2021年高考全国卷一理科数学(含答案)
2021年高考理科数学全国1卷(word版,含答案)

2021年高考理科数学全国1卷1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图所示,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图所示,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图所示:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图所示,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图所示,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图所示,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图所示,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。
2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =()A.12i -B.12i +C.1i +D.1i -答案:C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T = ()A.∅B.SC.TD.Z 答案:C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S Ü,S T T = .故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是()A.p q∧B.p q ⌝∧C.p q∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD ABC D -中,P 为11BD 的中点,则直线PB 与1A D 所成的角为()A.2πB.3πC.4πD.6π答案:D 解析:如图,1P B C ∠为直线PB 与1A D 所成角的平面角.易知11AB C ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案:C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =()A.7sin()212x π-B.sin()212x π+C.7sin(212x π-D.sin(212x π+答案:B解析:逆向:231sin()sin(sin() 412212 y x y x y xππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍.故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.7 9B.23 32C.9 32D.2 9答案:B解析:由题意记(0,1)x∈,(1,2)y∈,题目即求74x y+>的概率,绘图如下所示.故113311123224411132 ABCDAM ANSPS==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”.GC与EH的差称为“表目距的差”,则海岛的高AB =()A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案:A 解析:连接DF 交AB 于M ,则AB AM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=.而tan FG GC β=,tan EDEHα=.所以11(()tan tan tan tan MB MB GC EH GC EH MB MB MB FG ED ED βαβα--=-=⋅-=⋅.故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<.综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b +=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是()A.[)2B.1[,1)2C.2D.1(0,2答案:C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(122y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,2(0,2c ∈.12.设2ln1.01a =,ln1.02b =,1c -,则()A.a b c <<B.b c a <<C.b a c <<D.c a b <<答案:B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=≥()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =++,则(0.01)a c g -=,易得2()21g x x '==+当02x ≤<时,1x ≥=+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >.综上,a c b >>.二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为.答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x m=-,则有0m =(舍去),3m =,故焦距为24c =.14.已知向量(1,3)a = ,(3,4)b = ,若()a b b λ-⊥,则λ=.答案:35解析:由题意得()0a b b λ-⋅= ,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:1sin24ABC S ac B ac ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y,样本方差分别己为21s 和22S .(1)求x ,y,21s ,22s :(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥,否则不认为有显著提高)。
2021年普通高等学校招生全国统一考试数学试题含答案(新高考1卷,适用于山东、湖北、江苏、河北等

2021年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|−2<x<4},B={2, 3, 4, 5},则A∩B=( )A.{2}B.{2, 3}C.{3, 4}D.{2, 3, 4}2.已知z=2−i,则z(z̄+i)=( )A.6−2i B.4−2i C.6+2i D.4+2i3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2B.2√2C.4D.4√24.下列区间中,函数f(x)=7sin(x−π6)单调递增的区间是( )A.(0, π2)B.(π2, π)C.(π, 3π2)D.(3π2, 2π)5.已知F1,F2是椭圆C: x29+y24=1的两个焦点,点M在C上,则|MF1|⋅|MF2|的最大值为( )A.13B.12C.9D.6 6.若tanθ=−2,则sinθ(1+sin2θ)sinθ+cosθ=( )A.−65B.−25C.25D.657.若过点(a, b)可以作曲线y=e x的两条切线,则( )A.e b<a B.e a<b C.0<a<e b D.0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
2021年全国新高考Ⅰ卷数学真题试卷(含答案及解析)

C. 乙与丙相互独立D. 丙与丁相互独立
【答案】B
【解析】
【分析】根据独立事件概率关系逐一判断
【详解】 ,
故选:B
【点睛】判断事件 是否独立,先计算对应概率,再判断 是否成立
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
故选:AC
11.已知点 在圆 上,点 、 ,则()
A.点 到直线 的距离小于
B.点 到直线 的距离大于
C.当 最小时,
D.当 最大时,
【答案】ACD
【解析】
【分析】计算出圆心到直线 的距离,可得出点 到直线 的距离的取值范围,可判断AB选项的正误;分析可知,当 最大或最小时, 与圆 相切,利用勾股定理可判断CD选项的正误.
(1)若小明先回答A类问题,记 为小明的累计得分,求 的分布列;
(2)为使累计得分 期望最大,小明应选择先回答哪类问题?并说明理由.
19.记 是内角 , , 的对边分别为 , , .已知 ,点 在边 上, .
(1)证明: ;
(2)若 ,求 .
20.如图,在三棱锥 中,平面 平面 , , 为 的中点.
15.函数 的最小值为______.
【答案】1
【解析】
【分析】由解析式知 定义域为 ,讨论 、 、 ,并结合导数研究的单调性,即可求 最小值.
【详解】A: 且 ,故平均数不相同,错误;
B:若第一组中位数为 ,则第二组的中位数为 ,显然不相同,错误;
C: ,故方差相同,正确;
D:由极差的定义知:若第一组的极差为 ,则第二组的极差为 ,故极差相同,正确;
新课标Ⅰ高考数学理科真题试卷(含答案)

绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。
2021高考全国卷I 理数(含答案)

2021年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则=A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=在的图像大致为.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求的程序框图,图中空白框中应填入2sin cos ++x xx xA .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 1022||F B ,|A 11①f ③f A 12E ,F 分别是A13n S14.记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.16.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB=,120FB F B ⋅=,则C 的离心率为____________.三、解答题:共70分。
2021年高考理科数学全国新课标卷1(附答案)

2021年高考理科数学全国新课标卷1(附答案)2021年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2021课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B2.(2021课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B.?A.500π3866π3cm B.cm 3344 C.4 D. 557.(2021课标全国Ⅰ,理7)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( ).A.3 B.4 C.5 D.68.(2021课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).3.(2021课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样x2y254.(2021课标全国Ⅰ,理4)已知双曲线C:2?2=1(a>0,b>0)的离心率为,则C的渐近线方程为( ).ab211A.y=?x B.y=?x341C.y=?x D.y=±x25.(2021课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.16+8π B.8+8π C.16+16π D.8+16π+9.(2021课标全国Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m1展开式的二项式系数的最大值为b.若13a=7b,则m=( ).A.5 B.6 C.7 D.8x2y210.(2021课标全国Ⅰ,理10)已知椭圆E:2?2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两ab点.若AB的中点坐标为(1,-1),则E的方程为( ).x2y2x2y2?=1 B.?=1 A.45363627x2y2x2y2?=1 D.?=1 C.2718189A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]6.(2021课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).??x2?2x,x?0,11.(2021课标全国Ⅰ,理11)已知函数f(x)=?若|f(x)|≥ax,则a的取值范围是( ).?ln(x?1),x?0.A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]12.(2021课标全国Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=A.{Sn}为递减数列cn?anb?an,cn+1=n,则( ). 22 第 1 页共 1 页B.{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2021课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b・c=0,则t=__________. 14.(2021课标全国Ⅰ,理14)若数列{an}的前n项和Sn?21an?,则{an}的通项公式是an=__________. 3315.(2021课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2021课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2021课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°.19.(2021课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质品相互独2(1)若PB=1,求PA; 2(2)若∠APB=150°,求tan∠PBA.18.(2021课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2021课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.第 2 页共 2 页21.(2021课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(2021课标全国Ⅰ,理22)(本小题满分10分)选修4―1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈???a1?,?时,f(x)≤g(x),求a的取值范围. ?22?(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.23.(2021课标全国Ⅰ,理23)(本小题满分10分)选修4―4:坐标系与参数方程?x?4?5cost,已知曲线C1的参数方程为?(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,y?5?5sint?曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2021课标全国Ⅰ,理24)(本小题满分10分)选修4―5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.第 3 页共 3 页感谢您的阅读,祝您生活愉快。
2021全国新高考1卷数学试卷(及答案)

18.(12 分) 某学校组织“一带一路”知识竞赛,有 A,B 两类问题.每位参加比赛的同学先在
两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛 结束.A 类问题中的每个问题回答正确得 20 分,否则得 0 分;B 类问题中的每个问题 回答正确得 80 分,否则得 0 分。
A.点 P 到直线 AB 的距离小于 10
B.点 P 到直线 AB 的距离大于 2
C.当 ∠PBA 最小时, | PB | = 3 2
D.当 ∠PBA 最大时, | PB | = 3 2
uuur uuur uuur 12.在 正三棱柱 ABC − A1B1C1 中 , A=B A= A1 1 ,点 P 满 足= BP λBC + μBB1 , 其中
每次取 1 个球.甲表示事件“第一次取出的球的数字是 1”,乙表示事件“第二次取
出的球的数字是 2”,丙表示事件“两次取出的球的数字之和是 8”,丁表示事件“两
次取出的球的数字之和是 7”,则
A.甲与丙相互独立
B.甲与丁相互独立
C.乙与丙相互独立
D.丙与丁相互独立
二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项
A. (0, π ) 2
B. ( π , π) 2
C. (π, 3π ) 2
D. (3π , 2π) 2
5.已知
F1
,
F2
是椭圆
C:x2 9
+
y2 4
= 1的两个焦点,点 M
在 C 上,则 | MF1 | ⋅ | MF2
| 的最
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考全国卷一理科数学(含答案)绝密★启用前2021年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)此卷只装订不密封班级 姓名 准考证号 考场号 座位号1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.4 12.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
)(一)必考题:共60分。
17.(12分)在平面四边形中,,,,.⑴求;⑵若,求.18.(12分)如图,四边形为正方形,,分别为,的中点,以为折痕把折起,使点到达点的位置,且.⑴证明:平面平面;⑵求与平面所成角的正弦值.19.(12分)设椭圆的右焦点为,过的直线与交于,两点,点的坐标为.⑴当与轴垂直时,求直线的方程;⑵设为坐标原点,证明:.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.⑴记20件产品中恰有2件不合格品的概率为,求的最大值点;⑵现对一箱产品检验了20件,结果恰有2件不合格品,以⑴中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(12分)已知函数.⑴讨论的单调性;⑵若存在两个极值点,,证明:.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.⑴求的直角坐标方程;⑵若与有且仅有三个公共点,求的方程.23.[选修4—5:不等式选讲](10分)已知.⑴当时,求不等式的解集;⑵若时不等式成立,求的取值范围.2021年普通高等学校招生全国统一考试(新课标Ⅰ卷)理 数 答 案一、选择题1.答案:C解答:,∴,∴选C. 121i z i i i-=+=+1z =2.答案:B解答:或,则.3.答案:A解答:假设建设前收入为,则建设后收入为,所以种植收入在新农村建设前为%,新农村建设后为;其他收入在新农村建设前为,新农村建设后为,养殖收入在新农村建设前为,新农村建设后为 故不正确的是A.4.答案:B解答:,∴.5.答案:D解答:∵为奇函数,∴,即,∴,∴,∴切线方程为:,∴选D.6.答案:A解答:{|2A x x =>1}x <-{|12}R C A x x =-≤≤a 2a 60a 37%2a ⋅4%a ⋅5%2a ⋅30%a ⋅30%2a ⋅11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-51424(3)10a a d =+=+⨯-=-()f x ()()f x f x -=-1a =3()f x x x =+'(0)1f =y x =. 7.答案:B解答: 三视图还原几何体为一圆柱,如图,将侧面展开,最短路径为连线的距离,所以,所以选B.8.答案:D解答:由题意知直线的方程为,设,与抛物线方程联立有,可得或, ∴,∴.9.答案:C解答:∵存在个零点,即与有两个交点,的图象如下:11131()22244EB AB AE AB AD AB AB AC AB AC =-=-=-⋅+=-,M N 224225MN =+=MN 2(2)3y x =+1122(,),(,)M x y N x y 22(2)34y x y x ⎧=+⎪⎨⎪=⎩1112x y =⎧⎨=⎩2244x y =⎧⎨=⎩(0,2),(3,4)FM FN ==03248FM FN ⋅=⨯+⨯=()()g x f x x a =++2()y f x =y x a =--)(x f要使得与有两个交点,则有即,∴选C.10.答案:A解答:取,则∴区域Ⅰ的面积为,区域Ⅲ的面积为, 区域Ⅱ的面积为,故.11.答案:B解答:渐近线方程为:,即,∵为直角三角形,假设,如图,∴,直线方程为.联立∴,即,∴,故选B.y x a =--)(x f 1a -≤1a ≥-2AB AC ==22BC =112222S =⨯⨯=231(2)222S ππ=⋅-=-22312S S π=⋅-=12p p =2203x y -=3y x =OMN ∆2ONM π∠=3NM k =MN 3(2)y x =-333(2)y x y x ⎧=-⎪⎨⎪=-⎩33(,2N 3ON =3MON π∠=3MN =12.答案:A解答:由于截面与每条棱所成的角都相等,所以平面中存在平面与平面平行(如图),而在与平面平行的所有平面中,面积最大的为由各棱的中点构成的截面,而平面的面积.二、填空题13.答案:解答:α11AB D 11AB D EFGHMN EFGHMN 1223336222S =⨯=6画出可行域如图所示,可知目标函数过点时取得最大值,.14.答案:解答:依题意,作差得,所以为公比为的等比数列,又因为,所以,所以,所以. 15.答案:解答:恰有位女生,有种;恰有位女生,有种,∴不同的选法共有种.16.答案:(2,0)max 32206z =⨯+⨯=63-1121,21,n n n n S a S a ++=+⎧⎨=+⎩12n n a a +={}n a 211121a S a ==+11a =-12n n a -=-661(12)6312S -⋅-==--161122412C C =221244C C =12416+=332解答:∵,∴最小正周期为,∴,令,即,∴或.∴当,为函数的极小值点,即或,当∴,,∴最小值为三、解答题17.答案:(1;(2)5.解答: ()2sin sin 2f x x x =+()f x 2T π=2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-'()0f x =22cos cos 10x x +-=1cos 2x =cos 1x =-1cos 2=3x π=53x π=cos 1,x =-x π=53()332f π=3()332f π=(0)(2)0f f π==()0f π=()f x 33223(1)在中,由正弦定理得:,∴, ∵,∴. (2),∴,∴,∴,∴.∴. 18.答案:ABD ∆52sin 45sin ADB =∠2sin 5ADB ∠=90ADB ∠<223cos 1sin ADB ADB ∠=-∠=2ADB BDC π∠+∠=cos cos()sin 2BDC ADB ADB π∠=-∠=∠cos cos()sin 2BDC ADB ADB π∠=-∠=∠222cos 2DC BD BC BDC BD DC+-∠=⋅⋅2252522=⋅⋅5BC =(1)略;(2). 解答:(1)分别为的中点,则,∴, 又,,∴平面,平面,∴平面平面. (2),,∴,又,,∴平面,∴, 设,则,,∴ 过作交于点, 由平面平面, ∴平面,连结,则即为直线与平面所成的角, 由,∴, 而,∴, ∴与平面所成角的正弦值. 19. 答案: (1);(2)略. 解答:34,E F ,AD BC //EF AB EF BF ⊥PF BF ⊥EF PF F ⋂=BF ⊥PEF BE ⊂ABFD PEF ⊥ABFD PF BF ⊥//BF ED PF ED ⊥PF PD ⊥ED DP D ⋂=PF ⊥PED PF PE ⊥4AB =4EF =2PF =3PE =P PH EF ⊥EF H PEF ⊥ABFD PH ⊥ABFD DH PDH ∠DP ABFD PE PF EF PH ⋅=⋅2323PH ⋅==4PD =3sin PH PDH PD ∠==DP ABFD 342(2)2y x =±-(1)如图所示,将代入椭圆方程得,得,∴,∴,∴直线的方程为:.(2)证明:当斜率不存在时,由(1)可知,结论成立;当斜率存在时,设其方程为,,联立椭圆方程有即,∴,,,∴,∴. 20. 答案: 略 解答:(1)由题可知().∴1x =2112y +=22y =±2(1,2A ±22AM k =±AM 2(2)2y x =±-l l (1)y k x =-1122(,),(,)A x y B x y 22(1),12y k x x y =-⎧⎪⎨+=⎪⎩2222(21)4220k x k x k +-+-=2122421k x x k +=+21222221k x x k -=+1212121212[(23()4]22(2)(2)AM BMy y k x x x x k k x x x x -+++=+=----2222124412(4)21210(2)(2)k k k k k x x --+++==--AM BM k k =-OMA OMB ∠=∠221820()(1)f p C p p =-01p <<2182172172020()[2(1)18(1)(1)]2(1)(110)f p C p p p p C p p p =-+-⨯-=--∴当时,,即在上递增;当时,,即在上递减. ∴在点处取得最大值,即.(2)(i )设余下产品中不合格品数量为,则,由题可知,∴. ∴(元).(ii )由(i )可知一箱产品若全部检验只需花费元,若余下的不检验则要元,所以应该对余下的产品作检验. 21. 答案:(1)见解析;(2)见解析. 解答:(1)①∵,∴,∴当时,,,∴此时在上为单调递增.②∵,即或,此时方程两根为,当时,此时两根均为负,∴在上单调递减.当时,,此时在上单调递减,在上单调递增,在上单调递1(0,)10p ∈()0f p '>()f p 1(0,)101(,1)10p ∈()0f p '<()f p 1(,1)10()f p 110p =0110p =Y 4025X Y =+1(180,)10Y B 11801810EY np ==⨯=(4025)4025402518490EX E Y EY =+=+=+⨯=4004901()ln f x x a x x =-+221'()x ax f x x-+=-22a -≤≤0∆≤'()0f x ≤()f x (0,)+∞0∆>2a <-2a >210x ax -+=22124422a a a a x x -+-==2a <-'()f x (0,)+∞2a >0∆>()f x 24a a --()f x 2244(a a a a --+-()f x 24()a a +-+∞减.∴综上可得,时,在上单调递减;时,在,上单调递减,在上单调递增.(2)由(1)可得,两根得,,令,∴,.∴,要证成立,即要证成立,∴,即要证() 令,可得在上为增函数,∴,∴成立,即成立. 22. 答案:(1);(2) 解答:(1)由可得:,化为.2a ≤()f x (0,)+∞2a >()f x 24a a --24)a a +-+∞()f x 2244a a a a --+-210x ax -+=12,x x 2a >1212,1x x a x x +=⋅=120x x <<121x x =1211221211()()ln (ln )f x f x x a x x a x x x -=-+--+21122()(ln ln )x x a x x =-+-12121212()()ln ln 2f x f x x x a x x x x --=-+⋅--1212()()2f x f x a x x -<--1212ln ln 1x x x x -<-1122212ln 0(1)x x x x x x x -+<>-2221212ln 0x x x x x --+∴<-22212ln 0x x x --+>21x >1()2ln (1)g x x x x x=--+>()g x (1,)+∞()(1)0g x g >=1212ln ln 1x x x x -<-1212()()2f x f x a x x -<--22(1)4x y ++=423y x =-+22cos 30ρρθ+-=22230x y x ++-=22(1)4x y ++=(2)与有且仅有三个公共点,说明直线与圆相切,圆圆心为,半径为,则,解得,故的方程为. 23.答案:(1); (2). 解答:(1)当时,, ∴的解集为.(2)当时,,当时,不成立. 当时,,∴,不符合题意. 当时,,成立.当时,,∴,即.综上所述,的取值范围为.1C 2C 2(0)y kx k =+<2C 2C (1,0)-22221k k -+=+43k =-1C 423y x =-+1{|}2x x >(0,2]1a =21()|1||1|21121x f x x x xx x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩()1f x >1{|}2x x >0a =()|1|1f x x =+-(0,1)x ∈()f x x >0a <(0,1)x ∈()1(1)(1)f x x ax a x x =+--=+<01a <≤(0,1)x ∈()1(1)(1)f x x ax a x x =+--=+>1a >1(1),1()1(1)2,a x x af x a x x a ⎧+-<<⎪⎪=⎨⎪-+≥⎪⎩(1)121a -⋅+≥2a ≤a (0,2]。