离散数学3
离散数学 第三章 函数

下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2
离散数学(chapter3集合的基本概念和运算)

以上运算律的证明思路:欲证P=Q,即证 x P x Q。
2013-7-10 离散数学
20
Байду номын сангаас
三、集合算律
证明分配律:A∪(B∩C) = (A∪B)∩(A∪C) 对x, x A∪(B ∩C) (x A ) (x B∩C )
(x A) (x B x C )
Z: 整数集合
Q: 有理数集合
R: 实数集合 C: 复数集合
: 空集(不含任何元素) E: 全集 (在某一问题中,含有所涉及的全部集合的集合。)
2013-7-10 离散数学 6
三、集合的表示方法
列出集合的所有元素,元素之间用逗号 1、列举法: 隔开。如A = { a, b, c } , B = { 1,2,4,6,7,9 } 用谓词概括该集合中元素的属性。 2、描述法: 如:A = { x | xZ 3 < x 6 } A = { x | P (x) },其中P (x)表示x满足的性质。 即A是由所有使P (x)为真的全体x构成。
2013-7-10 离散数学 3
§3.1 集合的基本概念
内容:集合,元素,子集,幂集等。 重点:(1) 掌握集合的概念及两种表示法, (2) 常见的集合N , Z, Q, R, C 和特殊集合 ,E, (3) 掌握子集及两集合相等的概念, (4) 掌握幂集的概念及求法。
2013-7-10 离散数学 4
2013-7-10
离散数学
8
四、集合之间的关系
3、真子集: B A。
B A B A B A
BABA B=A
4、幂 集:集合A的全体子集构成的集合,记作P (A)。 符号化为 P (A) = { x | x A} n 元集A的幂集P (A)含有2n个元素。
离散数学-03-一阶逻辑

3.1.4 一阶逻辑公式与分类
解释和赋值的直观涵义
例 公式x(F(x)G(x)) 指定1 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 真/假命题? 假命题 指定2 个体域:实数集, F(x): x>10, G(x): x>0 真/假命题? 真命题
21
3.1.4 一阶逻辑公式与分类
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第3章 一阶逻辑
上海大学 谢江
1
第3章 一阶逻辑
• 3.1 一阶逻辑基本概念 • 3.2 一阶逻辑等值演算
2
3.1 一阶逻辑基本概念
• 3.1.1 命题逻辑的局限性 • 3.1.2 个体词、谓词与量词
– 个体常项、个体变项、个体域、全总个体域 – 谓词常项、谓词变项 – 全称量词、存在量词
n元谓词P(x1, x2,…, xn): 含n个个体变项的谓词, 是定义在 个体域上, 值域为{0,1}的n元函数 一元谓词: 表示事物的性质 多元谓词(n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词,即命题常项或命题变项 0元谓词是命题? 命题均可表示成0元谓词?
8
3.1.2 个体词、谓词与量词
• 3.1.3 一阶逻辑命题符号化
3
3.1 一阶逻辑基本概念(续)
• 3.1.4 一阶逻辑公式与分类
– 一阶语言L (字母表、项、原子公式、合式 公式) – 辖域和指导变元、约束出现和自由出现 – 闭式 – 一阶语言L 的解释 – 永真式、矛盾式、可满足式 – 代换实例
4
3.1.1 命题逻辑的局限性
11
3.1.3 一阶逻辑命题符号化
一阶逻辑命题符号化
离散数学复习3

3
4
5
21
4、图的运算
1、删边、删点
2、删边集、删点集 3、收缩 4、交、并、环和
22
图的运算
1.删除运算 删边:从G中删去一边的子图,记为G-e 删点:从G中删去一点及其关联边所得的 子图,记为G-v
G
G-e
G-v
23
图的运算
删除边集:从G中删去边集E的子集E’所 得到的子图,记为G-E’ 删除点集:从G中删去点集V的子集V’及 它们的关联边所得的子图,记为G-V’
G
G-E’
G-V’
24
图的运算
2.收缩运算:
设图G中边e,它的端点为vi和vj,现删去边e,
并把vi和vj合并为新的一点vi-j,使原来与vi或vj
关联的边变为与新的点vi-j关联,称边e被收缩。
v1 v1 v5 v2 V4-5 v2
e
v4 v3
v3
25
图的运算
3.图的并、交、环和
设图G1=(V1,E1),G2=(V2,E2)
41
路与回路
在图G中,由弧组成的有限序列是弧序。 弧序的开始点记为v0,结束点记为vm。 弧序可以用有向边序列表示,也可以用顶点序列来表 示。 所有弧都不同的弧序即为有向迹,所有顶点都不同的 弧序即为有向路。
若v0= vm的有向迹,则称为有向闭迹,否则称有向开迹。 若v0= vm,而其余顶点都不相同的弧序,则称为有向闭路, 否则称有向开路。
15
图的同构
a c A B
b
d
a-A, b-B, c-C, d-D 观察点a:(a,b) ,(a,c),(a,d) 观察它对应的映射点A: (A,B),(A,C),(A,D) 其余的点都有这种点对点,边对边的映射关系。 这两个图都表现出“图中每一个顶点都与其他3
屈婉玲离散数学第三章

推理定律——重言蕴涵式
1. A (AB)
附加律
2. (AB) A
化简律
3. (AB)A B
假言推理
4. (AB)B A
拒取式
5. (AB)B A
析取三段论
6. (AB)(BC) (AC)
假言三段论
7. (AB)(BC) (AC)
等价三段论
8. (AB)(CD)(AC) (BD)
构造性二难
熟练掌握判断推理是否正确的不同方法(如真值表法、等 值演算法、主析取范式法等)
牢记 P 系统中各条推理规则 熟练掌握构造证明的直接证明法、附加前提证明法和归谬
法 会解决实际中的简单推理问题
练习1:判断推理是否正确
1. 判断下面推理是否正确: (1) 前提:pq, q 结论:p
解 推理的形式结构: (pq)qp 方法一:等值演算法
练习2解答
(3) 证明: ① p(qr) ②p ③ qr ④ sq ⑤s ⑥ q ⑦r ⑧ rt
前提引入 前提引入 ①②假言推理 前提引入 前提引入 ④⑤假言推理 ③⑥析取三段论 ⑦附加
谢谢大家!
定理3.1 由命题公式A1, A2, …, Ak 推B的推理正确当且仅当 A1A2…AkB为重言式
注意: 推理正确不能保证结论一定正确
推理的形式结构
由{A1, A2, …, Ak}推B的推理有以下的形式结构: 1. {A1, A2, …, Ak} B
若推理正确, 记为{A1,A2,,An} B 2. A1A2…AkB
练习2:构造证明
2. 在系统P中构造下面推理的证明: 如果今天是周六,我们就到颐和园或圆明园玩. 如果颐和 园游人太多,就不去颐和园. 今天是周六,并且颐和园游 人太多. 所以, 我们去圆明园或动物园玩.
离散数学第3章 集合

任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合
离散数学 第三-四章

Ai
(f) A (A∪B ), B (A∪B )
集合与关系 >集合的运算
交与 并的关系 定理3-2.1 设A、B、C为三个集合,则下列分配律 成立。 a) A∩(B∪C)=(A∩B)∪(A∩C) b) A∪(B∩C)=(A∪B)∩(A∪C) 定理3-2.2 设A、B为任意两个集合,则下列吸收律 成立 a) A∪(A∩B)=A b) A∩(A∪B)=A 定理3-2.3 A B 当且仅当 A∪B=B 或 A∩B=A。
集合与关系 > 集合的运算
本节重点掌握的概念: 集合, 集合相等,集合包含, 幂集。
本节重点掌握的方法: 集合的表示, 求幂集.
作业
3-1 (1)(a),(c) ,(e)
(3) (4) (a),(c) ,(e) (5) (6) (a),(c) ,(e) (9)
集合与关系 >集合的概念和表示法
上节知识点: 1. 集合的概念 2. 集合的表示 3 集合之间的关系 4 空集和全集 5 幂集(power set)
A-B
E B
A
集合与关系 >集合的运算
• 绝对补 定义3-2.4 设E为全集,任一集合A关于E的补 E-A, 称为集合A的绝对补,记作~A。
即 ~ A={ x| xE ∧ xA}
集合与关系 >集合的运算
(3) 集合的补(complement) 定义3-2.3 设A、B为任意两个集合,所有属于A而 不属于B的一切元素组成的集合S称为B对于A的 补集,或相对补,记作A-B。 即 A-B={ x| xA ∧ xB} 或 xA-B xA但 xB
例如 A={2, 5, 6} B={1, 2, 4, 7, 9} A-B={5, 6} B-A={1,4,7,9} E - A?
离散数学 第3章 函数

•关于运算,我们主要考虑其封闭性。 n元运算f的封闭性:对于任何n个元素x1 , x2 , , xn, x1 , x2 , , xnX f(x1 , x2 , , xn)X ,
或者 (x1 , x2 , , xn)Xn f(x1 , x2 , , xn)X 。
(8)偏函数(partial function):部分有定义的函数。即 D(f)X (或者f -1(Y)X) 。
D(f) X D(f)X
2021/5/27
9
离散数学
例1.截痕函数(cross function):f :X2XY , f(x) = {x}Y 。
XY Y
{x}Y
Xx
例2.计算机是一个函数。即 计算机:输入空间输出空间;
2021/5/27
1
离散数学 第三章 函数
§1.函数的基本概念 §2.函数的复合
2021/5/27
2
离散数学
第三章 函数(function)
§1.函数基本概念
定义1.函数(映射(map)、变换(transformation))
函数是后者唯一的关系。即
f是由X到Y的函数,记为f :XY
f XY(xX)(yY)(zY)((x, y)f (x, z)f y=z)
f ={((x,y), z) : x, y , z 2X z= x y }
2021/5/27
13
离散数学
这里(x,y)是前者, z是后者;或者
f :2X 2X 2X , f(x ,y) = z= x y ,
这里(x,y)是自变量, z是因变量; 因此 f = 。
例6.函数未必都有统一的表达式。不象连续函数那样大 多都有统一的表达式,离散函数大多都没有统一的表达 式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题(共5道小题,共50.0分)
1. 代数系统的零元是可逆元.
A. 正确
B. 错误
知识点: 代数系统的基本概念
学生答案: [B;]
得分: [10] 试题分值: 10.0
提示:
2. ⊙11〉是群.
A. 正确
B. 错误
知识点: 群、环和域
学生答案: [A;]
得分: [10] 试题分值: 10.0
提示:
3. 设是布尔代数,则对任意,都有,使得
.
A. 正确
B. 错误
知识点: 格和布尔代数
学生答案: [A;]
得分: [10] 试题分值: 10.0
提示:
4. 设是格的任意两个元素,则.
A. 正确
B. 错误
知识点: 格和布尔代数
学生答案: [A;]
得分: [10] 试题分值: 10.0
提示:
5. 设集合,则是格.
A. 正确
B. 错误
知识点: 格和布尔代数
学生答案: [A;]
得分: [10] 试题分值: 10.0
提示:
6.
二、单项选择题(共5道小题,共50.0分)
1. 设是有理数集,在定义运算为,则的单位元为
A.
B.
C. 1
D. 0
知识点: 代数系统的基本概念
学生答案: [D;]
得分: [10] 试题分值: 10.0
提示:
2. 设集合,下面定义的哪种运算关于集合不是封闭的
A.
B.
C. ,即的最大公约数
D. ,即的最小公倍数
知识点: 代数系统的基本概念
学生答案: [D;]
得分: [10] 试题分值: 10.0
提示:
3. 在整数集上,下列哪种运算是可结合的
A.
B.
C.
D.
知识点: 代数系统的基本概念
学生答案: [B;]
得分: [10] 试题分值: 10.0
提示:
4. 设代数系统A,・,则下面结论成立的是.
A. 如果A,・是群,则A,・是阿贝尔群
B. 如果A,・是阿贝尔群,则A,・是循环群
C. 如果A,・是循环群,则A,・是阿贝尔群
D. 如果A,・是阿贝尔群,则A,・必不是循环群
知识点: 群、环和域
学生答案: [C;]
得分: [10] 试题分值: 10.0
提示:
5. 下列代数系统中,哪一个不构成群
A. 是模11乘法
B. 是模3加法
C. 普通加法
D. 普通乘法
知识点: 群、环和域
学生答案: [D;]
得分: [10] 试题分值: 10.0 提示:
6.。