小正方形.通过对这个图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.证明方法如下:设直角三角形的三边中较短的直角边为a,另一直角边为b,斜边为c,朱实面积=2ab,黄实面积=(b-a)2=b2-2ab+a2,朱实面积+黄实面积=a2+b2=大正方形面积=c2.【中考对接】(2019邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是________.4【解析】∵勾a=6,弦c=10,∴股b=8,∴AD=8-6=2,∴小正方形的面积是4.第六单元圆第24课时圆的基本性质《九章算术》——圆材埋壁【中考对接】1.(2019广西北部湾经济区)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为________寸.第1题图割圆术【文化背景】 3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.【中考对接】2. (2019孝感)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S -S 1=______.(π取3.14)第2题图1. 26 【解析】如解图,作DE ⊥AB 于点H ,连接OA ,∴AH =BH =12AB =5寸.设OH =x 寸,∴OD =OA =(x +1)寸,∴(x +1)2=x 2+52,解得x =12,∴OA =OD =13寸,∴DE =2OD =26寸,即圆材的直径为26寸..第1题解图2. 0.14 【解析】如解图,过点A 作AD ⊥OB 于点D .S =πr 2=π,∠AOB =360°12=30°.∵OA =1,∴AD =12OA =12,S 1=12S △OAB =12×12·OB ·AD =12×12×1×12=3.∴S -S1≈0.14. 第2题解图第七单元图形的变化第28课时视图与投影中考试题中的数学文化牟合方盖【中考对接】我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()题图c。

1.实数的基本概念

1.实数的基本概念

1.实数的基本概念一、考点梳理1.实数内容中几个重要概念是有理数、无理数、数轴、相反数、绝对值、倒数、平方根、算术平方根、立方根等.2.π⎧⎧⎪⎨⎨⎩⎪⎩整数(正整数,零,负整数)有理数分数(正分数,负分数)实数无理数(无限不循环小数,如 3.数轴上的点与实数一一对应,无理数的表示形式;(1)按某种规律构造的无限不循环小数;(20sin 45等;(3)用字母表示的特殊数,如.π4.实数a 的相反数是a -,满足()0a a +-=.5.()()00a a a a a ≥⎧⎪=⎨-<⎪⎩,一个数的绝对值是它在数轴上对应的点的距离.a 是非负数.若0a b +=,一定有0a =且0b =;若()0x a a =≥,则x a =±.6.非零实数a 的倒数是1a ,满足11a a∙=. 7.非负数a的平方根是负数没有平方根a 的立方根.8.科学记数法:()10110,n a a n ⨯≤<为整数,注意n 值的求法.9.本考点关键是准确把握诸多基本概念,适当关注数系扩充中的数学文化,体会数形结合的思想方法.二、考点精析【例1】(2017湖北荆州)中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180000个就业岗位,将180000用科学记数法表示应为( )A.41810⨯B. 51.810⨯C. 61.810⨯D. 51810⨯【答案】B【解析】用科学记数法表示一个数,就是把这个数写成()10110,n a a n ⨯≤<为整数的形式,其中1a ≥且只有一位整数位;当原数大于等于1时,n 等于原数位减去1;当原数小于1时,n 是负数,其绝对值等于原数中小数点向右移动到第一个非零数学后的位数.【例2】(2017湖北荆州)实数,a b 在数轴上的位置如图1—1所示,化简a b +)A.2a -B.2bC.2aD.2b -【答案】A 【解析】由图得0,0a b <>且a b >,∴0,0a b b a +<->,∴()a b a b b a b a +=-+=-=-,∴2a b a b b a a +=--+-=-.本题考查基本的数形结合思想,利用数轴和绝对值的几何意义得到0,0a b b a +<->是关键.三、考点精练(一)选择题1.若长江水位升高0.9米时水位变化记作+0.9m ,那么水位下降0.7米时水位变化记作( )A. 0mB. 0.7mC. -0.9mD.-0.7m2.下列判断中,错误的是( )A.相反数是它本身的数只有0B.倒数是它本身的数只有1C. 0的平方根是0D.绝对值是它本身的数为非负数3.在实数0.1414,2π中,无理数的个数是( )A. 1个B. 2个C. 3个D.4个4.稀土是我国重要的战略资源,我国稀土资源总储量世界最丰富,约为1050000000t ,将1050000000用科学记数法表示为( )A.101.0510⨯B. 91.0510⨯C. 810.510⨯D. 100.10510⨯5.实数a 的倒数的相反数是165,则a 为( ) A. 516 B. 165- C. 516- D.1656.已知数轴上的A 点到原点的距离是2,那么在数轴上到A 点的距离是3的点表示的数有( )A.1个B. 2个C. 3个D.4个(二)填空题 7.若,a b 互为相反数,则1a b -+= .8.用四舍五入法对0.03059取近似值,精确到百分位的结果是 .9.PM2.5是指大气中直径小于或等于2.5m μ(10.000001m m μ=)的颗粒物,也称可入肺颗粒物.它们含有大量有毒有害物质,对人体健康和大气环境有很大危害.2.5m μ用科学记数法可表示为 .10.的算术平方根是 .11.如图1—2.矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是 .图1—2(三)解答题12.已知实数,a b 满足0a b <<,且a b <,判断()2018a b ab ++的符号.13.若210a ++=,求20182019ab ∙的值.14.实数a 在数轴上的位置如图1—3所示,化简:1a -+图1—3参考答案。

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共3小题)1.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.2.(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.3.(2021•北京)计算:2sin60°++|﹣5|﹣(π+)0.二.整式的混合运算—化简求值(共2小题)4.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.5.(2021•北京)已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.三.分式的值(共1小题)6.(2023•北京)已知x+2y﹣1=0,求代数式的值.四.一元一次方程的应用(共1小题)7.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)五.解一元二次方程-因式分解法(共1小题)8.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.六.解一元一次不等式组(共3小题)9.(2023•北京)解不等式组:.10.(2022•北京)解不等式组:.11.(2021•北京)解不等式组:.七.一次函数图象与几何变换(共1小题)12.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.八.待定系数法求一次函数解析式(共1小题)13.(2022•北京)在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象过点(4,3),(﹣2,0),且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当x >0时,对于x 的每一个值,函数y =x +n 的值大于函数y =kx +b (k ≠0)的值,直接写出n 的取值范围.九.三角形内角和定理(共1小题)14.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC ,求证:∠A +∠B +∠C =180°.方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB.一十.全等三角形的判定与性质(共1小题)15.(2022•北京)在△ABC 中,∠ACB =90°,D 为△ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得CE =DC .(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.一十一.三角形的外接圆与外心(共1小题)16.(2021•北京)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE =3,求GC和OF的长.一十二.切线的判定(共1小题)17.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.一十三.圆的综合题(共1小题)18.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).一十四.旋转的性质(共1小题)19.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC 上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.一十五.折线统计图(共1小题)20.(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对 的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是 (填“甲”“乙”或“丙”).一十六.方差(共1小题)21.(2023•北京)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是 (填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为 和 .北京市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共3小题)1.(2023•北京)计算:4sin60°+()﹣1+|﹣2|﹣.【答案】5.【解答】解:原式=4×+3+2﹣2=2+3+2﹣2=5.2.(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.【答案】4.【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.3.(2021•北京)计算:2sin60°++|﹣5|﹣(π+)0.【答案】3+4.【解答】解:原式=2×+2+5﹣1=+2+5﹣1=3+4.二.整式的混合运算—化简求值(共2小题)4.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【答案】2x2+4x+1,原式=5.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.5.(2021•北京)已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.【答案】1.【解答】解:原式=a2﹣2ab+b2+2ab+b2=a2+2b2,∵a2+2b2﹣1=0,∴a2+2b2=1,∴原式=1.三.分式的值(共1小题)6.(2023•北京)已知x+2y﹣1=0,求代数式的值.【答案】见试题解答内容【解答】解:∵x+2y﹣1=0,∴x+2y=1,∴====2,∴的值为2.四.一元一次方程的应用(共1小题)7.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)【答案】边的宽为4cm,天头长为24cm.【解答】解:设天头长为6x,地头长为4x,则左、右边的宽为x,根据题意得,100+10x=4×(27+2x),解得x=4,答:边的宽为4cm,天头长为24cm.五.解一元二次方程-因式分解法(共1小题)8.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.【答案】见试题解答内容【解答】(1)证明:∵a=1,b=﹣4m,c=3m2,∴Δ=b2﹣4ac=(﹣4m)2﹣4×1×3m2=4m2.∵无论m取何值时,4m2≥0,即Δ≥0,∴原方程总有两个实数根.(2)解:方法一:∵x2﹣4mx+3m2=0,即(x﹣m)(x﹣3m)=0,∴x1=m,x2=3m.∵m>0,且该方程的两个实数根的差为2,∴3m﹣m=2,∴m=1.方法二:设方程的两根为x1,x2,则x1+x2=4m,x1•x2=3m2,∵x1﹣x2=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,∴(4m)2﹣4×3m2=4,∴m=±1,又m>0,∴m=1.六.解一元一次不等式组(共3小题)9.(2023•北京)解不等式组:.【答案】1<x<2.【解答】解:,解不等式①得:x>1,解不等式②得:x<2,∴原不等式组的解集为:1<x<2.10.(2022•北京)解不等式组:.【答案】1<x<4.【解答】解:由2+x>7﹣4x,得:x>1,由x<,得:x<4,则不等式组的解集为1<x<4.11.(2021•北京)解不等式组:.【答案】2<x<4.【解答】解:解不等式4x﹣5>x+1,得:x>2,解不等式<x,得:x<4,则不等式组的解集为2<x<4.七.一次函数图象与几何变换(共1小题)12.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.【答案】(1)y=x﹣1.(2)≤m≤1.【解答】解:(1)函数y=x的图象向下平移1个单位长度得到y=x﹣1,∵一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到,∴这个一次函数的表达式为y=x﹣1.(2)把x=﹣2代入y=x﹣1,求得y=﹣2,∴函数y=mx(m≠0)与一次函数y=x﹣1的交点为(﹣2,﹣2),把点(﹣2,﹣2)代入y=mx,求得m=1,∵当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x﹣1的值,∴≤m≤1.八.待定系数法求一次函数解析式(共1小题)13.(2022•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【答案】(1)y=x+1,A(0,1);(2)n≥1.【解答】解:(1)把(4,3),(﹣2,0)分别代入y=kx+b得,解得,∴一次函数的解析式为y=x+1,当x=0时,y=x+1=1,∴A点坐标为(0,1);(2)当n≥1时,当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b (k≠0)的值.九.三角形内角和定理(共1小题)14.(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC ,求证:∠A +∠B +∠C =180°.方法一证明:如图,过点A 作DE ∥BC .方法二证明:如图,过点C 作CD ∥AB .【答案】(1)见解答过程;(2)见解答过程.【解答】证明:方法一:∵DE ∥BC ,∴∠B =∠BAD ,∠C =∠CAE ,∵∠BAD +∠BAC +∠CAE =180°,∴∠B +∠BAC +∠C =180°;方法二:∵CD ∥AB ,∴∠A =∠ACD ,∠B +∠BCD =180°,∴∠B +∠ACB +∠A =180°.一十.全等三角形的判定与性质(共1小题)15.(2022•北京)在△ABC 中,∠ACB =90°,D 为△ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得CE =DC .(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【答案】见试题解答内容【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.一十一.三角形的外接圆与外心(共1小题)16.(2021•北京)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE =3,求GC和OF的长.【答案】(1)证明见解答过程;(2)GC=6,OF=.【解答】(1)证明:∵AD是⊙O的直径,AD⊥BC,∴=,∴∠BAD=∠CAD;(2)解:在Rt△BOE中,OB=5,OE=3,∴BE==4,∵AD是⊙O的直径,AD⊥BC,∴BC=2BE=8,∵BG是⊙O的直径,∴∠BCG=90°,∴GC==6,∵AD⊥BC,∠BCG=90°,∴AE∥GC,∴△AFO∽△CFG,∴=,即=,解得:OF=.一十二.切线的判定(共1小题)17.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.【答案】见试题解答内容【解答】证明:(1)如图,连接AD,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠BAD,∵∠BOD=2∠BAD,∴∠BOD=2∠A;(2)如图,连接OC,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90°,∴∠CDE+∠DCE=90°,∴∠OCD+∠DCE=90°,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.一十三.圆的综合题(共1小题)18.(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).【答案】见试题解答内容【解答】解:(1)①由题意知,P'(﹣2+1,0+1),∴P'(﹣1,1),如图,点Q即为所求;②连接PP',∵∠P'PO=∠MOx=45°,∴PP'∥ON,∵P'N=QN,∴PT=QT,∴NT=PP',∵PP'=OM,∴NT=OM;(2)如图,连接PO,并延长至S,使OP=OS,延长SQ到T,使ST=OM,由题意知,PP'∥OM,PP'=OM,P'N=NQ,∴TQ=2MN,∵MN=OM﹣ON=1﹣t,∴TQ=2﹣2t,∴SQ=ST﹣TQ=1﹣(2﹣2t)=2t﹣1,∵PS﹣QS≤PQ≤PS+QS,∴PQ的最小值为PS﹣QS,PQ的最大值为PS+QS,∴PQ长的最大值与最小值的差为(PS+QS)﹣(PS﹣QS)=2QS=4t﹣2.一十四.旋转的性质(共1小题)19.(2021•北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC 上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.【答案】(1)∠BAE=∠CAD,BE+MD=BM;(2)EN=DN.【解答】解:(1)∵∠DAE=∠BAC=α,∴∠DAE﹣∠BAD=∠BAC﹣∠BAD,即∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴BE=CD,∵M为BC的中点,∴BM=CM,∴BE+MD=BM;(2)如图,作EH⊥AB交BC于H,交AB于F,由(1)△ABE≌△ACD得:∠ABE=∠ACD,∵∠ACD=∠ABC,∴∠ABE=∠ABD,在△BEF和△BHF中,,∴△BEF≌△BHF(ASA),∴BE=BH,由(1)知:BE+MD=BM,∴MH=MD,∵MN∥HF,∴,∴EN=DN.一十五.折线统计图(共1小题)20.(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对 甲 的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是 丙 (填“甲”“乙”或“丙”).【答案】见试题解答内容【解答】解:(1)m=×(10+10+10+9+9+8+3+9+8+10)=8.6;(2)甲同学的方差S2甲=×[2×(7﹣8.6)2+2×(8﹣8.6)2+4×(9﹣8.6)2+2×(10﹣8.6)2]=1.04,乙同学的方差S2乙=×[4×(7﹣8.6)2+2×(9﹣8.6)2+4×(10﹣8.6)2]=1.84,∵S2甲<S2乙,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为×(7+8×2+9×4+10)=8.625;乙同学的最后得分为×(3×7+9×2+10×3)=8.625;丙同学的最后得分为×(8×2+9×3+10×3)=9.125,∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.一十六.方差(共1小题)21.(2023•北京)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是 甲组 (填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为 170 和 172 .【答案】(1)166;165;(2)甲组;(3)170,172.【解答】解:(1)数据按由小到大的顺序排序:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,则舞蹈队16名学生的中位数为m==166,众数为n=165;(2)甲组学生身高的平均值是:=164.8,甲组学生身高的方差是:×[(164.8﹣162)2+(164.8﹣165)2+(164.8﹣165)2+(164.8﹣166)2+(164.8﹣166)2]=2.16,乙组学生身高的平均值是:=165.4,乙组学生身高的方差是:×[(165.4﹣161)2+(165.4﹣162)2+(165.4﹣164)2+(165.4﹣165)2+(165.4﹣175)2]=25.04,∵25.04>2.6,∴甲组舞台呈现效果更好.故答案为:甲组;(3)∵168,168,172的平均数为(168+168+172)=169,且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,∴数据的差别较小,可供选择的有170,172,平均数为:(168+168+170+172+172)=170,方差为:[(168﹣170)2+(168﹣170)2+(170﹣170)2+(172﹣170)2+(172﹣170)2]=3.2<,∴选出的另外两名学生的身高分别为170和172.故答案为:170,172.。

初中数学专题讲解2《中考试题中的数学文化》

初中数学专题讲解2《中考试题中的数学文化》
1
1
13
13
小正方形内的概率为 ,故答案为 .
答案

27

【文化背景】——海岛算经
《海岛算经》由刘徽于三国魏景元四年(公元263年)所撰,本为《九
章算术注》之第十卷,题为《重差》.全书共9题,所有问题都是利
用两次或多次测望所得的数据,来推算可望而不可及的目标的高、
深、广、远,因首题测算海岛的高、远而得名.此卷书被收集于明
在《方程》一章中,不仅阐发和增补了方程诸术,并且为这一理论
奠定了基础.盈不足术通过两次“假设检验”将一般数学问题化
为特定的盈亏类问题模式,而“方程”也是按照一定的规程进行
试验考核而得到的数学模式.

6

【对接考题】
3.(2019 大同二模)《九章算术》是中国传统数学最
重要的著作之一,其中记载:“今有共买物人出八,盈
2
2
) ].现已知△ABC 的三边长分别为
1,2, 5,则△ABC 的面积为
1
.
答案

24

【文化背景】——赵爽弦图
勾股定理是刻画直角三角形特征的一条重要定理,它的发现、验证、
应用蕴含着丰富的文化价值.中国古代的数学家们不仅很早就发
现并应用勾股定理,而且很早就尝试对勾股定理进行了证明.最早
对勾股定理进行证明的是汉代数学家赵爽,他以“弦图”为基本
算术》(1261年)一书中用如图的三角形解释二项和的乘方规律.
杨辉三角

16

【对接考题】
8.我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨
辉三角”数阵,其规律是从第三行起,每行两端的数都是“1”,其

2024年广东省中考数学真题卷含答案解析

2024年广东省中考数学真题卷含答案解析

机密★启用前2024年广东省初中学业水平考试数学满分120分 考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是( )A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D.538.410⨯4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是().A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a -=--_______.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233-⨯-+-.17. 如图,ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879在B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】的步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.的【23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.机密★启用前2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D. 538.410⨯【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =, ∴384000用科学记数法表示为53.8410⨯,故选:B .4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒【答案】C【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =【答案】D【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A. 14 B. 13 C. 12 D. 34【答案】A【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 20【答案】B【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴5=,故选:B .8. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>【答案】A【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.【答案】B【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x≤【解析】【分析】本题主要考查了求不等式组解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14. 计算:333a a a -=--_______.【答案】1【解析】的【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BF CF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCD BF h S S BC h ⋅=⋅菱形 ,即18224BF BC=,∴23BF BC =,∴2BF CF=,∴12212ABF CDF BF h S BF S CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+-.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+-111233⨯+-=11233=+-2=.17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,的GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m(2)66.7m【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到AQ =,接着解直角三角形得到BC =,进而求出AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴sin AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴tan CE BC CBE ==∠,∴AD =;∵180309060PAD =︒-︒-︒=︒∠,∴cos AP AD PAD =⋅=∠,∴ 6.1m PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CE BE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B 景区去游玩(2)王先生会选择A 景区去游玩(3)最合适的景区是B 景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.小问1详解】解:A 景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B 景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%815%640%615%6.9⨯+⨯+⨯+⨯=分,∵6.97.157.4<<,∴王先生会选择B 景区去游玩;【小问2详解】的【解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+的25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(23cm 【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180n ππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DF A DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F ,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O DO F DF DB DE BE ==,11O DDBDE O F =.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,216482563.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x=验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE=,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m , ∴将k y m =代入y ax =中得:k m ax =得,∴k x am=,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DHHEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =,∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴tan 30AP OP PD =︒⨯===,2AC BD AP ===,∴AB AD ===,OD BP PD =+=+, ∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-=,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。

初中数学人教版 实数课程标准及学习目标 人教版

初中数学人教版  实数课程标准及学习目标 人教版

3)若a与b互为倒数,则ab=1.
例:下列各数,哪两个数互为倒数?
8, 1 ,-1,+(-8),1, ( 1 )
8
8
6.绝对值
一个数a的绝对值就是数轴上
表示数a的点与原点的距离。
3
4
2
-3 –2 –1 0 1 2 3 4
1)数a的绝对值记作︱a︱;
若a>0,则︱a︱= a ; 2) 若a<0,则︱a︱= -a ;
1).分母只含有一个带根号的数: 综合运用分式的基本性质,
2).分母是含有一个带根数 号的和: a 2 aa 0和
(a b)(a b) a2 b2.
(4)乘方开方——①运用性质:
2 a a,
a. a 0 a2 a 0. a 0
4)有理数除法法则
①除以一个数等于乘上这个数的倒数;
即 a÷b=a× 1 (b≠0) b
② 两数相除,同号得正,异号得负, 并把绝对值相除;
0除以任何一个不等于0的数,都 得0.
5)有理数的乘方
①求n个相同因数的积的运算,叫做乘方。
即a·a·a· ·a·n· ·a=
n个 幂
a n 指数
底数
②正数的任何次幂都是正数; 负数的奇次幂是负数, 负数的偶次幂是正数.
一般地,如果一个数x的平方等于a,即 x2=a,那么这个数x就叫做a的平方根 (square root),记为“ ±a ”,读作 “正负根号a” .特别地,我们规定0的平 方根是0,即0 ± =0.
•你发现它们的区别了吗!
11.平方根与算术平方根
在“如果x2=a,那么x= a ”中.其隐含的条件有: 1.x≥0(即 a ≥0 ),2.a≥0 ; 3.( a )2=a ;4. a 2 =a.

初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习


在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0

x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .

2024年河南省中考数学试题含答案解析

2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1. 如图,数轴上点P 表示的数是( )A. 1−B. 0C. 1D. 2 【答案】A【解析】【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P 表示的数为1−,从而求解.【详解】解:根据题意可知点P 表示的数为1−,故选:A .2. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410×B. 105.78410×C. 115.78410×D. 120.578410× 【答案】C【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为10n a ×,其中110a ≤<,确定a 和n 的值是解题的关键.用科学记数法表示绝对值较大的数时,一般形式为10n a ×,其中110a ≤<,且n 比原来的整数位数少1,据此判断即可.【详解】解:5784亿11578400000000 5.78410=×.故选:C .3. 如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°【答案】B【解析】【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=°,AB CD ∥,∴150BAC ∠=∠=°,故选:B .4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为()A. B.C. D.【答案】A【解析】【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5. 下列不等式中,与1x −>组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x −D. 3x >− 【答案】A【解析】【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x −>,可得1x <−,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意;故选:A6. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A 12 B. 1 C. 43 D. 2【答案】B【解析】【分析】本题考查了相似三角形判定与性质,平行四边形的性质等知识,利用平行四边形的性质、线段中点定义可得出14CE AC =,证明CEF CAB ∽△△,利用相似三角形的性质求解即可. 【详解】解∶∵四边形ABCD 是平行四边形,.的∴12OC AC =, ∵点E 为OC 的中点, ∴1124CE OC AC ==, ∵EF AB ∥,∴CEF CAB ∽△△, ∴EF CE AB AC =,即144EF =, ∴1EF =,故选:B .7. 计算3···a a a a个的结果是( ) A. 5aB. 6aC. 3a a +D. 3a a 【答案】D【解析】【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( ) A. 19 B. 16 C. 15 D. 13【答案】D【解析】【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种, ∴两次抽取的卡片图案相同的概率为3193=. 故选∶D .9. 如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π【答案】C【解析】【分析】过D 作DE BC ⊥于E ,利用圆内接四边形的性质,等边三角形的性质求出120BDC ∠=°,利用弧、弦的关系证明BD CD =,利用三线合一性质求出12BE BC ==,1602BDE BDC ∠=∠=°,在Rt BDE △中,利用正弦定义求出BD ,最后利用扇形面积公式求解即可.【详解】解∶过D 作DE BC ⊥于E ,∵O 是边长为的等边三角形ABC 的外接圆,∴BC =,60A ∠=°,180∠+∠=°BDC A , ∴120BDC ∠=°,∵点D 是 BC的中点, ∴ BDCD =, ∴BD CD =,∴12BE BC ==,1602BDE BDC ∠=∠=°,∴4sin BE BD BDE ==∠, ∴21204163603ππS ⋅==阴影, 故选:C .【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A ,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多【答案】C【解析】 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项:_______.【答案】m (答案不唯一)【解析】【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.【答案】9【解析】【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案:9.13. 若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为___________. 【答案】12##0.5【解析】【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =−−×=,再求解即可. 【详解】解∶∵方程2102x x c −+=有两个相等的实数根, ∴()21Δ1402c =−−×=, ∴12c =, 故答案为:12.14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.【答案】()3,10【解析】【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=°,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,为则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=°, ∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20−,,点F 的坐标为()06,, ∴2AO =,6FO =,∴2BO AB AO a =−=−,在Rt BOF △中,222BO FO BF +=,∴()22226a a −+=,解得10a =,∴4FG OG OF =−=,8GE CD DG CE CE =−−=−,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE −+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15. 如图,在Rt ABC △中,90ACB ∠=°,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.【答案】 ①. 1+##1+②. 1−##1−+【解析】【分析】根据题意得出点D 在以点C 为圆心,1为半径的圆上,点E 在以AB 为直径的圆上,根据cos AE AB BAE =⋅∠,得出当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,根据当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,分别画出图形,求出结果即可.【详解】解:∵90ACB ∠=°,3CA CB ==, ∴190452BAC ABC ∠=∠=×°=°, ∵线段CD 绕点C 在平面内旋转,1CD =,∴点D 在以点C 为圆心,1为半径的圆上,∵BE AE ⊥, ∴90AEB ∠=°, ∴点E 在以AB 为直径的圆上,在Rt ABE △中,cos AE AB BAE =⋅∠,∵AB 为定值,∴当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,∴当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥,∴90ADE CDE ∠=∠=°,∴AD =∵ AC AC=, ∴45CED ABC ==°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =+=+,即AE 的最大值为1+;当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥,∴90CDE ∠=°,∴AD =∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =°−=°∠∠,∴18045CED CEA =°−=°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =−=−,即AE 的最小值为1−;故答案为:1+;1−.【点睛】本题主要考查了切线的性质,圆周角定理,圆内接四边形的性质,勾股定理,等腰三角形的性质,解直角三角形的相关计算,解题的关键是作出辅助线,熟练掌握相关的性质,找出AE 取最大值和最小值时,点D 的位置.三、解答题(本大题共8个小题,共75分)16. (1(01−; (2)化简:231124a a a + +÷ −− . 【答案】(1)9(2)2a +【解析】【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式1−101=−9=;(2)原式()()3212222a a a a a a −+ =+÷ −−+− ()()22121a a a a a +−+⋅−+ 2a =+.17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.5 8 2乙26 10 3根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1×−,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【答案】(1)甲 29(2)甲(3)乙队员表现更好【解析】【分析】本题考查了折线统计图,统计表,中位数,加权平均数等知识,解题的关键是∶(1)根据折线统计图的波动判断得分更稳定的球员,根据中位数的定义求解即可;(2)根据平均每场得分以及得分的稳定性求解即可;(3)分别求出甲、乙的综合得分,然后判断即可.【小问1详解】解∶从比赛得分统计图可得,甲的得分上下波动幅度小于乙的的得分上下波动幅度,∴得分更稳定的队员是甲,乙的得分按照从小到大排序为14,20,28,30,32,32,最中间两个数为28,30,∴中位数为2830292+=, 故答案为∶乙,29;【小问2详解】解∶ 因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好;【小问3详解】解∶甲的综合得分为()26.518 1.52136.5×+×+×−=, 乙的综合得分为()26110 1.53138×+×+×−=, ∵36.538<,∴乙队员表现更好.18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.【答案】(1)6y x= (2)见解析 (3)92【解析】 【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是: (1)利用待定系数法求解即可;(2)分别求出1x =,2x =,6x =对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【小问1详解】 解:反比例函数k y x =的图象经过点()3,2A , ∴23k =, ∴6k =, ∴这个反比例函数的表达式为6y x =; 【小问2详解】解:当1x =时,6y =,当2x =时,3y =,当6x =时,1y =, ∴反比例函数6y x=的图象经过()1,6,()2,3,()6,1, 画图如下:【小问3详解】解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=, 解得32x =, ∴平移距离为39622−=. 故答案为:92. 19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E D C 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是: (1)根据作一个角等于已知角的方法作图即可;(2)先证明四边形CDBF 是平行四边形,然后利用直角三角形斜边中线的性质得出12CDBD AB ==,最后根据菱形的判定即可得证.【小问1详解】解:如图,;【小问2详解】证明:∵ECM A ∠=∠,∴CM AB ∥,∵∥B E D C ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边AB 上的中线,∴12CD BD AB ==, ∴平行四边形CDBF 是菱形.20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30°,在点P 处看塑像顶部点A 的仰角APE ∠为60°,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈). 【答案】(1)见解析 (2)塑像AB 的高约为6.9m【解析】【分析】本题考查了圆周角定理,三角形外角的性质,解直角三角形的应用等知识,解题的关键是: (1)连接BM ,根据圆周角定理得出AMB APB ∠=∠,根据三角形外角的性质得出AMB ADB ∠>∠,然后等量代换即可得证;(2)在Rt AHP 中,利用正切的定义求出AH ,在Rt BHP △中,利用正切的定义求出BH ,即可求解.【小问1详解】证明:如图,连接BM .则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=°,6PH =. ∵tan AH APH PH∠=,∴tan 606AH PH ⋅° ∵30APB ∠=°,∴603030BPH APH APB ∠=∠−∠=°−°=°.在Rt BHP △中,tan BHBPH PH∠=,∴tan 306BH PH ⋅°.∴()4 1.73 6.9m ABAH BH =−=−≈×≈. 答:塑像AB 的高约为6.9m .21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A ,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品?【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A 种食品x 包,B 种食品y 包,根据“从这两种食品中摄入4600kJ 热量和70g 蛋白质”列方程组求解即可;(2)设选用A 种食品a 包,则选用B 种食品()7−a 包,根据“每份午餐中的蛋白质含量不低于90g ”列不等式求解即可.小问1详解】解:设选用A 种食品x 包,B 种食品y 包,根据题意,得7009004600,101570.x y x y += +=解方程组,得4,2.x y = =答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7−a 包,根据题意,得()1015790a a +−≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+−=−+. ∵2000−<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a −=−=.答:选用A 种食品3包,B 种食品4包.22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可; (2)把010v t =,20h =代入205h t v t =−+求解即可; (3)由(2),得2520h t t =−+,把15h =代入,求出t 的值,小问1详解】解:205h t v t =−+ 220051020v v t =−−+ , ∴当010v t =时,h 最大, 故答案为:010v ; 【小问2详解】解:根据题意,得 当010v t =时,20h =, ∴20005201010v v v −×+×=, ∴()020m /s v =(负值舍去);【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =−+,当15h =时,215520t t =−+,解方程,得11t =,23t =,∴两次间隔的时间为312s −=, 【∴小明的说法不正确.23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示). (3)拓展应用如图3,在Rt ABC △中,90B ∠=︒,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.【答案】(1)②④ (2)①ACD ACB ∠=∠.理由见解析;②2cos m n θ+(3 【解析】【分析】(1)根据邻等对补四边形的定义判断即可;(2)①延长CB 至点E ,使BE DC =,连接AE ,根据邻等对补四边形定义、补角的性质可得出ABE D ∠=∠,证明()SAS ABE ADC ≌,得出E ACD ∠=∠,AE AC =,根据等边对等角得出E ACB ∠=∠,即可得出结论;②过A 作AF EC ⊥于F ,根据三线合一性质可求出2m n CF +=,由①可得ACD ACB θ∠=∠=,在Rt AFC △中,根据余弦的定义求解即可;(3)分AB BM =,AN AB =,MN AN =,BM MN =四种情况讨论即可.【小问1详解】解:观察图知,图①和图③中不存在对角互补,图2和图4中存在对角互补且邻边相等,故图②和图④中四边形是邻等对补四边形,故答案为:②④;【小问2详解】解:①ACD ACB ∠=∠,理由:延长CB 至点E ,使BE DC =,连接AE ,∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=°,∵180ABC ABE ∠+∠=°,∴ABE D ∠=∠,∵AB AD =,∴()SAS ABE ADC ≌,∴E ACD ∠=∠,AE AC =,∴E ACB ∠=∠,∴ACD ACB ∠=∠;②过A 作AF EC ⊥于F ,∵AE AC =, ∴()()1112222m n CF CE BC BE BC DC +==+=+=, ∵2BCD θ∠=,∴ACD ACB θ∠=∠=,在Rt AFC △中,cos CF θAC=, ∴cos 2cos CF m n AC θθ+==; 【小问3详解】解:∵90B ∠=︒,3AB =,4BC =,∴5AC ,∵四边形ABMN 是邻等对补四边形,∴180ANM B ∠+∠=°,∴90ANM =°,当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H ,∴22218AM AB BM =+=,在Rt AMN 中222218MN AM AN AN =−=−,在Rt CMN 中()()22222435MN CM CN AN =−=−−−,∴()()22218435AN AN −=−−−,解得 4.2AN =, ∴45CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即45534NH CH ==, ∴1225NH =,1625CH =, ∴8425BH =,∴BN ; 当AN AB =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴BM NM =,故不符合题意,舍去;当AN MN =时,连接AM ,过N 作NH BC ⊥于H ,∵90MNC ABC ∠=∠=°,C C ∠=∠, ∴CMN CAB ∽△△, ∴CN MN BC AB =,即543CN CN −=,解得207CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即207534NH CH ==, ∴127NH =,167CH =, ∴127BH =,∴BN ; 当BM MN =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;综上,BN . 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等知识,明确题意,理解新定义,添加合适辅助线,构造全等三角形、相似三角形是解题的关键.。

中考数学专题-实数的有关概念与计算-(解析版)

实数的有关概念与计算姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·安徽中考真题)9-的绝对值是()A.9B.9-C.19D.19-【答案】A【分析】利用绝对值的定义直接得出结果即可【详解】解:9-的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.3.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是( ) A .4-B .4-C .0D . 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A .【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.4.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 5.(2021·四川凉山彝族自治州·中考真题)下列数轴表示正确的是( )A .B .C .D . 【答案】D【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A 、不符合数轴右边的数总比左边的数大的特点,故表示错误;B 、不符合数轴右边的数总比左边的数大的特点,故表示错误;C 、没有原点,故表示错误;D 、符合数轴的定定义,故表示正确;故选D .【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.6.(2021·四川泸州市·中考真题)2021的相反数是( )A .2021-B .2021C .12021- D .12021【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:2021的相反数是:-2021.故选:A .【点睛】此题主要考查了相反数,正确掌握相关定义是解题关键.7.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ).A .5元B .5-元C .3-元D .7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解. 8.(2021·浙江中考真题)实数2-的绝对值是( )A .2-B .2C .12 D .12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B .【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.9.(2021·江苏连云港市·中考真题)3-相反数是( )A .13B .3-C .13-D .3【答案】D【分析】根据相反数的意义,只有符号不同的两个数称为相反数.【详解】解:3-的相反数是3.故选:D .【点睛】本题考查了相反数的意义.只有符号不同的两个数为相反数,0的相反数是0.10.(2021·甘肃武威市·中考真题)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( ) A .8510⨯B .9510⨯C .10510⨯D .85010⨯【答案】B【分析】结合科学计数法的表示方法即可求解.【详解】解:50亿即5000000000,故用科学计数法表示为9510⨯,故答案是:B .【点睛】本题考察科学计数法的表示方法,难度不大,属于基础题。

八年级数学实数的概念及数轴的三要素试题

初二数学实数的概念及数轴的三要素华东师大版【本讲教育信息】一. 教学内容:实数的概念及数轴的三要素及实数与数轴上的点之间的一一对应关系二. 学习目的1、使学生理解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能理解实数绝对值的意义。

3、使学生能理解数轴上的点具有一一对应关系。

4、由实数的分类,浸透数学分类的思想。

5、由实数与数轴的一一对应,浸透数形结合的思想。

三. 重、难点知识的归纳与剖析1、无理数及实数的概念无限不循环小数成为无理数。

无理数的形式。

有理数与无理数统称为实数〔Real number〕。

2、有理数与无理数的区别。

实数,小数,分数的关系。

3、实数的分类4、学会利用数轴解决实数的问题,实数与数轴上的点一一对应是指:〔1〕每一个实数都可以用数轴上的点来表示;〔2〕数轴上的每一个点都表示一个实数。

5、用计算器求一个实数或者多个实数的运算应注意准确度,或者根据准确度取近似数.【典型例题】例1、把…分别填入有理数集合___________,无理数集合___________,实数集合___________。

答案:有理数集合:无理数集合:实数集合:例2、假设m的相反数是,那么m=___________,|m|=___________。

解:由题意,得例3、化简、求值〔1〕=___________;〔2〕=___________;〔3〕=___________;〔4〕假设x2=〔-1.21〕2,那么x=___________.解:〔1〕∵表示〔-3〕2这个数的算术平方根;〔2〕±表示32的平方根;〔3〕表示10-2的负的平方根;〔4〕∵ x2=〔-1.21〕2,∴x是〔-1.21〕2的平方根.∴〔1〕3 〔2〕±3 〔3〕-〔4〕±1.21例4、〔2021年,东城区〕在实数中,无理数有〔〕A、1个B、2个C、3个D、4个分析:因为实数包括有理数和无理数两大类,所以在实数集合中,非有理数,即是无理数;反之,非无理数,即是有理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数与式
第一节实数的相关概念
中考试题中的数学文化
一、中国人最先使用负数
【文化背景】
中国人最先使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.
【中考对接】
1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10 ℃记作+10 ℃,则-3 ℃表示气温为()
A. 零上3 ℃
B. 零下3 ℃
C. 零上7 ℃
D. 零下7 ℃
二、无理数的发现
【文化背景】
毕达哥拉斯学派中的一名成员希伯索斯发现了无理数2,导致了第一次数学危机.后来,古希腊人终于正视了希伯索斯的发现,并进一步给出了证明过程.
【中考对接】
2.阅读下列材料,完成相应任务.
2是无理数的证明如下:
假设边长为1的正方形的对角线长可写成两个互质的正整数m、n之比n
m,于是有(n
m)2=2,n2=2m2.
∵2m2是偶数,∴n2也是偶数,
∴n是偶数,
设n=2t(t是正整数),则n2=4t2,即4t2=2m2,
∴m,n都是偶数,不互质,与假设矛盾.
∴假设错误.
人教七下P58,北师八上P24,华师八上P12
任务:
(1)材料中证明“2”是无理数的方法是________;
(2)模仿材料中的证明方法,请判断3是否为无理数并给出理由.
参考答案
中考试题中的数学文化
1. B
2.解:(1)反证法;
(2)3是无理数.
证明:假设3是有理数,则存在两个互质的正整数m、n,使得3=n
m,于是有3m2=n2,
∵3m2是3的倍数,
∴n2也是3的倍数,
∴n是3的倍数.
设n=3t(t是正整数),则n2=9t2,
即9t2=3m2.
∴3t2=m2,
∴m也是3的倍数,
∴m,n都是3的倍数,不互质,与假设矛盾,∴假设错误,
∴3是无理数.。

相关文档
最新文档