(完整版)正反比例练习题2

合集下载

正反比例的练习题

正反比例的练习题

正反比例的练习题练习题一:某商店购买10个商品的总价格为20元,那么购买20个商品的总价格是多少?解答:我们可以设商品的单价为x元。

根据题意,10个商品的总价格为20元,那么可以得到等式:10x = 20解得:x = 2因此,商品的单价为2元。

再根据单价,我们可以计算购买20个商品的总价格:20 × 2 = 40所以,购买20个商品的总价格是40元。

练习题二:一辆汽车以每小时60公里的速度行驶,行驶2小时所走的路程是多少?解答:根据题意,汽车以每小时60公里的速度行驶,那么可以得到等式:60 × 2 = 路程解得:路程 = 120公里所以,一辆汽车行驶2小时所走的路程是120公里。

练习题三:甲、乙两人同时开始在同一地点往同一方向行走,甲每分钟行进20米,乙每分钟行进15米。

他们相遇需要多少时间?解答:根据题意,甲每分钟行进20米,乙每分钟行进15米。

他们相遇相当于他们行进的距离之和等于他们相遇的地点距离出发地点的距离。

假设他们相遇所需要的时间为t分钟。

那么可以得到等式:20t + 15t = 距离解得:35t = 距离由于他们同时开始,在同一地点往同一方向行走,所以距离相等,即甲、乙相遇所需要的时间为t分钟。

练习题四:小明在做练习,每分钟可以做6道数学题,如果他共用时18分钟,那么他一共做了多少道数学题?解答:根据题意,小明每分钟可以做6道数学题,共用时18分钟。

假设他一共做了x道数学题。

那么可以得到等式:6 × 18 = x解得:x = 108所以,小明一共做了108道数学题。

练习题五:某工程队10天可以修建完一条公路,现在计划增加工人的数量,问几天可以修建完?解答:根据题意,某工程队10天可以修建完一条公路。

假设增加工人的数量为x人,那么可以设修建完一条公路所需天数为t天。

那么可以得到等式:10 × x = t解得:t = 10x所以,增加工人的数量,修建完一条公路所需的天数是10x天。

(完整版)正反比例练习题

(完整版)正反比例练习题

正反比例练习题(1)一、判断下面两种相关联的量成不成比例,如果成比例,成什么比例。

11、分数的大小一定,它的分子和分母()比例。

12、全班人数一定,出勤人数和出勤率()比例。

13、正方体一个面的面积和它的表面积()比例。

14、在一定的时间里,做一个零件所用的时间和做零件的个数()比例。

15、圆的半径和面积()比例。

16、圆锥体的高一定,圆锥的底面半径和它的体积()比例。

17、4X=8Y,X和Y()比例。

18、车轮的直径一定,所行的路程和车轮的转数()比例。

19、圆柱的底面半径一定,圆柱的高和圆柱的体积()比例。

20、分数值一定,分子和分母()比例。

21、正方形的边长和面积()比例。

22、小麦的总重量一定,出粉率和面粉的重量()比例。

23、三角形的面积一定,底和高()比例。

24、要行一段路程,已行的和未行的路程()比例。

25、长方形的长一定,宽和周长()比例。

26、圆的半径和周长()比例。

27、总产量一定,单产量和数量()比例。

28、在同一时间里,杆高和影长()比例。

29、做一项工程,工作效率和工作时间()比例。

30、汽车从甲地到乙地,行车时间和速度()比例。

二、判断题,对的打√,错的打ⅹ。

1、速度和时间成反比例。

()2、圆的半径一定,圆的面积和兀不成比例()3、三角形的底一定,它的面积和高不成比例。

()4、正方形的边长和面积成正比例。

()5、出盐率一定,盐的重量和海水的重量成正比例。

()正反比例练习题(2)一、判断。

1、方砖的边长一定,要铺地面积和用砖块数成正比例()2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例()3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例()4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。

()5、梯形的面积一定,高和上下底的和成反比例()6、圆的半径一定,圆的面积和兀不成比例()7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例()8、南京到北京,所行驶的路程和速度不成比例()9、出盐率一定,盐的重量和海水重量成正比例。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
1. 正比例练题
- 问题1:如果三辆车可以在4小时内完成一项工作,那么六辆相同的车可以在多少小时内完成同样的工作?
- 问题2:如果5人可以在10天内完成一项任务,那么需要多少人才能在5天内完成相同的任务?
- 问题3:如果一辆汽车以每小时60公里的速度行驶,那么它在3小时内可以行驶多远?
- 问题4:如果用20升汽油行驶80公里,那么用40升汽油可以行驶多远?
- 问题5:某项工作需2小时完成,如果有12人同时进行,那么需要多长时间才能完成?
2. 反比例练题
- 问题1:如果六个工人可以在12天内完成一项任务,那么需要多少个工人才能在4天内完成相同的任务?
- 问题2:如果一项工作可以由10个工人在8小时内完成,那么需要多少个小时才能由5个工人完成?
- 问题3:如果一个有15个人的团队可以在20天内完成一个项目,那么需要多少天才能由25个人完成相同的项目?
- 问题4:如果一块土地上可以建造6个房子,那么在相同大小的土地上可以建造多少个房子?
- 问题5:如果一个工厂的产量与工人数成反比,当有20个工人时产量为1000个单位,那么有30个工人时产量为多少个单位?
这些练习题可以帮助你巩固正反比例的理解和运用。

请根据题意进行计算,并在所给的时间内完成解答。

正反比例练习题

正反比例练习题

正反比例练习题正反比例是数学中常见的一种比例关系,指两个变量之间的比例是相等的,其中一个变量增加,另一个变量相应地减少。

在解决实际问题中,正反比例关系经常用到。

本文将介绍一些正反比例练习题,帮助读者更好地理解和运用正反比例。

一、题目1小明利用正反比例关系绘制了一条直线。

当x为0时,y为8;当x 为4时,y为2。

试判断这条直线的方程式是什么?解答:设直线的方程为y=k/x (k为常数)由已知条件得:当x为0时,y为8,此时利用方程求得k=8*0=0;当x为4时,y为2,代入方程得:2=k/4,解得k=8;因此,直线的方程为y=8/x。

二、题目2某商品的价格和销量成反比关系。

当商品价格为10元时,销量为20个;当商品价格为20元时,销量为10个。

求商品的价格和销量之间的函数关系。

解答:设商品价格为x,销量为y。

由题意可知,x和y成反比关系,即xy=k(k为常数)。

根据题意,当x为10时,y为20,代入反比关系可求得k=10*20=200;当x为20时,y为10,代入反比关系可求得200=20*10;因此,商品的价格和销量之间的函数关系为xy=200。

三、题目3小王从城市A到城市B的距离为200千米,他选择骑自行车去。

第一天骑了100千米,第二天骑了80千米,第三天骑了多少千米?解答:设第三天小王骑的千米数为x。

根据题意,第一天骑了100千米,第二天骑了80千米,第三天骑了x千米,根据正反比例关系可得:100/200 = 80/(200-100-x);计算可得:(100*(200-100-x)) = 80*200;解得x=60;因此,小王第三天骑了60千米。

四、题目4在某连锁超市的促销活动中,每购买4件商品可以享受8折优惠,求购买10件该商品的折扣价格是多少?解答:设购买10件商品的折扣价格为x。

根据题意,购买4件商品享受8折优惠,根据正反比例关系可得:4/x = 8/10;解得x=5;因此,购买10件商品的折扣价格为5元。

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题1. 正比例关系问题1:某汽车行驶600公里需要消耗30升汽油,如果行驶900公里,需要消耗多少升汽油?解答:设行驶900公里需要消耗的汽油量为x升。

根据正比例关系,可得以下比例:600公里 / 30升 = 900公里 / x升通过交叉乘积,得到:600x =解方程可得:x = 45因此,行驶900公里需要消耗45升汽油。

问题2:某商品的价格为20元,如果买3个,总金额是多少?解答:设买3个商品的总金额为y元。

根据正比例关系,可得以下比例:1个商品 / 20元 = 3个商品 / y元通过交叉乘积,得到:y = 60因此,买3个商品的总金额是60元。

2. 反比例关系问题1:工人A 2小时可以完成一项工作,如果工人B只有1小时的时间,能完成多少该项工作?解答:设工人B在1小时内完成的工作量为y。

根据反比例关系,可得以下比例:工人A的工作时间 / 工人B的工作时间 = 工人B的工作量 / 工人A的工作量通过交叉乘积,得到:2小时 / 1小时 = y / 1解方程可得:y = 2因此,工人B在1小时内能完成2个该项工作。

问题2:某项任务需要10个工人一起完成,如果只有5个工人能来,完成该任务需要多少时间?解答:设完成该任务需要的时间为t小时。

根据反比例关系,可得以下比例:工人数 / 时间 = 原先的工人数 / 原先的时间通过交叉乘积,得到:10个工人 / t小时 = 5个工人 / 1小时解方程可得:t = 2因此,如果只有5个工人能来,完成该任务需要2小时。

以上为八年级正比例和反比例比例练题的部分解答。

完整版六年级正反比例练习题

完整版六年级正反比例练习题

正反比率的应用二例1、一个水池中水的深度与注水时间的关系如右以下图。

(1)水的深度与注水时间可否成比率?(2)从图中看,注水前,水池中的水深多少米?(3)每分钟向水池中注入的水深多少米?例 2、这个铁球吞没在长方体水槽中,当他把这个铁球拿出水面时,槽里的水面下降了 0.5 厘米,他又将一块棱长是 3 厘米的正方体铁块吞没在水槽中,槽里的水面上升了 0.3 厘米,算一下铁球的体积?例 3、蜡烛燃烧的长度和燃烧的时间成正比率。

一根蜡烛燃烧后的长度是 7 厘米。

蜡烛最初的长度是多少厘米?8 分钟后,蜡烛的长度是12 厘米,18 分钟例 4、甲、乙两人分别从A、B 两地同时出发,相向而行,出发时他们的速度之比是遇后,甲的速度提高了20% ,乙的速度提高了30% ,这样,当甲到达 B 地时,乙离3: 2,他们第一次相A 地还有 14 千米,那么 AB 两地的距离是多少千米?看看你会做吗?1、用不相同的杯子装水,水的高度与杯子的底面积的关系如右图。

( 1)从图中看,水的高度与杯子的底面积可否成比率?成什么比率?为什么?( 2)从图中估计,当杯子的底面积是50 平方厘米时,水深多少厘米?当水深25 厘米时,杯子的底面积是多少平方厘米?2、将一个圆柱体完好吞没在一个装满水的水槽中,拿出后水面下降了9 厘米。

尔后放入一个底面积和圆柱体相同,高是圆柱体1的圆锥,这时水面会上升多少厘米?23、蜡烛燃烧的长度和燃烧的时间成正比率。

一根蜡烛燃烧12 分钟后,蜡烛的长度是17 厘米, 18 分钟后的长度是 9 厘米。

蜡烛最初的长度是多少厘米?4、甲、乙两人分别从A、 B 两地同时出发,相向而行,出发时他们的速度之比是后,甲的速度提高了20% ,乙的速度提高了40% ,当甲到达目的地后,乙还有AB 两地的距离是多少千米?4: 3,他们第一次相遇44 千米到达目的地,那么。

正比例和反比例-常考题型练习

正比例和反比例-常考题型练习

实际应用题型的常见陷阱与误区
单位不统一
在涉及不同单位的问题中,需要 注意单位是否统一,避免因为单
位不统一而导致的错误。
忽视实际情况
在解题过程中,需要注意实际情况 的限制条件,如物理定律、逻辑关 系等,避免得出不符合实际情况的 答案。
计算错误
在解题过程中,需要注意计算正确, 避免因为计算错误而导致答案错误。
答案解析
由于y与x成反比例,我们可以设y=k/x。将已知 条件代入得方程组:1/2=k/3和3=k/(1/2)。解 得k=3/2。因此,y关于x的函数解析式为 y=(3/2)/x。
高阶练习题及答案解析
题目
已知f(x)为一次函数,且 f[f(x)]=9x+5,求f(x)的解析式。
答案解析
设f(x)=kx+b(k≠0),则 f[f(x)]=k(kx+b)+b=k^2x+kb+b。 根据题意,有方程组:$k^2=9$ 和$kb+b=5$。解得k=3和b=2或 k=-3和b=-5。因此,f(x)的解析式 为f(x)=3x+2或f(x)=-3x-5。
80%
代数运算
在解题过程中,需要进行代数运 算,如乘法、除法、方程求解等 。
正反比例综合题型的常见陷阱与误区
混淆正反比例
在解题过程中,需要注意区分 正反比例,避免混淆。
忽视实际意义
在解题过程中,需要注意问题 的实际意义,避免得出不符合 实际情况的答案。
忽视单位换算
在解题过程中,需要注意单位 换算,避免出现单位不一致的 情况。
反比例的应用场景
总结词
反比例关系在日常生活和科学领域中有着广泛的应用,如物 理、化学、工程等。

完整)七年级正反比例练习题

完整)七年级正反比例练习题

完整)七年级正反比例练习题七年级正反比例练题
本文档为七年级正反比例练题,旨在帮助学生练和巩固正反比例的概念和解题方法。

题目一
在某个城市中,一辆公交车每天运送的乘客数量与其行驶的距离成正比。

如果一辆公交车每天行驶60公里时,平均运送乘客80人,那么它每天行驶120公里时,平均运送多少人?
题目二
一位建筑师每天工作8小时,他完成一个项目需要12天。

那么,如果他每天工作6小时,完成同样的项目需要多少天?
题目三
某个果汁摊位销售的果汁数量与售价成正比。

已知售价为20元时,一天能售出100杯果汁。

请问售价为25元时,一天能售出多少杯果汁?
题目四
一辆小汽车每小时行驶60公里,需要4小时才能到达目的地。

那么,如果小汽车每小时行驶80公里,需要多少小时才能到达相
同的目的地?
题目五
某个工厂生产的产品数量与工人数量成正比。

如果工厂有15
名工人,每天可以生产100个产品。

请问,如果工厂有24名工人,每天可以生产多少个产品?
以上是本文档的练题目,希望能帮助学生更好地理解和掌握正
反比例的解题方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正 比 例 和 反 比 例习 题 精 编1一、对号入座。

1.( )÷10=0.6=( )%=( ):( )=()92.把158:43化成最简单的比是( );43千克: 400克的比值是( )。

3.甲乙两数的比是3:5,甲数是乙数的( )%,乙数是甲数的( )%,甲数与两数和的比是( )。

4.一杯400克的盐水,含糖率是20%,糖与糖水的比是( ),再加入20克糖,糖与糖水的比是( )。

5.把3:8的前项加上6,要使比值不变,后项可以乘( )或加( )6.如果A ×43=B ×52,那么A :B=( ):( ),当A=0.8时,B=( ) 7.从36的因数中选4个数,组成一个比例:( ),用比例的性质检验( )。

8.在一个比例里,两个内项互为倒数,其中一个外项是52,另一个外项是( )。

二、慎重选择。

1.如果减数相当于被减数的53,那么差与减数的比是( )。

A 2:3B 2:5C 3:5D 3:22.同一段路程,甲车行完要4小时,乙车行完要6小时,甲、乙两车速度的最简比是( )A 4:6B 6:4C 2:3D 3:23.甲乙两个正方体棱长的比是1:2。

它们的表面积的比是( ),体积比是( );A 1:2B 1:4C 1:6D 1:84.一个三角形三个内角的度数比是2:3:5,这是( )三角形。

A 锐角B 钝角C 直角D 无法确定5.下面两个比不能组成比例的是( )。

A 10:12 和 35:42B 20:10 和 60:20C 21 :31 和 12:8D 0.6:0.2 和 43:41三、破解密码.X 15 = 1.87.5 1225 :X = 34 :56四、列比例求并解。

1.8与X 的比等于13 与 56 的比。

2.两个外项是125和 15,两个内项是X 与25 五、解决问题。

1.一种药水是把药粉和水按照1∶100的比例配成的.要配成这种药水4040千克,需要药粉多少千克?2.一个长方形周长50米,长与宽的比是3∶2,这个长方形的面积是多少?3.建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?4.加工一批零件,已完成个数与零件总个数的比是1:3。

如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?5.画一个长3厘米,宽2厘米的长方形,把这个长方形按2:1放大后,画下来。

想一想:这两个长方形的面积的比是多少?习 题 精 编2一、对号入座。

1.在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离( )千米。

也就是图上距离是实际距离的1( ),实际距离是图上距离的( )倍。

2.一幅图的比例尺是1厘米表示实际距离( );实际距离50千米在图上要画( )厘米。

把这个线段比例尺改写成数值比例尺是( )。

3.一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是( )。

4.判断下列各题中两种量是否成比例?成什么比例?(1)路程一定,车轮的周长和车轮滚动的圈数。

( ) (2)长方形的长一定,宽和面积。

( )(3)大米的总量一定,吃掉的质量和剩下的质量。

( ) (4)圆的半径和周长。

( )(5)分数的分子一定,分数值和分母。

( ) (6)铺地面积一定,方砖的边长和所需块数。

( )(7)铺地面积一定,方砖面积和所需块数。

( ) (8)除数一定,被除数和商。

( )5.A 、B 、C 三种量的关系是: A ×B = C(1)如果 A 一定,那么 B 和 C 成( )比例; (2)如果 B 一定,那么 A 和C 成( )比例;(3)如果 C 一定,那么 A 和 B 成( )比例.6.4X=Y ,X 和Y 成( )比例。

4÷X=Y ,X 和Y 成( )比例。

二、解决问题。

1.在一幅地图上,测得甲、乙两地的图上距离是12厘米,已知甲乙两地的实际距离是480千米。

(1)求这幅图的比例尺。

(2)在这幅地图上量得A 、B 两城的图上距离是4厘米,求A 、B 两城的实际距离。

2.在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。

已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?3.在一幅比例尺为1:500的平面图上量得一间长方形教室的的周长是10厘米,长与宽的比是3:2。

求这间教室的图上面积与实际面积。

写出图上面积和实际面积的比。

并与比例尺进行比较,你发现了什么?三、精心操作。

下图是某街区的平面图。

1.学校位于文化广场( )面大约( )千米。

2.人民公园位于文化广场北偏东600的方向,大约4千米。

请你用◎表示出它的大概位置。

3、在文化广场南面约1千米处,有一条商业街与文江路垂直。

在你画线表示商业街。

一、对号入座。

20%1.35:( )=20÷16=25( )=( )%=( )(填小数) 2.因为14X=2Y ,所以X :Y=( ):( ),X 和Y 成( )比例。

3.一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是( )。

4.向阳小学三年级与四年级人数比是3:4,三年级人数比四年级少( )%四年级比三年级多( )%5.甲乙两个正方形的边长比是2:3,甲乙两个正方形的周长比是( ),甲乙两个正方形的面积比是( )。

6.一个比例由两个比值是2的比组成,又知比例的外项分别是1.2和5,这个比例是( )。

7.已知被减数与差的比是5:3,减数是100,被减数是( )。

8.在一幅地图上量得甲乙两地距离6厘米,乙丙两地距离8厘米;已知甲乙两地间的实际距离是 120千米,乙丙两地间的实际距离是( )千米;这幅地图的比例尺是( )。

9.从2:8、1.6:52和121:31这三个比中,选两个比组成的比例是( )。

10.一块铜锌合金重180克,铜与锌的比是2:3,锌重( )克。

如果再熔入30克锌,这时铜与锌的比是( )。

二、明辨是非。

16%1.一项工程,甲队40天可以完成,乙队50天可以完成。

甲乙两队的工作效率比是4:5。

( )2.圆柱体与圆锥体的体积比是3:1,则圆柱体与圆锥体一定等底等高。

( )3.甲数与乙数的比是3:4,甲数就是乙数的34。

( ) 4.比的前项和后项同时乘以同一个数,比值不变。

( )5.总价一定,单价和数量成反比例。

( )6.实际距离一定,图上距离与比例尺成正比例。

( )7.正方体体积一定,底面积和高成反比例。

( )8.订阅《今日泰兴》的总钱数和分数成正比例。

( )三、选择题.12%1.把一个直径4毫米的手表零件,画在图纸上直径是8厘米,这幅图纸的比例尺是( )。

A.1:2B.2:1C.1:20D.20:12.已知X 8 =1.2、8Y=1.2,所以X 和Y 比较( ) A 、X 大 B 、Y C 、一样大3.如果A×2=B÷3,那么A :B=( )。

A 、2:3B 、3:2C 、1:6D 6:14.一个三角形的三个内角的度数比是2:3:4,这个三角形是( )。

A 、锐角三角形B 、直角三角形C 、钝角三角形5.体积和高都相等的圆柱体和圆锥体,它们底面积的比是( )。

A 、1:3B 、3:1C 、1:6D 、6:16.配置一种淡盐水,盐占盐水的20%,盐与水的比是( )。

A 、1:20B 、1:21C 、1:19四、破解密码。

8%54:52=X :36 2.1X =45.0 五、解决问题。

44%1.修路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米?2.一块直角三角形钢板用1:200的比例尺画在图上,两条直角边共长5.4厘米,它们的比是5:4.这块钢板的实际面积是多少?3. 甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?一辆汽车以每小时200千米的速度从甲地经过乙地,去丙地需要多少小时?4. 学校图书馆的科技书、文艺书和故事书共12000本,其中科技书占31,科技书与故事书的比是2:3,故事书有多少本?5. 小明读一本书,已经读了全书的41,如果再读15页,则读过的页数与未读的页数的比是 2:3,这本书有多少页?6. 每条男领带20元,每支女胸花10元,某个体商店进领带与胸花件数的比是3∶2,共值4000元。

领带与胸花各多少?。

相关文档
最新文档