概率论与数理统计
概率论与数理统计

28
概率的性质
1 P( ) 0
2
A, B互斥(即AB )
P( A U B) P( A) P( B)
一般地,
Ai Aj (i, j 1, 2,L n, i j )
P UAi P( Ai ). i 1 i 1
29
问题:如何对随机现象进行研究?
5
§1.1.1 随机试验
对随机现象进行的观察或试验称为随机试验,简称为 试验。 随机试验的三个特点:
1.可以在相同条件下重复进行; 2.试验结果不止一个,且可以预知一切 可能的结果的取值范围; 3.试验前不能确定会出现哪一个结果。
6
§1.1.2
样本空间与随机事件
在下图中,用Ω表示一个试验的所有可能的
15
Ω A
A
6. 对立(互逆)的事件:如果 AB= , , 且AB=,则称A与B为互逆事件,记作 B= A
如果A,B是任意两事件,则有
AA ,
A A ,
A B AB,
A A.
3) A B A ( B A)
注意对立事件与互斥的区别.
16
7.完备事件组 若事件A1,A2,„An为两两互不相容的事件, 并且
P(C) [P( AC) P(BC) P( ABC)]
0.3 (0.08 0.05 0.03) 0.2
35
1 例 设 A、B 为两个随机事件 ,且已知 P A , 4 1 P B , 就下列三种情况求概率 P BA . 2
1 A 与 B 互斥 ;
用不同的记号,可写为 (A+B)C=AC+BC (AB)+C=(A+C)(B+C)
概率论与数理统计

2.和(并):
3.互斥(互不相容):对立:
事件的运算:
伯努利大数定律:当试验次数n足够大时,事件发生的频率就约等于事件发生的概率。
全概率公式、贝叶斯公式
定义:
引入随机变量后,可用随机变量的
等式或不等式来表达随机事件;
随机变量的函数一般也是随机变量
0-1分布是n=1时的二项分布
定义:性质:
定义:
F(x)是X的分布函数,X是连续型随机变量,f(x)是它的概率密度函数,简称概率密度
性质:
均匀分布:
标准正态分布N(0,1)
标准正态分布的分位数
举例:
期望反映了随机变量取值的平均,又称均值。
概率论与数理统计

1 lim P ( X 1 X 2 X n ) p 1, n n nA 即 lim P p 1. n n
关于伯努利定理的说明:
nA 伯努利定理表明事件发 生的频率 依概 n 率收敛于事件的概率p, 它以严格的数学形式 表达了频率的稳定性 .
x
定理5.6表明:
无论各个随机变量 X 1 , X 2 ,, X n ,服从什么 分布, 只要满足定理的条件 , 那么它们的和 X k
k 1 n
当 n 很大时, 近似地服从正态分布 .
下面介绍的定理是定理5.5的特殊情况.
定理5.7:
设随机变量 X服从参数为 n, p(0 p 1)的二项分布,则 ( 1 )(拉普拉斯定理)局 部极限定理:
且np 2, npq 1.265.
3 ( 1 )直接计算: P{ X 3} C10 0.23 0.87 0.2013
第一节
大数定律
一、问题的引入 二、基本定理 三、典型例题 四、小结
一、问题的提出:
契比雪夫不等式
定理 设随机变量 X 具有数学期望 E ( X ) μ, 方差 D( X ) σ 2 , 则对于任意正数 ε , 不等式 σ2 P{ X μ ε } 2 ε 成立. 证明
取连续型随机变量的情况来证明.
则随机变量之和的标准化变量 n n n n X k E X k X k k k 1 k 1 k 1 Z n k 1 n Bn D X k k 1 的分布函数 Fn ( x ) 对于任意x 满足
n n X k k k 1 k 1 lim Fn ( x ) lim P n n Bn t2 x 1 2 e dt ( x ). 2π
概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
概率论与数理统计(完整版)

例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?
注
实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
18
二、几何定义:
定义若对于一随机试验 ,每个样本点出现是等可能的 ,
样本空间所含的样本点个数为无穷多个 ,且具有非 零的 ,有限的几何度量 ,即 0m(),则称这一随机 试验是一几何概型的 .
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率论与数理统计
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.
概率论与数理统计

一、事件的频率与概率
次数, µ n ( A ) : 事件 A 在 n 次可重复试验中出现的 次数,
称为 A 在 n 次试验中出现的频数
频率—— f n ( A) = 频率
µ n ( A)
n
.
频率有如下性质: 频率有如下性质:
1. 非负性:对任何事件 A,有 0 ≤ f n ( A) ≤ 1 非负性:
掷一骰子, 如: A =“掷一骰子,点数小于 4”, B =“掷一骰子,点数小于 5”, 掷一骰子, 则A ⊂ B.
显然对任何事件 A,有 Φ ⊂ A ⊂ Ω⊂ A,则称事件 A与事件 B相等,记作 A = B .
2.事件的和(并) 事件的和(
两个事件 A, B 中至少有一个发生 (属于A或属于 B的样本点 构成的集合 ),称为事件 A 与 B 的和(并 ), 记作 A + B 或 A ∪ B .
显然, 显然,事件 A 与 A 可以构成一个完备事件 组
类似地,称可列个事件 A1 , A2 , L , An, 构成一个 L 类似地, 完备事件组, 完备事件组,如果满足 :
(1)
( 2)
Ai A j = Φ
(i ≠ j )
∑A
i
i
=Ω
律 事件运算满足下列运算 :
(1) 交换律 A + B = B + A AB = BA
设袋中有红, 黄各一球, 例: 设袋中有红,白,黄各一球,有放回抽取三 取出球后仍把球放回原袋中),每次取一球, ),每次取一球 次(取出球后仍把球放回原袋中),每次取一球,试 说明下列各组事件是否相容?若不相容, 说明下列各组事件是否相容?若不相容,说明是否 对立? 对立? 三次抽取, 三次抽取, (1) A=“三次抽取,颜色全不同”,B=“三次抽取, = 三次抽取 颜色全不同” = 三次抽取 相容 颜色不全同” 颜色不全同” (2) A=“三次抽取,颜色全同”,B=“三次抽取, 三次抽取, 三次抽取, = 三次抽取 颜色全同” = 三次抽取 颜色不全同” 颜色不全同” 不相容, 不相容,对立 三次抽取, 三次抽取, (3) A=“三次抽取,无红色球”,B=“三次抽取, = 三次抽取 无红色球” = 三次抽取 无黄色球” 无黄色球” 相容 三次抽取, (4) A=“三次抽取,无红色球也无黄色”, = 三次抽取 无红色球也无黄色” B=“三次抽取, 无白色球” 不相容,不对立 三次抽取, = 三次抽取 无白色球” 不相容,
概率论与数理统计完整ppt课件

在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计(龙永红)

随机变量的数学定义
设E是一个随机试验,Ω是其样本空间。我们称样本 是一个随机试验, 是其样本空间。 空间上的函数 X = X (ω ) (ω ∈ Ω ) 随机变量, 为一个随机变量 如果对于任意的实数x 为一个随机变量,如果对于任意的实数x,集合
注
意
连续型随机变量密度函数的性质与离散型随机变量概 率分布的性质非常相似,但是,密度函数不是概率! 率分布的性质非常相似,但是,密度函数不是概率!
我们不能认为: P{X = a} = f (a ) !
连续型随机变量的一个重要特点
设 X 是连续型随机变量,则 对任意的实数 a , 有
P{X =a} = 0
说
明
若已知连续型随机变量 X 的密度函数为 f ( x ) ,
由定义知道,概率密度 f(x) 具有以下性质:
1
2
0
f ( x) ≥ 0.
f (x)
0
∫
∞
−∞
f ( x)dx = 1.
1
0 x
3
0
P{x1 < X ≤ x2 } = F ( x2 ) − F ( x1 ) = ∫ f ( x)dx. ( x1 ≤ x2 )
x1 x2
f (x)
0
x1 x2
x
4
例8
等可能地在数轴上的有界区间[a,b]上投点,记X为 落点的位置(数轴上的坐标),求随机变量X的分布 函数
分布函数的性质
当 , 10 F(x)是一个不减的函数. 即 x2 > x1时 F(x2 ) ≥ F(x1).
2 0 ≤ F(x) ≤1 且 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计
概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论
概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布
概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概
率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概
率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空
间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件
条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:
P(A|B) = P(AB)/P(B)
其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为
P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差
期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
可以用数学公式表示为:
E(X) = Σa_i * P(X=a_i)
其中,a_i代表随机变量X的第i个可能取到的值,P(X=a_i)代表X取到a_i的概率。
方差是随机变量离其期望值的平均距离所平方后的平均数,用数学公式表示为:
Var(X) = E[(X-E(X))^2]
二、数理统计
数理统计是一门与概率统计密切相关的学科,它是以统计学为基础,运用数学方法研究随机现象的分布规律和变化趋势的学科。
数理统计的主要研究内容包括估计、假设检验、方差分析和回归分析等。
1.统计量和抽样分布
统计量是样本的某个函数,它可以用来推断总体参数的值。
例如,样本均值、样本方差、样本协方差等都是统计量。
样本来自一个总体,如果我们要对总体的某个参数进行推断,如总体的均值、方差等,则需要使用统计量来进行推断。
抽样分布是指样本统计量的概率分布,它是由样本容量、总体参数、样本统计量等因素决定的。
根据中心极限定理,如果总体分布符合一定的条件,当样本容量增大时,样本均值的抽样分布趋近于正态分布。
这个性质在推断统计中应用非常广泛。
2.参数估计和假设检验
参数估计是指根据样本数据,通过构造统计量来估计总体参数
的值。
常用的参数估计方法包括最大似然估计和贝叶斯估计等。
假设检验是采用统计学原理,对某个假设进行检验的过程。
通过一定的假设检验方法,可以判断所作的假设是否合理。
假设检验一般分为原假设和备择假设两种,我们通过检验备择假设是否成立,来验证或者推翻原假设。
3.方差分析和回归分析
方差分析是一种用数学方法来分析数据误差和随机因素的方法,它被广泛应用于板块控制、品质控制、实验设计等领域。
回归分析也是一种用来研究变量之间相互关系的方法。
通过构建合适的数学模型,可以在一定的置信水平上,预测自变量对因变量的影响。
三、应用举例
概率论与数理统计在实际生活中有广泛的应用,例如:
1.在金融风险管理和保险业中,经常需要使用概率论和数理统
计的技术,来进行风险分析、风险管理和理赔计算等工作。
2.生物学、医学等领域中,需要使用概率论和数理统计的技术
来分析和处理数据,帮助科学家把握数据之间的关系和趋势,加深对生物系统、疾病机理等问题的理解。
3.在航空航天、汽车制造、能源和环保等领域,需要使用概率
论和数理统计的方法,来分析失效概率、维修需要、排放等问题。
4.在电子商务、社交网络等领域中,需要对用户行为进行数据
分析和挖掘,概率论和数理统计是一个重要的数据分析工具。
总结
概率论与数理统计是当代数学研究的重要分支之一。
它们在自然科学、社会科学,以及工程技术等领域有着广泛的应用。
概率论和数理统计的基本概念和方法,包括概率和概率分布、条件概率和独立事件、期望值和方差、统计量和抽样分布、参数估计和假设检验、方差分析和回归分析等,对于了解和应用概率论与数理统计具有重要的参考价值。
四、概率论与数理统计的应用举例
1. 金融风险管理和保险业
金融风险管理和保险业是概率论与数理统计应用最为广泛的领域之一。
在金融领域,通过使用概率论和数理统计方法,可以对投资组合进行风险分析和管理,通过合理配置资产,减少投资风险,提高资产收益。
在保险业,概率论和数理统计方法可以用于评估保险产品的定价、理赔计算和风险管理等方面。
例如,利用数理统计模型,可以对大量的历史数据进行分析,计算不同类型的保险产品的概率分布,从而制定合理的保险策略。
2. 生物学、医学等领域
在生物学、医学等领域,概率论和数理统计方法可以用于分析和处理数据。
例如,在基因组研究中,概率论和数理统计方法可以用于预测基因变异和表达的可能性,分析基因与疾病之间的关系,并排除其他因素对结果的影响。
在医疗领域,通过使用概率论和数理统计方法,可以分析患者的症状、疾病发展过程和治疗效果,从而减少误诊和漏诊的情况,提高治疗效果。
3. 能源和环保等领域
在能源和环保等领域,概率论和数理统计方法可以用于分析和控制能源消耗和环境污染等问题。
例如,在能源领域,可以使用数学模型来分析不同形式的能源消耗和生产过程中的概率分布,从而改进能源利用方式,降低能源消耗。
在环保领域,可以使用概率论和数理统计方法来分析气候变化、环境污染和生态系统的变化,有效地预测和控制环境污染。
4. 电子商务、社交网络等领域
在电子商务、社交网络等领域,通过使用概率论和数理统计方法,可以对用户行为进行数据分析和挖掘,提高产品推荐和营销效果。
例如,在电商领域,可以通过概率统计的方法揭示用户购买习惯和需求,根据用户需求制定个性化的商品推荐策略,增加用户购买转化率。
在社交网络领域,可以通过分析用户的人际关系、社交互动和兴趣爱好等信息,构建用户画像,提供更加个性化的用户体验和服务。
五、结语
概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
概率论和数理统计的基本概念和方法,包括概率和概率分布、条件概率和独立事件、期望值和方差、统计量和抽样分布、参数估计和假设检验、方差分析和回归分析等,对于了解和应用概率论与数理统计具有重要的参考价值。
随着数据科学和人工智能技术的不断发展,概率论和数理统计在实际应用中的作用不断增加。
未来,概率论和数理统计将会在更多领域得到应用,推动各行各业的创新和发展。