第四章 离子注入

合集下载

第四章 离子注入

第四章 离子注入

❖ 根据LSS射程分布的理论,离子注入非晶靶后的杂质浓度 以高斯函数的形式分布
C(xp)Cmaex x p([2 x(p RRpp)2 )2]
ΔRp :标准偏差
RP:平均投影射程
xp :投影射程
Cmax:峰值处的离子浓度
C(xp):表示距靶表面深度为xp处的注入离子浓度
精品课件
如果把杂质浓度分布公式对 xp 积分,就得到 单位面积的表面层中注入的总离子数,即注入剂量NS
低能 区
中能 区
dESnESeE
dx
高能 区
核阻止本领和电子阻止本领曲线
(1)低能区:Sn(E)占主要地位,Se(E)可忽略 (2)中能区:Sn(E)和Se(E)同等重要 (3)高能区:Se(E) 占主要地位, Sn(E) 可忽略
精品课件
1.2几个基本概念:射程、投影射程及 标准偏差
射程R : 离子从进入靶开始到停止点所通
精品课件
3) 离子注入的能量损失机制
获得一定能量后的靶原子核可能离开原来 的晶格位置。 ——若进入晶格间隙,留下空位,形 成缺陷; ——还可以继续碰撞另外一个原子核, 使一系列核离开晶格位置,造成晶体损 伤。 ——当剂量很高时,甚至可以使单晶 硅严重损伤以至变成无定形硅。
精品课件
❖单位路程上注入离子由于核阻止(Sn(E)) 和电子阻止(Se(E) )所损失的能量,总能量
过的总路程叫射程。
投影射程xp : 射程在离子入射方向的投影长度
称作投影射程。
射程横向分量Xt: 射程在垂直于入射 方向的平面内的投 影长度
精品课件
射程、投影射程及标准偏差
❖ 平均投影射程RP :虽然入射到靶内的是同一种离子、具
有的能量也相同,但是各个入射离子进入靶后所经历的碰 撞过程是一个随机过程,所以各个离子的射程和投影射程 不一定相同。大量入射离子投影射程的统计平均值称作平

第四章离子注入

第四章离子注入

碰撞,这种碰撞能瞬间形成电
子空穴对。由于两者的质量相
差很大,每次碰撞注入离子能
量损失小,散射角度小,运动
方向基本不变。
第四章离子注入
阻止本领(stopping power): 材料中注入离子的能量损 失大小。单位路程上注入
离子由于核阻止(Sn(E))
和电子阻止(Se(E) )所损失 的能量 。 核阻止本领Sn(E) :来自靶原子 核的阻止。 电子阻止本领Se(E) :来自靶内 自由电子和束缚电子的阻 止。
第四章 离子注入
第四章离子注入
4.1离子注入设备与工艺 4.2核碰撞和电子碰撞 4.3注入离子在无定形靶中的分布 4.4注入损伤 4.5热退火
第四章离子注入
❖ 离子注入技术是20世纪60年代开 始发展起来的掺杂工艺,它在很多方 面都优于扩散工艺.由于采用了离子 注入技术,推动集成电路的发展,从 而使集成电路进入了超大规模.
通过多次注入使杂质纵向分布精确可控,与高斯分布接近; 也可以将不同能量、剂量的杂质多次注入到衬底硅中, 使杂质分布为设计形状第。四章离子注入
9
离子注入有别于扩散工艺的特点表现在以下几 个方面: ❖ 1、可以用质量分析系统获得单一能量的高纯
杂质原子束,没有沾污。因此,一台注入机 可用于多种杂质。此外,注入过程是在真空
(如氧化硅、氮化硅、铝和光刻胶)进行选
择掺杂。在制备不能采用扩散工艺的器件时,
这为独特的自对准掩模技术的设计提供了很
大的自由度。
❖ 4、离子束的穿透深度随离子能量的增大而增
大,因此,控制同一种或不同种的杂质进行
多次注入时的能量和剂量,可以在很大的范
围内得到不同的掺杂剂浓度分布截面。用这
种方法比较容易获得超陡的和倒置的掺杂截

第4章离子注入

第4章离子注入

离子注入掺杂
发展历史: 1954年肖克莱首先提出并申请了专利。 1955年英国人W. D. Gussins 用硼离子轰击 Ge晶片,在n型材料上形成p型层,但当时对 p-n结形成机理不很清楚,所以这一新技术没 有得到人们重视。 随着原子能技术的发展,对于离子束对 物质轰击效果的研究,强离子束设备的出现, 为离子注入的发展奠定了基础。
掩蔽层
Mask
xj Silicon substrate
Mask
Silicon substrate
a) 低掺杂浓度与浅结
b) 高掺杂浓度与深结
聚焦方式的优点是不需掩模,图形形成灵活。
缺点是 生产效率低,设备复杂,控制复杂。聚焦方
式的关键技术是
1、高亮度、小束斑、长寿命、高稳定的离子源;
2、将离子束聚焦成亚微米数量级细束并使之偏转
液态金属
同轴形
毛细管形
钨针
对液态金属的要求 (1) 与容器及钨针不发生任何反应; (2) 能与钨针充分均匀地浸润;
(3) 具有低熔点低蒸汽压,以便在真空中及不太
高的温度下既保持液态又不蒸发。
能满足以上条件的金属只有 Ga、In、Au、Sn
等少数几种,其中 Ga 是最常用的一种。
E3 E1 是主高压,即离子束的 加速电压;E2 是针尖与引出极
离子注入概述
扩散掺杂
• 最先被采用的半导体掺杂技术 • 是早期集成电路制造中最重要的技术之一,高温炉 通称为“扩散炉”。 • 需在高温炉中进行 • 需使用二氧化硅作掩膜 • 无法独立控制结深和浓度 • 各向同性 • 杂质剂量控制精度较差。 自1970年中期开始离子注入技术被广泛采用。扩散技 术目前主要应用于杂质的推进,以及用于形成超浅结 (仍处于研发中)。

第四章离子注入

第四章离子注入

4.1 核碰撞和碰撞
4.1.3 射程粗略估计 LSS模型:引入简化的无量纲的能量参数ε和射程参 数ρ,即 ρ = (RNM1M24πa2)/(M1+M2)2 ε = E0aM2/[Z1Z2q2(M1+M2)] N- 单位体积的原子数; 1/2 作图,得图4.5 以dε/dρ–ε
4.1 核碰撞和电子碰撞
第四章 离子注入
定义:将带电的、且具有能量的粒子入射到衬底中。 应用:COMS工艺的阱,源、漏,调整VT的沟道掺杂, 防止寄生沟道的沟道隔断,特别是浅结。 特点: ①注入温度低:对Si,室温;对GaAs,<400℃。 (避免了高温扩散的热缺陷;光刻胶,铝等都可作为掩 蔽膜。) ②掺杂数目完全受控:同一平面杂质均匀性和重复性在 ±1%(高浓度扩散5%-10%);能精确控制浓度分 布及结深,特别适合制作高浓度浅结、突变型分布。

注入离子能量与阻挡本领 ①高能区:电子阻挡占主要,核阻挡可忽略。 ②中能区:核阻挡占与电子阻挡相当; ③低能区:核阻挡占主要,电子阻挡可忽略;
4.1 核碰撞和电子碰撞
临界能量(交叉能量)Ene( Ec): Sn(E)=Se(E)处的能量。 ①Ene随注入离子原子量 的增加而增大。 ②轻离子,B: Ene≈15keV, 重离子,P: Ene≈150keV。
4.2 注入离子分布
1.总射程R 定义:注入离子在靶内走过的路径之和。 R与E的关系:根据能量的总损失率, dE dE dE , S E S E
dR dR
n
dR
e
n
e
1 E0 dE S n E S e E dE 则, R dR E0 0 dE / dR 0
第四章 离子注入

第四章:离子注入.

第四章:离子注入.

2. 引出电极(吸极)和离子分析器
吸极用于把离子从离子源室中引出。


质量分析器磁铁
分析器磁铁形成90°角,其磁场使离子的轨迹偏转成
弧形。不同的离子具有不同的质量与电荷(如BF3→
B+、BF2+等),因而在离子分析器磁场中偏转的角 度不同,由此可分离出所需的杂质离子。
分析磁体
3. 加速管
加速管用来加速正离子以获得更高的速度(即动 能)。
SOI结构SEM照片
4.5 离子注入设备

离子注入机主要由以下5个部分组成
1. 离子源 2. 引出电极(吸极)和离子分析器 3. 加速管
4. 扫描系统
5. 工艺室

离子注入系统
1. 离子源

离子源用于产生 大量的注入正离 子的部件,常用 的杂质源气体有 BF3、 AsH3 和 PH3 等。
离子源
QBm=q· NB· Xdm, QBm为表面耗尽层单位面积上的电荷密度

轻掺杂漏(LDD:Lightly Doped Drain ) 注入

源漏注入


多晶硅栅掺杂注入 沟槽电容器注入

超浅结注入
超浅结


绝缘体上的硅(SOI)中的氧注入
在硅中进行高能量氧离子注入,经高温处理后形 成SOI结构(silicon on insulator)
χ — 离样品表面的深度
Rp — 平均投影射程
Scharff and Schiott首
先确立了注入离子在靶 内分布理论, 简称 LSS 理论
△Rp — 投影射程的平均标准偏差

离子注入的浓度分布曲线

离子注入浓度分布的最大浓度Nmax

第四章离子注入

第四章离子注入
分析磁体 粒子束
加速管
工艺腔 扫描盘
工艺控制参数
❖ 杂质离子种类:P+,As+,B+,BF2+,P++,B++,… ❖ 注入能量(单位:Kev)——决定杂质分布深度和形状,
10~200Kev ❖ 注入剂量(单位:原子数/cm2)——决定杂质浓度 ❖ 束流(单位:mA或uA)——决定扫描时间 ❖ 注入扫描时间(单位:秒)——决定注入机产能
Figure 17.15
中性束造成的注入不均匀性
带正电的离子束从质量分析器出来到硅片表面的过程中,
要经过加速、聚焦等很长距离,这些带电粒子将同真空系统中
的残余气体分子发生碰撞,其中部分带电离子会同电子结合,
成为中性的粒子。
对于出现在扫描 系统以前的中性粒子
没有偏转的中性束粒子继续向前
,扫描电场对它已不
200 kev 注入离子在 靶中的高斯分布图
硼原子在不同入射能量 对深度及浓度分布图
高斯分布只在峰值附近 与实际分布符合较好
根据离子注入条件计算杂质浓度的分布
❖ 已知杂质种类(P,B,As),离子注入能量(Kev),靶材 (衬底Si,SiO2,Si3N4等)
求解step1:查LSS表可得到Rp和ΔRp
和电子阻止(Se(E) )所损失的能量,总能量 损失为两者的和。
ddE xSnESeE
-dE/dx:能量损失梯度
E:注入离子在其运动路程上任一点x处的能量
Sn(E):核阻止本领
能量E的函数
Se(E):电子阻止本领
C: 靶原子密度 ~51022 cm-3 for Si
能量为E的 入射粒子在 密度为C的 靶内走过x 距离后损失 的能量

集成电路工艺第四章:离子注入

集成电路工艺第四章:离子注入

其中N为入射离子总数, 为第i 其中N为入射离子总数,RPi为第i个离子的投影射 程
离子投影射程的平均标准偏差△ 离子投影射程的平均标准偏差△RP为
其中N 其中N为入射离子总数 Rp 为平均投影射程 Rpi为第 Rpi为第i个离子的投影射程 为第i
离子注入浓度分布
LSS理论描述了注入离子在无定形靶中的浓度分布 LSS理论描述了注入离子在无定形靶中的浓度分布 为高斯分布其方程为
其中φ为注入剂量 其中 为注入剂量 χ为离样品表面的深度 为离样品表面的深度 Rp为平均投影射程 为平均投影射程 △Rp为投影射程的平均标准偏差 为投影射程的平均标准偏差
离子注入的浓度分布曲线
离子注入浓度分布的最大浓度Nmax 离子注入浓度分布的最大浓度Nmax
从上式可知,注入离子的剂量φ越大, 从上式可知,注入离子的剂量φ越大,浓度峰值越高 从浓度分布图看出, 从浓度分布图看出,最大浓度位置在样品内的平均投 影射程处
4.2 离子注入工艺原理
离子注入参数
注入剂量φ 注入剂量 注入剂量φ是样品表面单位面积注入的离子总数 是样品表面单位面积注入的离子总数。 注入剂量 是样品表面单位面积注入的离子总数。单 位:离子每平方厘米
其中I为束流,单位是库仑每秒( 其中 为束流,单位是库仑每秒(安 培) t为注入时间,单位是秒 为注入时间, 为注入时间 q为电子电荷,等于 ×10-19库仑 为电子电荷, 为电子电荷 等于1.6× n为每个离子的电荷数 为每个离子的电荷数 A为注入面积,单位为 2 —束斑 为注入面积, 为注入面积 单位为cm
2267 475 866 198 673 126
4587 763 1654 353 1129 207
6736 955 2474 499 1553 286

第四章 离子注入

第四章 离子注入

2 2 2 x R 1 1 y z p f x , y , z 3 exp 2 2 2 / 2 2 Y Z 2 R Y Z R p p
25
26
三、一级近似得到的高斯分布,在峰值附近与实际分布符合
较好,距峰值较远时有一定偏离 原因: 高斯分布是在随机注入条件下得到的粗略结果,那些碰撞 次数小于平均值的离子,可能停止在比Rp更远处; 而碰撞次数大于平均值的离子可能停在表面与Rp之间; 实际注入时还有更多影响离子分布的因素需考虑: B:峰值靠近表面一侧的离子数量高于另一侧(轻,大角 度散射),不服从严格的高斯分布,出现明显的不对称性, 如下图所示; As:x > Rp一侧有较多的离子分布(重,散射角小),同 样也偏离了理想的高斯分布。 尽管如此,实践中通常仍利用理想高斯分布来快速估算 注入离子在非晶靶以及单晶靶材料中的分布。 27
S E CV k E e e
1 2
其中V为注入离子的速度,系数ke与注入离子的原子序数、质
量、靶材料的原子序数和质量有着微弱的关系。在粗略近似下, 对于无定形硅靶来说, ke为一常数。
17
4.1.3 射程的粗略估计
根据LSS理论,得到核阻止本领和电子阻止本领曲线,如 下图所示,其中和是无量纲的能量和射程参数。
5
目 录
4.1 核碰撞和电子碰撞
4.2 注入离子在无定形靶中的分布
4.3 注入损伤
4.4 热退火
6
4.1 核碰撞和电子碰撞
注入离子在靶内的分布理论(LSS理论)
1963年,林华德(Lindhard),沙夫(Scharff)和希奥特(Schiott) 首先确立:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2几个基本概念:射程、投影射程及 标准偏差
射程R : 离子从进入靶开始到停止点所通
过的总路程叫射程。
投影射程xp : 射程在离子入射方向的投影长度
称作投影射程。
射程横向分量Xt: 射程在垂直于入射 方向的平面内的投 影长度
射程、投影射程及标准偏差
平均投影射程RP :虽然入射到靶内的是同一种离子、具
有的能量也相同,但是各个入射离子进入靶后所经历的碰 撞过程是一个随机过程,所以各个离子的射程和投影射程 不一定相同。大量入射离子投影射程的统计平均值称作平
均投影射程,用RP表示。 标准偏差ΔRp:各个入射离子的投影射程 xp 分散地分布
在平均投影射程 RP 周围,用标准偏差ΔRp 表示 xp 的分


0 C(xp )dxp
0
Cmax
exp{
1 2
[
(
x
p Rp Rp
)
]2}
p
经变换和简化后,可以得到注入剂量、
标准偏差和峰值浓度之间的近似关系:深度为 Rp时的离子浓度为最大值。
Cmax(x Rp )
Ns 0.4NS
2 Rp Rp
注:注入剂量和杂质浓度的关系
C(
x
p
)

Cm
ax
exp[
(
xp Rp)2 2(Rp )2
]
ΔRp :标准偏差
RP:平均投影射程
xp :投影射程
Cmax:峰值处的离子浓度
C(xp):表示距靶表面深度为xp处的注入离子浓度
如果把杂质浓度分布公式对 xp 积分,就得到 单位面积的表面层中注入的总离子数,即注入剂量NS
NS
而吸收离子能量的电子,将会: ——使原子的外层电子脱离靶材,
产生二次电子; ——使原子中的电子能级发生跃迁,
回落时,释放能量,放出光子而发光。
1
电子阻止: Se E E 2
对于轻离子、高能量条件下占主导地位
2)离子与靶原子核碰撞:可看作弹性碰 撞。因两者的质量往往是同一个量级, 一次碰撞可以损失较多能量,且可能发 生大角度散射。
剂量(个数/面积):往 下看,单位面积下所有深 度内有多少条鱼
浓度(个数/体积):特定区 域单位体积内有多少条鱼
常用离子在硅中的射程等数据
能量(Kev)
B
RP
ΔRp
P
RP
ΔRp
As
RP ΔRp
20
662 283 253 119 159
59
50 100 120 160 200
1608 2994 3496 4432 5297 504 710 766 854 921 607 1238 1497 2019 2539 256 456 528 659 775 322 582 686 898 1114 118 207 241 308 374
能量为E的
入射粒子在 密度为C的
靶内走过x
距离后损失 的能量
则入射离子总的能量损失为:
低能 区
中能 区
dE SnE SeE
dx
高能 区
核阻止本领和电子阻止本领曲线
(1)低能区:Sn(E)占主要地位,Se(E)可忽略 (2)中能区:Sn(E)和Se(E)同等重要 (3)高能区:Se(E) 占主要地位, Sn(E) 可忽略
离子注入技术的特点
杂质纯 剂量均匀 温度低、掩蔽方便 杂质分布灵活 杂质不受固溶度的限制 横向扩散小 适合实现化合物半导体的掺杂 缺点:造成晶格损伤、设备昂贵等
离子注入基本原理
离子注入过程是一个非平衡过程,高能离子进入靶后不 断与原子核及其核外电子碰撞,逐步损失能量,最后停 下来。停下来的位置是随机的,大部分不在晶格上,因 而没有电活性。
LOGO
第四章 离子注入

本章内容
概述 离子注入基本原理 射程与注入离子的分布 离子注入设备系统 实际的入射离子分布问题 注入损伤与退火 离子注入在MOS IC中的应用
概述
离子注入技术是六十年代发展起来,目前在IC制造 中占主导地位的一种掺杂技术
基本原理——将杂质原子经过离化变成带电的杂质 离子,并使其在电场中加速,获得一定能量后,直 接轰击到半导体基片内,使之在体内形成一定的杂 质分布,起到掺杂的作用。
一般CMOS工艺流程需6~12次离子注入
典型的离子注入工艺参数:能量约5~200KeV,剂量 约1011~1016/cm2,注入深度平均可达10nm~10um
定义核阻止: dE SnE
dx n
当能量较低时,E Sn 当能量较高时,E Sn
能量损失率与离子能量的关系
Sn在某个能量处有极大值,重离子、低能量时核阻 止占主导地位
3) 离子注入的能量损失机制
获得一定能量后的靶原子核可能离开原来 的晶格位置。 ——若进入晶格间隙,留下空位,形 成缺陷; ——还可以继续碰撞另外一个原子核, 使一系列核离开晶格位置,造成晶体损 伤。 ——当剂量很高时,甚至可以使单晶 硅严重损伤以至变成无定形硅。
散情况。
Rp (xp Rp )2 1/2
1.3 注入离子的分布
LSS理论:有很多科学家对于离子注入后的杂质分布做了深 入的研究,其中最有名的也是最成功的是LSS理论。它是 Linhard、Scharff和Schiott三人首先确立的。
根据LSS射程分布的理论,离子注入非晶靶后的杂质浓度 以高斯函数的形式分布
单位路程上注入离子由于核阻止(Sn(E)) 和电子阻止(Se(E) )所损失的能量,总能量
损失为两者的和。
dE dx


Sn
E

S
e
E
-dE/dx:能量损失梯度
E:注入离子在其运动路程上任一点x处的能量
Sn(E):核阻止本领
能量E的函数
Se(E):电子阻止本领
C: 靶原子密度 ~51022 cm-3 for Si
1.1 离子的碰撞
1)离子和核外电子的碰撞:可看成非弹性碰 撞。由于离子质量比电子质量大很多,每 次碰撞损失很少的离子能量,且是小角度 散射。
Se-电子阻止 dE SeE
dx e
散射方向是随机的,多次散射的结果,离子 运动方向基本不变。
阻止本领:材料中注入离子的能量损失大小。
200 kev 注入离子在 靶中的高斯分布图
硼原子在不同入射能量 对深度及浓度分布图
高斯分布只在峰值附近 与实际分布符合较好
根据离子注入条件计算杂质浓度的分布
相关文档
最新文档