锐角三角函数的运用

合集下载

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景

锐角三角函数有哪些实际应用场景锐角三角函数在咱们的日常生活中那可是有着超级多的实际应用场景呢,简直无处不在!先来说说建筑领域吧。

你知道吗,建筑工人在盖房子的时候,可离不开锐角三角函数的知识。

比如说,要建造一个有特定倾斜角度的屋顶,这就需要计算出屋顶的角度以及所需材料的长度和数量。

想象一下,工人们站在高高的脚手架上,拿着测量工具,认真地计算着角度和长度。

他们的眼神专注,手中的工具就像是神奇的魔法棒,通过锐角三角函数,把一堆堆的建筑材料变成了坚固又美观的房子。

再讲讲导航和地图。

当我们使用手机导航去一个陌生的地方时,导航软件会根据我们的位置和目的地,计算出最佳的路线。

这背后可就有锐角三角函数的功劳啦!它帮助确定我们与目的地之间的直线距离和实际行走的路程。

就像有一次我自己出门旅行,在一个完全陌生的城市里,靠着导航找到了一家特别棒的小吃店。

那个时候我就在想,要是没有这些数学知识的支撑,我可能还在街头瞎转悠,找不到美食的方向呢。

还有测量山峰的高度。

测量人员没办法直接爬到山顶去测量,那怎么办呢?这时候就轮到锐角三角函数登场啦!他们在山脚下选好测量点,测量出观测点与山顶的角度,再结合测量点与山底的距离,就能算出山峰的高度。

这就像是解开了一个神秘的谜题,让人充满了成就感。

在航海中,锐角三角函数也发挥着重要作用。

船员们需要根据星星的位置和角度来确定船只的方向和位置。

想象一下,在浩瀚的大海上,满天繁星闪烁,船员们依靠着锐角三角函数的知识,勇敢地驶向目的地,是不是特别酷?在日常生活中,我们装修房子的时候,如果想要在墙上挂一幅画,而且要保证画是水平的,那就得用到锐角三角函数来测量和计算。

又比如,我们要搭建一个秋千,要确定秋千的绳子长度和角度,让秋千荡起来既安全又有趣,这也需要锐角三角函数的帮忙。

甚至在体育比赛中也有它的身影。

比如滑雪运动员在从山坡上滑下来的时候,他们需要根据山坡的角度和自己的速度来调整姿势和控制方向,以确保安全和取得好成绩。

锐角三角函数及应用

锐角三角函数及应用

锐角三角函数及应用
锐角三角函数是指在直角三角形中,角度小于90度的三角函数,包括正弦函数、余弦函数和正切函数。

这些函数在数学、物理、工程等领域中都有广泛的应用。

正弦函数是指一个角的对边与斜边的比值,即sinθ=对边/斜边。

在三角函数中,正弦函数是最基本的函数之一,它在三角形的计算中有着重要的作用。

例如,在测量高度时,可以利用正弦函数计算出物体的高度。

余弦函数是指一个角的邻边与斜边的比值,即cosθ=邻边/斜边。

余弦函数也是三角函数中的基本函数之一,它在计算角度时有着重要的作用。

例如,在计算机图形学中,可以利用余弦函数计算出两个向量之间的夹角。

正切函数是指一个角的对边与邻边的比值,即tanθ=对边/邻边。

正切函数在三角形的计算中也有着重要的作用。

例如,在测量斜率时,可以利用正切函数计算出斜率的大小。

除了在三角形的计算中,锐角三角函数还有着广泛的应用。

在物理学中,正弦函数和余弦函数可以用来描述波的运动,例如声波和光波。

在工程学中,正弦函数和余弦函数可以用来描述交流电的变化,例如电压和电流的变化。

在计算机科学中,正切函数可以用来计算图像的旋转和缩放。

锐角三角函数是数学中的重要概念,它们在各个领域中都有着广泛的应用。

掌握锐角三角函数的概念和应用,对于学习数学、物理、工程和计算机科学等领域都有着重要的意义。

九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。

重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。

从图形可以看出ACBCCACB'''',即tanA l>tanA。

在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。

新授:坡度的概念,坡度与坡角的关系。

如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。

坡面与水平面的夹角叫做坡角。

从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。

和坝底宽AD。

(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。

问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。

坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。

初中锐角三角函数及应用

初中锐角三角函数及应用

初中锐角三角函数及应用锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。

这些函数在数学和物理学中有着广泛的应用。

首先,我们来介绍一下锐角三角函数的定义和性质。

在一个直角坐标系中,对于一个锐角ABC(角A小于90度), 我们可以定义正弦函数sinA 为点B的纵坐标除以斜边AC的长度,余弦函数cosA 为点B的横坐标除以斜边AC的长度,正切函数tanA 为点B的纵坐标除以横坐标。

其中,sinA、cosA和tanA都是角A的函数。

这些函数有许多重要的性质。

首先,它们的定义域都是锐角的正数集合,即(0,90)。

其次,它们的值域都是(-1,1),即在定义域内,这些函数的值都在-1到1之间变化。

此外,正弦函数和余弦函数还具有周期性,周期为360度或2π弧度。

也就是说,对于一个锐角A,sin(A+360k) = sinA,cos(A+360k) = cosA,其中k 为整数。

在应用方面,锐角三角函数有着广泛的作用。

首先,它们被广泛应用于三角计算。

例如,我们可以利用正弦定理或余弦定理,通过已知边和角来求解三角形的其他未知边和角。

这在测量、建筑、工程等领域都有着重要的应用。

其次,锐角三角函数在物理学中也有着重要的应用。

例如,对于一个斜抛运动的物体,我们可以利用正弦函数和余弦函数来分析其垂直和水平方向上的运动。

它们可以帮助我们计算物体的落点、飞行时间、最大高度等。

另外,锐角三角函数还与周期函数和图像有着密切的关系。

它们的图像可以通过函数的周期性来得到。

例如,正弦函数的图像是一个周期为2π的曲线,具有对称性和单调性,而余弦函数的图像是一个周期为2π的曲线,也具有对称性和反单调性。

此外,锐角三角函数还与三角恒等式有着重要的联系。

三角恒等式是指对于锐角A和B,成立的恒等关系。

利用三角恒等式,我们可以化简复杂的三角函数表达式,简化计算过程。

总的来说,锐角三角函数是数学中一类重要的函数,具有广泛的应用。

它们不仅在三角计算和几何题目中有着重要作用,还与物理学、周期函数和三角恒等式等有着紧密的联系。

锐角三角函数的简单运用

锐角三角函数的简单运用
锐角三角函数的计算方法
锐角三角函数的计算方法包括直接计算、利用三角恒等式化简、利用同角关系式化简等。 掌握这些计算方法是解决三角函数问题的基本技能。
对未来学习锐角三角函数的建议
01
深入理解概念
在学习锐角三角函数的过程中,要深入理解其概念,掌握其性质和定理,
这样才能更好地运用它们解决实际问题。
02 03
利用三角函数求长度
在直角三角形中,已知角度和一边长度,可以利用正弦、余弦、正切等三角函数 求出另一边的长度。
利用三角函Байду номын сангаас求距离
在平面几何问题中,可以利用三角函数求两点之间的距离,或者点到直线的距离 。
判断三角形形状问题
利用三角函数判断三角形形状
通过比较三角形的三个内角的三角函数值,可以判断三角形是锐角三角形、直角三角形还是钝角三角 形。
正弦函数的性质
01
02
03
定义域
正弦函数在第一象限和第 二象限有定义,即角度范 围在0到180度之间。
值域
正弦函数的值域为[-1,1], 表示角度的正弦值永远不 会超过1或小于-1。
单调性
正弦函数在第一象限和第 二象限内是单调递增的, 随着角度的增加,正弦值 也会增加。
余弦函数的性质
定义域
余弦函数在第一象限和第 四象限有定义,即角度范 围在0到180度之间。
锐角三角函数的 简单运用
目录
• 引言 • 锐角三角函数的性质 • 锐角三角函数的计算方法 • 锐角三角函数在几何问题中的应
用 • 锐角三角函数在实际问题中的应
用 • 总结与展望
01
引言
锐角三角函数的定义
锐角三角函数是三角函数中的一种, 主要研究锐角的角度与其边长之间的 关系。常见的锐角三角函数有正弦、 余弦和正切。

锐角三角函数及应用

锐角三角函数及应用

锐角三角函数1. 锐角三角函数的定义:如图所示:在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边。

(1)∠A 的正弦:sinA =a cA ∠的对边=斜边; (2)∠A 的余弦:b cA ∠的邻边=斜边; (3)∠A 的正切:a bA A ∠∠的对边=的邻边; (4)∠A 的余切:A b A a ∠∠的邻边=的对边 (是正切的倒数)。

2.30°,45°,60°角的三角函数值:1sin 302︒=,2sin 452︒=,3sin 602︒=; 3cos302︒=,2cos 452︒=,1cos 602︒=; 3tan 303︒=,tan 451︒=,tan 603︒=。

例题1:求下列各式的值:(1)22cos 60sin 60︒+︒ (2)cos 45tan 45sin 45︒-︒︒3.锐角三角函数之间的关系:(1)平方的关系:22sin cos 1A A +=;(2)商的关系: sin tan cos A A A=; (3)互余两角的三角函数关系:sin(90)cos A A ︒-=,cos(90)sin A A ︒-=。

注意:锐角的正弦和正切值随着角度的增大而增大;锐角的余弦值随着角度的增大而减小;对于锐角A 有0sin 1,0cos 1,tan 0,A A A <<<<>且他们都没有单位。

4.直角三角形的有关性质及判定:(1)直角三角形的性质:①直角三角形两个锐角互余;②直角三角形斜边上的中线等于斜边的一半;③在直角三角形中,如果有一个锐角等于30︒,那么它所对的直角边等于斜边的一半;④在直角三角形中,如果有一条直角边等于斜边的一半,那么它所对的锐角等于30︒;⑤在直角三角形中,两条直角边a ,b 的平方和等于斜边c 的平方,即222a b c +=;⑥1122Rt S ch ab ==(h 为斜边上的高),外接圆半径R =2c =斜边上的中线,内切圆半径r =2a b c +-。

7.6锐角三角函数的简单应用(1)

7.6锐角三角函数的简单应用(1)

【基础演练】 1.如图,秋千链子的长度为 3m,当秋千向两边摆动时,两边的摆动角度均为 30º。 求它摆动至最高位置与最低位置的高度之差(结果保留根号) . O 60º
A 【能力升级】 如图,在离水面高度为 5 米的岸上有人用绳子 拉船靠岸,开始时绳子与水面的夹 角为 30°,此人以每秒 0.5 米收绳.问:8 秒后船向岸边移动了多少米?(结果精确到 0.1 米)
课题
7.6 锐角三角函数的简单应用⑴
1.能把实际问题抽象为几何问题,借助直角三角形、锐角三角函数把 已知量与未知量联系在一起解决实际问题。 2.构造直角三角形是解决这类问题重要辅助线。 构造直角三角形是解决这类问题重要辅助线。 教学过程 个案
学习目标 重点,难点
【引例】 小明在荡秋千,已知秋千的长度为 2m, 求秋千升高 1m 时,秋千与竖直方向所成的角 度. 【典型例题】 1. “五一” 节,小明和同学一起到游乐场游玩. 游乐场的大型摩天轮的半径为 20m, 旋转 1 周需要 12min.小明乘坐最底部的车厢(离地面约 0.5m)开始 1 周的观光,经过 2min 后,小明离地面的高度是多少? (1).摩天轮启动多长时间后,小明离地面的高度将首次达到 10m? (2).小明将有多长时间连续保持在 离地面 10m 以上的空中?
2.1.单摆的摆长 AB 为 90cm,当它摆动到 AB’的位置时, ∠BAB’=11°,问这时摆 球 B’ 较最低点 B 升高了多少(精确到 1cm)?
sin11 0.19194
3.已知跷跷板长 4m,当跷跷板的一端碰到地面时,另一端离地面 1.5m.求此时跷 跷板与地面的夹角(精确到 0.1° ).
B
教学反思

锐角三角函数的简单应用(共10张PPT)

锐角三角函数的简单应用(共10张PPT)
分析:判断A市是否受到影响,只要求出A市到沙尘暴的行进路线的最短距离,看其是否大于
400km即可.如果要判断影响时间,则可以以A为圆心,画出一个半径为300km的圆,设该圆与行进路
线交于两点D、E,求出DE的长度,即可以算出影响时间.
解:过点A作BC的垂线(如图2),
在Rt△ABC中, ∵∠B=300,AB=400km, ∴AC=200km<300km, 因此,A市将受到沙尘暴的影响. 以A为圆心,300km为半径画圆, 交BC于点D、E,在Rt△ACD中,
分析:过点C作AB的垂线,构造两个直角三角形, 根据已知条件来解直角三角形。
例5、如图,海岛A四周20海里范围内是暗礁区,一艘货轮由东向西航行,在B处见 岛A在北偏西,航行24海里后到C处,见岛A在北偏西,货轮继续向西航行,有无触礁 危险?
分析:过点A作BC的垂线AD,比较线段AD
A
的长与20的大小关系,求线段AD的长是利用两 个直角三角形来解决。
分析:这道题实际上是要比较线段CD与线段AD+2.6×6+1.4=20,根据解直角三角形求
出AD的长;过点B作CD的垂线BE,ED=AB,BE=AD,解直
B
角三角形求线段CE的长。若线段CD大于线段AD,则说明小
明家的住宅楼需要拆迁;若线段CD小于线段AD,则说明小明
∵AD=300km, AC=200km ∴CD=100 km,∴DE=200 km,
这样,A市受到5 沙尘暴的影响时间为5
11(h) 200 5
40
评析:本题需要综合运用三角函数及圆的相关知识解题.
例7、如图,水库大坝的横截面是梯形,坝顶CD宽是5m,坝高DE为20m,斜坡的 坡度为 1: ,斜坡的坡度为 53:6,建造这样的大坝1000需要多少m3的土? (结果保留根 号)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5 三角函数的应用
一、学习目标
能够把实际问题转化为数学问题,能够利用三角函数的进行计算,并能对结果的意义进行说明.
二、学习重点和难点
重点:进一步体会三角函数在解决问题过程中的作用,发展学生数学应用意识和解决问题的能力.
难点:灵活将实际问题转化为数学问题,建立数学模型,并选择适当三角函数来解决.
三、学习过程:
(一)情境引入:
小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B 处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果保留根号)
(二)合作探究:
如图,海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A 岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?
四、随堂练习:
1. 某商场准备改善原有楼梯的安全性能,把倾斜角由400减至350,已知原楼梯长为4m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01m)
2. 一灯柱AB 被一钢缆CD 固定.CD 与地面成40°夹角,且DB=5m.现再在CD 上方2m 处加固另一根钢缆ED,那么,钢缆ED 的长度为多少?(结果精确到0.01m) .
3.如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m, ∠ADC=135°.
(1)求坡角∠ABC 的大小;
(2)如果坝长100m,那么修建这个大坝共需多少
土石方(结果精确到0.01m 3 ) .
4.如图,燕尾槽的横截面是梯形ABCD ,其中AD ∥BC ,AB=DC ,燕尾角∠B=550,外口宽AD= 180mm ,燕尾槽深度是70mm ,求它的里口宽BC (结果精确到1mm ).
5.一艘货轮以36kn 的速度在海面上航行,当它行驶到A 处时,发现它的东北方向有一灯塔B ,货轮继续向北航行40min 后到达C 处,发现灯塔B 在它北偏东750方向,求此时货轮与灯塔B 的距离(结果精确到0.01 n mile ).
6.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离。

(结果保留根号)
(参考数据:42615sin -=
︒,4
2615cos +=︒,3215tan -=︒)。

7.我市准备在相距2千米的A 、B 两工厂间修一条笔直的公路,但在B 地北偏东60°方向、A 地北偏西45°方向的C 处,有一个半径为0.6千米的住宅小区(见下图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:2≈1.414,3≈1.732)。

相关文档
最新文档