高等教育出版,袁德美主编的概率论与数理统计习题二的答案共37页
概率论与数理统计(第三版)课后答案习题2

第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
概率论第3章习题解答 袁德美

概率教材第三章勘误说明:红线为要纠正的部分.(一)70页习题3.2答案:1a b +=且0,0a b ≥≥. (二)76页例3.6(2) ()(),d d x yP X Y f x y x y >>=∫∫10041d d d d 42Gxx y xy x xy y ===∫∫∫∫.(三)77页例3.7()||1000P X Y ≤−()||1000,d d x y f x y x y −≤=∫∫61d d 610Hx y =×∫∫400010006200030001d d 610x x y +=×∫∫ 1.3= (四)79页习题3.13(2)答案应为0.3 . (五)84习题3.18 单位:千小时.第3章 二维随机变量及其分布二维随机变量及其分布习题3.13.1比较二维随机变量与一维随机变量的分布函数的性质有何异同?3.2 设1(,)F x y 和2(,)F x y 都是联合分布函数,试问常数a ,b 满足什么条件时,12(,)(,)aF x y bF x y +也是联合分布函数?解:因为1(,)F x y 和2(,)F x y 都是联合分布函数,有1(, )1F ∞∞=,2(, )1F ∞∞=.若12(,)(,)aF x y bF x y +也是联合分布函数,则12(, )(, )1aF bF ∞∞+∞∞=,即1a b +=.又因为联合分布函数12(,)(,)aF x y bF x y +满足单调性,所以0,0a b ≥≥.可以验证,当0,0a b ≥≥且1a b +=时, 12(,)(,)aF x y bF x y +是联合分布函数.3.3 设二维随机变量1+, 0,0,(,)~(,) 0, x y x y xy e e e x y X Y F x y −−−−− −−≥≥=其它. 求:(1)()0.5,0.3P X Y ≤≤;(2)()0.5,0.3 1.3P X Y ≤<≤;(3)()10, 12P X Y −<≤<≤.解: (1)()0.50.30.950.5,0.3(0.5,0.3)1P X Y F ee e −−−≤≤==−−+;(2)()()()0.5,0.3 1.30.5, 1.30.5,0.3P X Y P X Y P X Y ≤<≤=≤≤−≤≤(0.5,1.3)(0.5,0.3)F F =−0.3 2.45 1.30.95e e e e −−−−=+−−;(3)()10, 12(0,2)(1,1)(0,1)(1,2)P X Y F F F F −<≤<≤=+−−−− 00000=+−−=.*3.4 设()10,00,0.1, 01,01,,0.5, 01,11,01,1,x y x y F x y x y x y << ≤<≤<= ≤<≥≥≤<其它或或 和()20, 00,0.2, 01,01,,0.5, 01,11,01,1,x y x y F x y x y x y << ≤<≤<= ≤<≥≥≤< 其它或或是两个不同的分布函数,验证它们关于X 和关于Y 的边缘分布函数相同.解: 当 0x <时, ()1,0F x y =,有1(,)0F x ∞=.当01x ≤<时,()10, 0,,0.1,01,0.5, 1.y F x y y y <=≤< ≥ 有1(,)0.5F x ∞=.当1x ≥时,()10, 0,,0.5,01,1, 1.y F x y y y <=≤< ≥有1(,)1F x ∞=.因此()1,F x y 关于X 的边缘分布函数为10,0,(,)0.5, 01,1,x F x x <∞=≤< 其它.类似可求()1,F x y 关于Y 的边缘分布函数为10,0,(,)0.5, 01,1,y F y y <∞=≤< 其它.()2,F x y 关于X 和关于Y 的边缘分布函数为20, 0,(,)0.5, 01,1,x F x x < ∞=≤< 其它 与 20,0,(,)0.5, 01,1,y F y y <∞=≤<其它.因此它们关于X 和关于Y 的边缘分布函数相同.习题3.23.5 盒子里装有2只白球,2只红球,3只黑球,在其中任取4只球,以X 表示取到白球的只数,以Y 表示取到黑球的只数,求(,)X Y 的联合分布列及边缘分布列.解: 按古典概率计算,从7只球中取4只球,共有4735C =种取法.在4只球中,白球有i 只,黑球有j 只(剩下4i j −−只红球)的取法数为: 4232iji j C C C −−种. 因此 (,)X Y 的联合分布列为423247(,)ij i jC C C P X i Y j C −−===,0,1,2i =,0,1,2,3j =,24i j ≤+≤. 于是2232473(0,2)35C C P X Y C ====, 3132472(0,3)35C C P X Y C ====, 112232476(1,1)35C C C P X Y C ====, 1212324712(1,2)35C C C P X Y C ====, 1323472(1,3)35C C P X Y C ====, 2222471(2,0)35C C P X Y C ====,211232476(2,1)35C C C P X Y C ====, 2223473(2,2)35C C P X Y C ====, (,)X Y 的联合分布列与边缘分布列为3.6 一批产品工有100件,其中一等品60件,二等品30件,三等品10件. 从这批产品中有放回的任取3件,以X 和Y 分别表示取出的3件产品中一等品、二等品的件数,求:(1) (,)X Y 的联合分布列;(2) (1,2)P X Y ≤≤.解: (1) 因为X 和Y 的可能取值为0,1,2,3, 事件{,}X i Y j ==表示取出的3件产品中一等品有i 件、二等品有j 件(三等品有3i j −−件)的取法, 取法总数为3!!!(3)!i j i j −−种,而对于每种取法的概率为 3631101010ij i j−−,因此(,)X Y 的联合分布列为33!631(,)!!(3)!101010iji jP X i Y j i j i j −−===−− , ,0,1,2,3i j =,3i j +≤.(,)X Y 的联合分布列与边缘分布列为(2)(1,2)(0,0)(0,1)(0,2)P X Y P X Y P X Y P X Y ≤≤===+==+==(1,0)(1,1)(1,2)0.325P X Y P X Y P X Y +==+==+===.3.7 设事件A ,B 满足1()4P A =,1(|)(|)2P B A P A B ==. 记 1, 0 A X A =若发生,,若不发生, 1, 0 B Y B =若发生,,若不发生. 求,)X Y (的联合分布列及边缘分布列.解(1)由于()111()()428P AB P A P B A ==×=,()()181()124P AB P B P A B ===, 所以,1(1,1)()8P X Y P AB ====,1(1,0)(()()8P X Y P AB P A P AB ====−=, 1(0,1)()()(),8P X Y P AB P B P AB ====−=(0,0)()1()P X Y P AB P A B ====−U =51()()()8P A P B P AB −−+=,所以(,)X Y 的联合分布列及边缘分布列为3.8 (,)X Y 的联合分布列为求:(1) (0)P X =;(2) (2)P Y ≤;(3) (1,2)P X Y <≤.解 (1) (0)(0,1)(0,2)(0,3)P X P X Y P X Y P X Y ====+==+==0.10.10.30.5=++=;(2) (2)1(3)1(0,3)(1,3)P Y P Y P X Y P X Y ≤=−==−==−==10.30.250.45=−−=;(3)(1,2)(0,1)(0,2)0.10.10.2P X Y P X Y P X Y <≤===+===+=.习题3.33.9 设二维随机变量()35(1)(1), 0,0,,~(,)0, x y e e x y X Y F x y −− −−≥≥= 其它.试求,)X Y (的联合概率密度(, )f x y .解 当0,0x y >>时,35(,)(1)(1)x y F x y e e −−=−−.对(, )F x y 求二阶偏导,得(, )X Y 的联合概率密度为()2,(,)F x y f x y x y∂=∂∂(35)15x y e −+=.当0x <或0y <时, (,)0F x y =, ()2,(,)0F x y f x y x y∂==∂∂.于是,)X Y (的联合概率密度(35)15, 0,0,(, )0, x y e x y f x y −+ ≥≥= 其他.3.1010 设二维随机变量()22,(,),(1)(1)AX Y f x y x y =++ 求:(1)常数A ;(2)联合分布函数(,)F x y ;(3) 概率()(),P X Y D ∈,其中D 是以(0,0),(0,1),(1,0),(1,1)为顶点的正方形区域.解 (1)由联合概率密度(,)f x y 的正则性,221(,)d d d d (1)(1)A f x y x y x y x y +∞+∞+∞+∞−∞−∞−∞−∞==++∫∫∫∫2π1A ==, 得21πA =. (2) 2221(,)(,)d d d d (1)(1)x yxyF x y f s t s t s t s t π−∞−∞−∞−∞==++∫∫∫∫21(arctan )(arctan 22x y πππ=++. (3)()(),(1,1)(0,0)(0,1)(1,0)PX Y D F F F F ∈=+−−913311648816=+−−=. 3.1.111设二维随机变量(),(,)X Y f x y ,则(1)P X >等于 (A) 1d (,)d x f x y y ∞−∞−∞∫∫. (B) 1d (,)d x f x y y ∞∞−∞∫∫.(C)1(,)d f x y x −∞∫. (D)1(,)d f x y x ∞∫.解 选(B).因为1(1)(1,)d (,)d P X P X Y x f x y y ∞∞−∞>=<<∞−∞<<∞=∫∫.3.12 设二维随机变量() (6), 02,24,,~(,)0, k x y x y X Y f x y −−<<<< =其它. 求:(1) 常数k ;(2) (1,3)P X Y <<;(3) ( 1.5)P X <;(4) (4)P X Y +<.解(1)由于联合概率密度(,)f x y 满足正则性,于是2421(,)d d d (6)d 8f x y x y x k x y y k +∞+∞−∞−∞==−−=∫∫∫∫所以81=k . (2)130213(1,3)d (6)d 88P X Y x x y y <<=−−=∫∫. (3) 1.5402127( 1.5)( 1.5,)d (6)d 832P X P X Y x x y y <=<<∞=−−=∫∫.(4)(,)f x y 的非零区域与{4}x y +<的交集{(,)|02,24}G x y x y x =<<<<−.()24024112(4),d d (6)d d d (6)d 883x x y GP X Y f x y x y x y x y x x y y −+<+<==−−=−−=∫∫∫∫∫∫.3.13 设二维随机变量()(2),01,0,,~(,)0,cy x x y x X Y f x y −≤≤≤≤ =其它. 求:(1)常数c ;(2)(1)P X Y +≤;(3)边缘概率密度.解(1)由于联合概率密度(,)f x y 满足正则性,于是1051(,)d d d (2)d 24xf x y x y x cy x y c +∞+∞−∞−∞==−=∫∫∫∫, 所以 4.8c =.(2)(,)f x y 的非零区域与{1}x y +≤的交集1{(,)|1,0}2G x y y x y y =≤≤−≤≤.()11201(1),d d 4.8(2)d d d 4.8(2)d 0.3y yx y GP X Y f x y x y y x x y y y x x −+≤+≤==−=−=∫∫∫∫∫∫.(3) , X Y ()关于X 的边缘密度函数204.8(2) 2.4(2)01()(,)0x X y x dy x x x f x f x y dy +∞−∞−=−≤≤== ∫∫其它.关于Y 的边缘密度函数124.8(2) 2.4(34)01()(,)0y Y y x dx y y y y f y f x y dx +∞−∞−=−+≤≤== ∫∫其它.3.14 设二维随机变量(,)X Y 在由x 轴、y 轴及直线22x y +=所围成的三角形区域上D 服从均匀分布,求边缘概率密度()X f x 和()Y f y .解 区域}01,0{(,)|22x y D x y x ≤≤≤≤=−的面积为1(22)d 1S x x =−=∫.因此(,)X Y 的联合概率密度为01,0122(,)0x y x f x y ≤≤≤≤− = , ,,其他., X Y ()关于X 的边缘密度函数220d 22, 01()(,)d 0, xX y x x f x f x y y −+∞−∞=−≤≤== ∫∫其它.关于Y 的边缘密度函数220d 1, 02()(,)d 20, y Y yx y f y f x y x −+∞−∞=−≤≤ ==∫∫其它. 3.15设(,)X Y 的联合概率密度分别为(1) 4,01,01,(,)0,xy x y f x y ≤≤≤≤ =其它.(2) 21, 01,02,(,)30, x xy x y f x y +<<<< = 其它.(3) , 0,(,) 0, y e x y f x y − <<= 其它.试分别求, X Y ()的边缘概率密度.解 (1) 因为, X Y ()关于X 的边缘密度函数14d 2, 01()(,)d 0, X xy y x x f x f x y y +∞−∞=≤≤ == ∫∫其它.关于Y 的边缘密度函数104d 2,01,()(,)d 0, ,Y xy x y y f y f x y x +∞−∞=≤≤==∫∫其它(2) 因为, X Y ()关于X 的边缘密度函数222012()d 2, 01()(,)d 330, X x xy y x x x f x f x y y +∞−∞+=+<< == ∫∫其它.关于Y 的边缘密度函数120111()d ,02,()(,)d 3360, .Y x xy x y y f y f x y x +∞−∞+=+<< ==∫∫其它 (3) 因为, X Y ()关于X 的边缘密度函数≤>===∫∫+∞−−∞+∞−0,00,),()(x x e dy e dy y x f x f xx y X 关于Y 的边缘密度函数≤>===∫∫−−∞+∞−,0,0,0,),()(0y y ye dx e dx y x f y f y y y Y习题3.43.16 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 与Y 分别表示甲和乙的命中次数,试求(,)X Y 的联合分布列及边缘分布列.解 甲命中次数(2.0.2)X B ,乙命中次数(2,0.5)Y B ,且X 与Y 相互独立,于是(,)X Y 的联合分布列为2222(,)()()0.20.80.50.5ii i j j j P X i Y j P X i P Y j C C −−======,(,0,1,2)i j =.因此(,)X Y 的联合分布列及边缘分布列为3.17 [1999[1999年1]1]设随机变量X 与Y 相互独立,试完成下表:1x a 1/8 b g 2x 1/8 c d h j p g1/6ef1解 设表中空格数据为由11211p p p +=g ,即1186p +=,得1124p =; 由于X 与Y 相互独立,有1111p p p =?g g ,即111246p =?g ,得114p =g ;由1112131p p p p ++=g ,即131112484p ++=,得13112p =;由1221p p p =?g g ,即21184p =?g ,得212p =g ;由12222p p p +=g ,即221182p +=,得2238p =;由1231p p p ++=g g g ,即311162p ++=g ,得313p =g ;由13233p p p +=g ,即2311123p +=,得2314p =;由121p p +=g g ,即2114p +=g ,得234p =g .填表如下:3.18 [1990年3]一电子仪器由两个部件构成,随机变量X 与Y 分别表示这两个部件的寿命(单位:千小时) ,已知()2221, 0,0,,~(,) 0, x y x y e e e x y X Y F x y +−−− −−+≥≥= 其它.(1) 问X 与Y 是否相互独立?(2) 求这两个部件的寿命都超过100小时的概率.解(1)(, )X Y 关于X 的边缘分布函数为()()0.51,0,,0,0,x X e x F x F x x − −≥=∞=< (, )X Y 关于Y 的边缘分布函数为()()0.51,0,,0,0,y Y e y F y F y y − −≥=∞=<因为()()(),X Y F x y F x F y =,故X 与Y 相互独立.(2)()()()()()()()0.10.1,0.10.10.110.110.1X Y P X Y P X P Y F F e−>>=>>=−−=.3.19 设X 与Y 独立同均匀分布[1,3]U ,并且13a <<,记事件{}A X a =≤,{}B Y a =≥,且()7/9P A B =U ,求常数a .解 因为X 与Y 相互独立,所以事件A 与事件B 也相互独立. 因此111()()d 22aa P A P X a x −=≤==∫,313()()d 22a aP B P Y a x −=≥==∫, ()(1)(3)()()4a a P AB P A P B −−==.于是()()()()13(1)(3)72249a a a a P A B P A P B P AB −−−−=+−=+−=U ,解得53a =或73.3.2020 某码头只能容纳一只船,现预知某日将有两只船独立来到,且在24小时内各时刻来到的可能性相等,如果它们需要停靠的时间分别为3小时及4小时,试求有一只船要在江中等待的概率.解 设X ,Y 分别表示此二船到达码头的时间,则X , Y 的概率密度函数分别为1,024()240, ,X x f x ≤< = ,其它 1,024()240, ,Y y f x ≤< = ,其它则X 与Y 相互独立,其联合概率密度为()21,024,024,,()()240,X Y x y f x y f x f y ≤<≤<== 其他, 于是按题意,所求概率为(34).P Y X −≤−≤ 区域{(,)|024,024,34}G x y X Y Y X =≤≤≤≤−≤−≤ 所求概率为(34)P Y X −≤−≤21(,)d d 24Gf x y x y G ==×∫∫的面积3110.271152==. 3.21 设X 与Y 独立同均匀分布[0,1]U ,求方程20t Xt Y ++=有实根的概率. 解 X , Y 的概率密度分别为1, 01()0, ,X x f x << = ,其它 1, 01()0, ,Y y f x << =,其它由于X 与Y 相互独立,其联合概率密度为()1,01,01,,()()0,X Y x y f x y f x f y <<<< ==其他. 方程20t Xt Y ++=有实根的充要条件是判别式240X Y ∆=−≥,概率22211240401(40)(,)d d d d d 412x x y x P X Y f x y x y x y x −≥−≥====∫∫∫∫∫. 3.22二维随机变量(,)X Y 在区域D 上服从均匀分布,求边缘概率密度()X f x ,()Y f y ,并判断X 和Y 是否相互独立.(1){(,)|01,23}D x y x y =≤≤≤≤;(2)22{(,)|1}4y D x y x =+≤;(3)22{(,)|2}D x y x y y =+≤.解(1)因为区域D 的面积1,D S = , X Y ()的联合概率密度1, (,),(,)0, .x y D f x y ∈ = 其他因为, X Y ()关于X 的边缘密度函数32d 1, 01()(,)d 0, X y x f x f x y y +∞−∞=≤≤ == ∫∫其他.关于Y 的边缘密度函数10d 1, 23,()(,)d 0, ,Y x y f y f x y x +∞−∞=≤≤==∫∫其他所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y =故X 与Y 是相互独立的. (2)因为区域D 的面积2π,D S = , X Y ()的联合概率密度1, (,),(,)2π0, .x y D f x y ∈ = 其他 因为, X Y ()关于X 的边缘密度函数1()(,)d 0, X y x f x f x y y +∞−−∞=≤ ==∫∫其它. 关于Y 的边缘密度函数2()(,)d 0 Y y f y f x y x +∞−∞≤== ∫,,其它; 所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y ≠故X 与Y 是相互独立的.(3)因为区域D 的面积π,D S = , X Y ()的联合概率密度1, (,),(,)π0, .x y D f x y ∈ = 其他因为, X Y ()关于X 的边缘密度函数111d 1()(,)d 0, X y x f x f x y y π+∞−∞=≤ ==∫∫其它.关于Y 的边缘密度函数02()(,)d 0 Y y f y f x y x +∞−∞≤≤== ∫,,其它; 所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y ≠故X 与Y 是相互独立的.习题3.53.23 设(,)X Y 的联合分布列为求在1X =条件下,Y 的条件分布列.解 (1)(1,0)(1,1)(1,2)P X P X Y P X Y P X Y ====+==+==0.20.10.10.4=++= 在1X =条件下,Y 的条件分布列为(1,0)0.21(0|1)(1)0.42P X Y P Y X P X ========,(1,1)0.11(1|1)(1)0.44P X Y P Y X P X ========,(1,2)0.11(2|1)(1)0.44P X Y P Y X P X ========.或写成0 1 2111(1)24|4Y P Y k X ==.3.24 设二维随机变量(),X Y 的概率分布表为求:(1) (),X Y 关于X 的边缘分布列;(2) ()2P X Y +≤;(3)()00P Y X ==. 解 (1)(),X Y 关于X 的边缘分布列为0 20.3 0.7X P ;(2) ()()212,110.30.7P X Y P X Y +≤=−===−=.(3)()()()0,00.220000.33P X Y P Y X P X ========. 3.25 设二维随机变量 ()3, 0,0,,~(,)2 0, x xyx ex y X Y f x y −− >> =其它. 求:(1)边缘概率密度()X f x ;(2) 条件概率密度|(|)Y X f y x . 解 (1) 因为, X Y ()关于X 的边缘密度函数320d , 0,()(,)d 220, x xy xX x x e y e x f x f x y y ∞−−−∞−∞=>==∫∫其它. (2) 当0>x 时,条件概率密度|, 0,(,)(|)()0, 0.xy Y X X xe y f x y f y x f x y − >== ≤(3) 当12X =时,条件概率密度 2|11, 0,(|)220, 0.yY X e y f y y − > =≤ 3.26 设直线1x =,0y =以及曲线2y x =所围区域为G , (,)X Y 在区域G 上服从二维均匀分布,试求:(1) (,)X Y 的联合概率密度(,)f x y ;(2) 条件概率密度|(|)Y X f y x 及|(|)X Y f x y ;(3) |(|1)Y X f y 及()|1/9X Y f x .解(1) 如图,区域2}01,0{(,)|x y x G x y <<<<=的面积为1201d 3S x x ==∫因此(,)X Y 的联合概率密度为201,03(,)0x y x f x y <<<< =, ,,其他.(2) , X Y ()关于X 的边缘密度函数 例3.26插图220 3 d 3, 01()(,)d 0, x X y x x f x f x y y +∞−∞=<<== ∫∫其它.关于Y 的边缘密度函数13(1 01()(,)d 0, Y x y f y f x y x +∞−∞=<<== ∫其它.当01x <<时,条件概率密度|(|)Y X f y x22|2031(,)(|)3() 0Y X X y x f x y f y x x xf x << ===, ,,其他. 当01y <<时,条件概率密度|(|)X Y f x y1(,)(|)() 0X Y Y x f x y f x y f y <<== ,,其他. (3) 当1x =时,条件概率密度|101(|1)0Y X y f y << =, ,,其他.当19y =时,条件概率密度|3111(|2390X Y x f x << =, ,,其他. 习题3.63.27 有一本100页的书,每页错别字数服从参数为0.01的泊松分布,假定各页错别字数相互独立,求这本书上错别字总数的概率分布. 解 设i X 表示此书第i 页上的错别字数, 则(0.01)i X P , 其中1,2,,100i =L .因为相互独立的泊松随机变量的和仍服从泊松分布,因此这本书上错别字总数1001()ii XP λ=∑ , 其中1000.011λ=×=.3.23.288设两个随机变量X 和Y 相互独立且同分布:()()111/2P X P Y =−==−=,()()111/2P X P Y ====,则下列各式成立的是(A)()12P X Y ==.(B)()1P X Y ==.(C)()104P X Y +==.(C)()114P XY ==. 解 因为X 与Y 相互独立,由边缘分布列可得联合分布列..111111442111144211122i jY p X p −− 由此得()()()1111,11,1442P X Y P X Y P X Y ===−=−+===+=,故(A)正确,(B)错误.另外,由()()()11101,11,1442P X Y P X Y P X Y +===−=+==−=+=知(C)错误,由{}00P XY ==知(D)错误.*3.29 设随机变量X 服从二项分布(,)B n p ,Y 服从二项分布(,)B m p ,且X 与Y 相互独立,证明X Y +服从二项分布(,)B n m p +. 证: 因(,)X B n p ,(,)Y B m p ,所以()(1)k kn k n P X k C p p −==−,0,1,2,,.k n =L ()(1)k k m k m P Y k C p p −==−,0,1,2,,.k m =L而X Y +可能取值为0,1,2,,n m +L ,且X 与Y 相互独立,由卷积公式有00()()()= (1)(1)iik k n k i k i km i k n m k k P X Y i P X k P Y i k C p p C p p −−−−+==+====−−−∑∑= (1)= (1)ik i k i n m i i i n m in m n m k C C p p C p p −+−+−+=−−∑,0,1,2,,i n m =+L . 注:由超几何分布列的正则性可知,01k i k in m ik n mC C C −=+=∑.因此0ik i k in m n m k C C C −+==∑. 3.30设X 与Y 独立同分布,X 的分布列为1{}2k P X k ==,1,2,k =L .试求:(1)Z X Y =+的分布列;(2) min{,}Z X Y =的分布列.解 (1)Z X Y =+可能取值为2,3,L ,且X 与Y 相互独立,由卷积公式有1111()()()()= 222nnk n k nk k nP Z n P X Y n P X k P Y n k −====+====−=∑∑,2,3,n =L . (2)min{,}Z X Y =可能取值为1,2,3,L ,且X 与Y 相互独立,()(min{,})P Z n P X Y n ===11(,)(,)(,)k n k n P X n Y n P X n Y k P X k Y n ∞∞=+=+===+==+==∑∑11()()()()()()k n k n P X n P Y n P X n P Y k P X k P Y n ∞∞=+=+===+==+==∑∑12211111111322122222412n n n k n n n k n ∞+−=+=+=+=−∑’ 即min{,}Z X Y =的分布列为3()4n P Z n ==,1,2,n =L .3.31设X 与Y 相互独立,X 服从均匀分布[0,1]U ,Y 服从参数为2的指数分布,求: (1),X Y ()的联合概率密度;(2)(1)P X Y +≤.解 (1)X 与Y 的概率密度分别为()1, 01,0, X x f x ≤≤ = 其他 与 ()22e , 00, 0y Y y f y y − = ≤ >由于X 与Y 独立,因此,X Y ()的联合概率密度为()()()22e ,01,0,0, .y X Y x y f x y f x f y − ≤≤== >, 其他(2)()11122220111(1), d d d 2e d (1e )d 22xy x x y P X Y f x y x y x y x e−−−+≤+≤===−=+∫∫∫∫∫. 3.32 设X 与Y 独立同均匀分布[0,1]U ,求Z X Y =+的概率密度. 解 Z X Y =+的概率密度1()()()d ()d Z X Y Y f z f x f z x x f z x x ∞−∞=−=−∫∫作变量变换, 令t z x =−,得1()()d zZ Y z f z f t t −=∫当0z <时, ()0Z f z =. 当 01z ≤<时, 1()()d d zzZ Y z f z f t t t z −===∫∫.当 011z ≤−<时, 即 12z ≤<时, 1111()()d d 2Z Y z z f z f t t t z −−===−∫∫.当11z −≥时, 即 2z ≥时, 11()()d 0Z Y z f z f t t −==∫.于是Z X Y =+的概率密度为, 01,()2, 12,0, Z z z f z z z <≤=−<≤当当其他.*3.33 设()(2)2,0,0,,~(,) 0, x y e x y X Y f x y −+ >>= 其它.求随机变量2Z X Y =+的分布函数.解 随机变量2Z X Y =+取值为(0,)∞当0z ≤时, ()()(2)0Z F z P Z z P X Y z =≤=+≤=; 当0z >时, 设区域{(,)|0,0,2}G x y x y x y z =>>+≤,(){}{}2Z F z P Z z P X Y z =≤=+≤()()22,2x y x y zf x y dxdy edxdy −++≤==∫∫∫∫G220d 2d 1z xzx y z z e x e y e ze −−−−−==−−∫∫.于是,随机变量Y X Z 2+=的分布函数为()1,00,0z z Z e ze z F z z −− −−≥= <.★可进一步求得随机变量Z 的密度函数为(),00,0z Z ze z f z z − ≥= <.*3.34设X 与Y 独立同标准正态分布(0,1)N ,随机变量Z =,验证Z 的概率密度为()2/2, 0,0,z z ze z f z − ≥ = 其它, 称Z 服从瑞利(Rayleigh)分布.解 已知X 、Y 的分布密度分别为22()xXf x−=,22()yYf y−=,由相互独立性得X与Y的联合密度函数为221()21(,)()()2x yX Yf x y f x f y eπ−+=⋅=由于0Z=≥,知当0z<时, ()()0ZF z P Z z=≤=;当0z≥时, ()222())()ZF z P Z z P z P X Y z=≤=≤=+≤222222221()21(,)d d d d2x yx y z x y zf x y x y e x yπ−++≤+≤==∫∫∫∫22222220011d d2[]122r r zz ze r r e eπθπππ−−−=−=−∫∫极坐标.将()ZF z关于z求导数,得Z的概率密度为()2/2,0,0,zzze zf z−≥=其它.3.35 对某种电子装置的输出测量了5次,得到的观察值为12345,,,,X X X X X. 设它们独立同分布,概率密度为2/8,0,()40,xxe xf x−>=其它.求:(1)12345max{,,,,}Z X X X X X=的分布函数;(2){4}P Z>.解(1)设12345,,,,X X X X X的分布函数为()XF x,则当0x≤时, ()0XF x=.当0x>时, 有()22x/8/8d14x xXxF x e x e−−−∞==−∫.即2/81,0,()0,xXe xF x−−>=其它.因此12345max{,,,,}Z X X X X X=的分布函数25851,0,()()(())0,.zZ Xe zF Z P Z z F z−−>=≤==其他25(2)(4)1(4)1(4)1(1)0.5167.z P Z P Z F e −>=−≤=−=−−=3.36 设随机变量,X Y ()的联合分布列为求:(1) =max(,)U X Y 的分布列;(2) =min(,)V X Y 的分布列;(3) =W X Y +的分布列;(4) (1|2)P X Y ==,(3|0)P Y X ==.解 (1)由X ,Y 的可能取值知=max(,)U X Y 的可能值为:0,1,2,3. 且有 (0)(1,0)(0,0)0.150.060.21P Z P X Y P X Y ===−=+===+=,(1)(1,1)(0,1)(1,1)(1,0)P Z P X Y P X Y P X Y P X Y ===−=+==+==+==0.020.050.150.10.32=+++=,(2)(1,2)(0,2)(1,2)P Z P X Y P X Y P X Y ===−=+==+==0.150.020.050.22=++=,(3)1(0)(1)(2)10.310.320.220.15P Z P Z P Z P Z ==−=−=−==−−−=. 所以=max(,)U X Y 的分布列 0 1 2 3 0.21 0.32 0.22 0.15U P (2由X ,Y 的可能取值知=min(,)V X Y 的可能值为:-1,0,1. 且有(1)(1,0)(1,1)(1,2)(1,3)P Z P X Y P X Y P X Y P X Y =−==−=+=−=+=−=+=−=0.150.020.150.070.39=+++=,(0)(0,0)(0,1)(0,2)(0,3)P Z P X Y P X Y P X Y P X Y ====+==+==+==(1,0)0.060.050.020.030.10.26P X Y +===++++=,(1)1(1)(0)10.390.260.35P Z P Z P Z ==−=−−==−−=.所以=min(,)V X Y 的分布列为 1 0 1 0.39 0.26 0.35V P − (3) 由X ,Y 的可能取值知=W X Y +的可能值为:-1, 0,1,2,3, 4. 且有 (1)(1,0)0.15P W P X Y =−==−==,(0)(1,1)(0,0)0.020.060.08P W P X Y P X Y ===−=+===+=,(1)(1,2)(0,1)(1,2)P W P X Y P X Y P X Y ===−=+==+==0.150.050.10.3=++=,(2)(1,3)(0,2)(1,1)P W P X Y P X Y P X Y ===−=+==+==0.070.020.150.24=++=,(3)(0,3)(1,2)0.030.050.08P W P X Y P X Y ====+===+=,(4)(1,3)0.15P W P X Y =====.所以=W X Y +的分布列为1 0 1234 0.15 0.08 0.3 0.24 0.08 0.15W P −. (4) (2)(1,2)(0,2)(1,2)P Y P X Y P X Y P X Y ===−=+==+==0.150.020.050.22=++=,(0)(0,0)(0,1)(0,2)(0,3)P X P X Y P X Y P X Y P X Y ====+==+==+== 0.060.050.020.030.16=+++=,(1,2)0.055(1|2)(2)0.2222P X Y P X Y P Y ========, (0,3)0.033(3|0)(0)0.1616P X Y P Y X P X ========.。
概率论和数理统计课后习题答案解析

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布求a.解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:故(1)在Y=1条件下,X的条件分布律为(2)在X=2的条件下,Y的条件分布律为表(a)表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为亦即表P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3), P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为试求:(1)Z=X+Y; (2)Z=XY; (3)Z=X/Y; (4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.于是(1)(2)Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。
高等教育出版社,袁德美主编的概率论与数理统计习题一的答案

P( A2 ) P(A1)P(A2 A1) P(A1)P(A2 A1)
2211 5 3 4 3 4 12
1.38某人决定将一笔钱投资于房地产、股票和期货之 一,他选择这三种投资渠道的概率依次为1/2,1/4和1/4. 据有关信息显示,现阶段这三种投资渠道亏本的概率分 别为1/8,1/4和1/8.问他投资亏本的概率是多少?
(3)(A B) U B A (×) 证明 ( A B) U B ( A I B) U B
(AU B) I (B U B)
AUB
1.4 试问下列命题是否成立?若正确给出其证明,若错误 举一个反例.
(4)若AB ,且C A,则BC (√) 证明(反证法) 假设BC , 则至少一个 BC
P AB 0.1, P(AC) 0.08, P(BC) 0.05, P ABC 0.03
(3)P ABC U ABC U ABC P ABC P ABC P ABC
其中P ABC P AUB UC 1 P AUB UC
1[0.7 0.2]
0.5
1.10 设A,B是任意两事件,将下列四个数P(A),P(AB), P(A∪B),P(A)+P(B)按由小到大的顺序排列起来
解 Q AB A (AUB)
∴P(AB)≤P(A)≤P(A∪B) 又P(A∪B)=P(A)+P(B)P∴(PA(BA)∪B)≤P(A)+P(B ) ∴P(AB)≤P(A)≤P(A∪B)≤P(A)+P(B)
(3)连续抛一枚硬币直到正面出现为止的试验次数
3 {1, 2,L } (4)某城市一天的用电量 4 {t t 0}
概率论与数理统计(经管类)第二章课后习题答案-推荐下载

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术0艺料不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试22下卷,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看2度并22工且22作尽22下可22都能2可地护1以缩关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编5试要写、卷求重电保技要气护术设设装交备备4置底高调、动。中试电作管资高气,线料中课并3敷试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
高等教育出版社,袁德美主编的概率论与数理统计习答案

1
2
E( X E( X ) ) E( X 1) x 1 f ( x)dx
(1 x) x dx
0 1 2 1
1 ( x 1) (2 x) dx 3
4.13 设 (X, Y ) 的联合概率密度是
y
12 y 2 , 0 y x 1 f ( x, y ) 其他 0 , 求(1)E(X),E(Y);(2)E(XY);(3)E(X2+Y2)
4.19 设 X表示10次独立重复射击命中目标的次数,每 次命中目标的概率为0.4,则E(X2)=( A )
(A)18.4
解
(B)24
(C)16
(D)12
X
B(10, 0.4)
E ( X ) np 4
D( X ) npq 2.4
又D( X ) E ( X ) [ E ( X )]
Cov( X , Y ) E( XY ) E( X ) E(Y ) 0
XY
Cov( X , Y ) 0 D( X ) D(Y )
1 解 又P( X 1, Y 1) 8 3 3 P ( X 1) , P (Y 1) 8 8
但P( X 1, Y 1) P( X 1) P(Y 1)
2 2
xyf ( x, y) dxdy dx
0
1 xy 12 y dy 2
(3) E ( X Y )
1
x
( x 2 y 2 ) f ( x, y ) dxdy
2 2 2
16 dx ( x y ) 12 y dy 0 0 15
概率论与数理统计

概率论与数理统计 习题参考答案(仅供参考) 第一章
第 2 页 (共 62 页)
4.设 P(A)=0.7,P(A-B)=0.3,试求P(AB)
解 由于 AB = A – AB, P(A)=0.7 所以 P(AB) = P(AAB) = P(A)P(AB) = 0.3,
所以 P(AB)=0.4, 故 P(AB) = 10.4 = 0.6.
(4) 取到三颗棋子颜色相同的概率.
解
(1) 设 A={取到的都是白子} 则
P( A) C83 14 0.255. C132 55
(2) 设 B={取到两颗白子, 一颗黑子}
P(B)
C82C41 C132
0.509 .
(3) 设 C={取三颗子中至少的一颗黑子}
P( C) 1 P (A ) 0 . 7. 4 5
P( A2
|B
) P( Ai )P B( P(B )
A| i
) 0 . 1 5 0 .39 0
0.1268
0.8624
P( A3
|B
) P( Ai )P B( P(B )
A| i
) 0 . 0 5 0 .31 0 0 . 0 0 0 1 0.8624
由于 P( A1|B) 远大于 P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为 0.2.
2. 设 A、B、C 为三个事件,用 A、B、C 的运算关系表示下列事件: (1)A 发生,B 和 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A、B、C 都发生; (4)A、B、C 都不发生; (5)A、B、C 不都发生; (6)A、B、C 至少有一个发生; (7)A、B、C 不多于一个发生; (8)A、B、C 至少有两个发生. 解 所求的事件表示如下
概率论与数理统计第二章课后习题及参考答案

x 0, 0, 2 2x x F ( x ) 2 ,0 x a , . a a x a. 1, a a 1 1 (3) P ( X a ) F (a ) F ( ) 1 (1 ) . 2 2 4 4
12.设随机变量 X 在 [2,6] 上服从均匀分布,现对 X 进行三次独立观察,试求至 少有两次观测值大于 3 的概率. 解:由题意知
1 ,2 x 6, f ( x) 4 , 0, 其他.
记 A { X 3} ,则
P ( A) P ( X 3)
6
3
3 设 Y 为对 X 进行三次独立观测事件 { X 3} 出现的次数,则 Y ~ B (3, ) , 4
1 3 dx , 4 4
6.抛掷一枚不均匀的硬币,正面出现的概率为 p , 0 p 1 ,以 X 表示直至两 个面都出现时的试验次数,求 X 的分布律. 解: X 所有可能的取值为 2,3,…, 设 A { k 次试验中出现 k 1 次正面,1 次反面},
B { k 次试验中出现 k 1 次反面,1 次正面},
3.设离散型随机变量 X 的分布律为
X P 1 0 .2 1 0 .5 2 0 .3
1
1 求:(1) X 的分布函数;(2) P ( X ) ;(3) P (1 X 3) . 2