因数,倍数,质数,合数

合集下载

2023-2024学年五年级下学期数学第一单元 倍数与因数《合数、质数》(教案)

2023-2024学年五年级下学期数学第一单元 倍数与因数《合数、质数》(教案)

教案标题:2023-2024学年五年级下学期数学第一单元倍数与因数《合数、质数》一、教学目标1. 让学生理解合数和质数的概念,掌握合数和质数的特征。

2. 培养学生运用合数和质数的知识解决问题的能力。

3. 培养学生的逻辑思维能力和合作意识。

二、教学内容1. 合数的概念和特征2. 质数的概念和特征3. 合数和质数的判断方法4. 合数和质数在数学中的应用三、教学过程1. 导入新课通过复习因数和倍数的概念,引导学生进入新课的学习。

教师提出问题:“一个数的因数除了1和它本身外,还有别的因数,这样的数叫什么?”学生回答:“合数。

”教师继续提问:“一个数只有1和它本身两个因数,这样的数叫什么?”学生回答:“质数。

”2. 讲解合数的概念和特征教师通过举例,讲解合数的概念和特征。

合数是指除了1和它本身外,还有别的因数的数。

例如,4、6、8、9等都是合数。

合数的特征是:除了1和它本身外,还有别的因数。

3. 讲解质数的概念和特征教师通过举例,讲解质数的概念和特征。

质数是指只有1和它本身两个因数的数。

例如,2、3、5、7等都是质数。

质数的特征是:除了1和它本身外,没有别的因数。

4. 合数和质数的判断方法教师引导学生总结判断合数和质数的方法。

判断一个数是否为合数,只需找出除了1和它本身外的其他因数即可。

判断一个数是否为质数,需要从2开始,逐个检查它是否可以被其他数整除。

如果能被整除,就不是质数;如果不能被整除,就是质数。

5. 合数和质数在数学中的应用教师通过举例,讲解合数和质数在数学中的应用。

例如,求解最大公因数、最小公倍数、分解质因数等问题,都需要运用到合数和质数的知识。

6. 课堂小结教师带领学生回顾本节课所学内容,总结合数和质数的概念、特征、判断方法以及在数学中的应用。

四、课后作业1. 判断下列数中,哪些是合数,哪些是质数:12、17、21、29、35、41、49。

2. 找出50以内的所有质数。

3. 分解下列数的质因数:18、24、36、48。

因数与倍数、奇数与偶数、质数与合数

因数与倍数、奇数与偶数、质数与合数

一、4 × 3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数。 二、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。 三、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。 四、5的倍数都是双数。 3的倍数:各位上数的和一定是3的倍数。 五、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。 六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。 七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。 八、在1—20这些数中: (1既不是素数,也不是合数) 奇数:1、3、5、7、9、11、13、15、17、19。 偶数:2、4、6、8、10、12、14、16、18、20。 素数:2、3、5、7、11、13、17、19。(共8个,和为77。) 数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。) 九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。 十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。 十一、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。

因数倍数、奇数偶数、质数合数概念

因数倍数、奇数偶数、质数合数概念

倍数和因数1、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:一前一后写,成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘自然数(一般不考虑0)。

(4)2、3、5的倍数特征2的倍数:个位上是0,2,4,6,8的数都是2的倍数。

3的倍数:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5的倍数:个位上是0或5的数,是5的倍数。

2和5的倍数:个位上是0的数,既是2的倍数又是5的倍数能同时被2、3、5整除(也就是2、3、5的倍数)的最小的两位数是30,最大的两位数是90,最小的三位数是120。

奇数和偶数2、自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

自然数中最小的偶数是0,最小的奇数是1。

关系:奇数±偶数=奇数奇数±奇数=偶数偶数±偶数=偶数无论多少个偶数相加,结果都是偶数奇数个奇数相加,结果是奇数偶数个奇数相加,结果是偶数合数和质数(素数)3、质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、100以内的质数口诀2、3、5、7和11,13后面是17,19、23、29,(十九、二三、二十九)31、37、41,(三一、三七、四十一)43、47、53,(四三、四七、五十三)59、61、67,(五九、六一、六十七)71、73、79,(七一、七三、七十九)83、89、97。

因数、倍数、质数、合数

因数、倍数、质数、合数

因数、倍数、质数、合数的复习(五年级)一、知识热身知识点一:因数、倍数1、如果整数a能被整数b整除(b≠0),a就叫做b的(),b就叫做a的()。

一个数的因数的个数是有限的,其中最小的因数是(),最大的因数是()。

一个数的倍数的个数是无限的,其中最小的倍数是(),( )最大的倍数(填“有”或“没有”)2、能被2、3、5整除的数的特征:能被2整除的数的特征:()能被5整除的数的特征:()能被3整除的数的特征:()能同时被2,5整除的数的特征()能同时被2,3,5整除的数的特征()练习:有因数2,又是3和5的倍数的最大三位数是()知识点二:奇数、偶数1、一个自然数,不是()数就是偶数。

最小的偶数是(),最小的奇数是()。

知识点三:质数、合数1、质数也叫(),只有()和()两个因数。

合数,除了1和它本身还有别的因数的数,一个合数有两个以上的因数,至少有()个因数。

最小的质数是(),最小的合数是(),1不是()也不是()。

知识点四:质因数、分解质因数1、每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数。

2、把一个合数用几个()相乘的形式表示出来,叫做分解质因数。

分解质因数的方法叫()。

知识点五:最大公因数、最小公倍数1、几个数公有的因数,叫做这几个数的(),其中最大的一个叫做这几个数的()。

2、几个数公有的倍数,叫做这几个数的(),其中最小的一个叫做这几个数的()。

3、如果两个数互质,它们的最大公因数就是(),最小公倍数就是它们的()。

两个数,如果较小数是较大数的因数,那么()就是这两个数的最大公因数,()就是这两个数的最小公倍数。

知识点六:互质数1、公约数只有()的两个数叫做互质数。

2、互质数的几种特殊情况:(1)两个数都是质数,这两个数一定()。

(2)相邻的两个数互质。

(3)()和任何数都互质。

二、基础练习:1、如果a÷b=c,(a、b、c都是自然数)那么,()是()的倍数,()是()的因数。

五年级下册数学《因数和倍数》质数和合数 知识点整理

五年级下册数学《因数和倍数》质数和合数 知识点整理

五年级下册数学《因数和倍数》质数和合数知识点整理本节研究指导本节的研究重点是理解质数和合数的概念。

虽然在平时考试中所占分值不大,但是我们应该抱着完善知识体系的态度来研究它。

此外,我们还要掌握树状图的优势,因为在数据分析中,利用树状图法是一种重要的手段。

知识要点1.自然数按因数的个数来分为四类:质数、合数、1和其他数。

质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:只有1个因数。

既不是质数,也不是合数。

注意:最小的质数是2,最小的合数是4,连续的两个质数是2和3.每个合数都可以由几个质数相乘得到,质数相乘一定得到合数。

20以内的质数有8个:2、3、5、7、11、13、17、19.100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.2.100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数,质数×质数=合数。

3.常见最大、最小A的最小因数是1,最小的奇数是1.A的最大因数是本身,最小的偶数是2.A的最小倍数是本身,最小的质数是2.最小的自然数是1,最小的合数是4.4.分解质因数把一个合数分解成多个质数相乘的形式。

例如,把36分解质因数是:36=2×2×3×3.可以用树状图法进行分解。

5.用短除法分解质因数可以用短除法把一个合数写成几个质数相乘的形式。

例如,对18和30分解质因数的步骤如下:6.互质数公因数只有1的两个数叫做互质数。

例如,5和7是两个质数的互质数,8和9是两个合数的互质数。

因数与倍数、质数与合数的应用 (一)

因数与倍数、质数与合数的应用 (一)

因数与倍数、质数与合数的应用
将36分解质因数。

把84分解质因数。

分别将144、91、325分解质因数。

三个连续自然数相乘得到结果是1716,那么这三个自然数的和是多少?
三个连续的自然数相乘,积是39270,你能求出这三个连续自然数吗?
3个连续奇数的乘积是3315,请问这3个连续奇数分别是多少?
J博士写下四个连续自然数,牛小顿算了一下这四个数的乘积是43680,那么这四个自然数中最大的一个是多少?
在做一道两位数乘以两位数的乘法题时,艾小米把一乘数中的数字5看成8,由此得乘积为1872.那么原正确的乘积是多少?
西西家的电话号码是由七位数字组成,第一位数字比3的最小倍数小1,第二位数字是最小的合数,第三位数字是最小的偶数,第四位数字是既不是质数而不是合数的数,第五位数字是5的最大因数,第六位数字比最小的质数多1,第七位数字是10以内的既是2的倍数,也是4的倍数的数,但不是4,西西家的电话号码是多少?
求120、108、126三个数的最大公因数和最小公倍数
一个数和16的最大公因数是8,最小公倍数是80,求这个数。

一个数和18的最大公因数是9,最小公倍数是126,求这个数。

安小姗选了两个质数,分别用a,b表示,牛小顿发现3a+7b=41,那么a+b =____。

五下数学因数与倍数&质数与合数

五下数学因数与倍数&质数与合数

因数与倍数整除:被除数、除数和商都是自然数,并且没有余数。

大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

如:45÷15=3,我们说45能被15整除,45是15的倍数,15是45的因数。

因数和倍数:在整数乘法里(即a,b,c三个数都是不为0的整数),如果a×b=c,那么a和b是c的因数,c是a和b的倍数。

如:6和4都能被8(),16和24都能被8()。

(填“除尽”或“整除”)如果a÷b=30,那么()A a一定是b的倍数 B a可能是b的倍数2.5×8=20,那么()A 20是2.5的8倍 B 20是2.5的倍数注意:谁是谁的因数,或谁是谁的倍数,不能单独拿出来说谁是因数,谁是倍数。

如:因为5×12=60,所以5和12是因数,60是倍数。

(×)这种说法是错误的,应该说5和12是60的因数,60是5和12的倍数。

一般一个不为0的数的因数≤倍数。

注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。

但是0也是整数。

奇数和偶数:自然数按能不能被2整除(即是否是2的倍数)来分:奇数和偶数。

自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

奇数:不能被2整除的数,即不能两个两个数完的数。

偶数:能被2整除的数,即能两个两个数完的数。

四则运算中的奇偶规律:奇数+奇数=偶数奇数-奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数-偶数=奇数奇数×偶数=偶数偶数-奇数=奇数质数和合数:自然数按因数的个数来分:质数、合数、1.一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。

1既不是质数,也不是合数。

质数:有且只有两个因数,1和它本身(因数个数=2)。

合数:至少有三个因数,1、它本身、别的因数(因数个数>2)1:只有1个因数。

因数、倍数、质数

因数、倍数、质数

典型练习
• 两个质数的和是39,这两个质数的积是() • 120的因数有( )个
典型练习
• 2.一个长方体木块,长2.7m,宽1.8米,高 1.5米。要把它切成大小相等的正方体木块, 不许有剩余,正方体木块的棱长最长是多 少?
典型练习
• 3.学校六年级有若干名同学排队做操,3人 一行余2人,7人一行余2人,11人一行也余 2人。六年级最少有多少人?
• 公因数只有1的两个数叫互质数。 • 几个数公有的倍数叫公倍数。其中最小的
一个,叫做这几个数的最小公倍数。 • 短除法:
5. 2、3、5的倍数特征
• 2的倍数特征:
• 个位上的数字是0、2、4、6、8(能被2整除)
• 3的倍数特征: • 各个数位上的数字之和是3的倍数 • 5的倍数特征: • 个位上是0或5 • 同时是2、3的倍数特征: • 同时是2、5的倍数特征: • 同时是3和5的倍数特征: • 同时是义
• 若正整数a、b、c,且a÷b=c,那么a就是b、 c的倍数,b、c就是a的因数
• 如4x5=20,则20是4和5的倍数,4和5是20 的因数。
2.因数、倍数的特征
• 一个数的因数的个数是有限的,其中最小 的因数是1,最大的因数是它本身。
• 一个数的倍数是无限的,其中最小的倍数 是它本身,没有最大的倍数。
3.质数、合数的意义
• 质数:一个数,如果只有1和它本身两个因 数,这样的数叫做质数(素数)。最小的 质数是2,没有最大的质数。
• 合数:一个数,除了1和它本身还有别的因 数,这样的数叫合数。最小的合数是4,没 有最大的合数。
• 1既不是质数也不是合数
4.公因数、公倍数
• 几个数公有的因数叫公因数。其中,最大 的一个,叫做这几个数的最大公因数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因数、倍数、质数、合数一、因数倍数的特征1、重点归纳(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身:一个数的倍数的个数是无限的,其中最小的因数是它本身,没有最大的因数:一个数,既是它本身的因数,也是它本身的倍数。

(2)2、3、5、9倍数的特征:2的倍数的特征:个位数字是0,2,4,6,8;5的倍数的特征:个位数字是0或5;同时是2、5倍数的特征:个位数字是0;3的倍数的特征:各个数位的数字之和是3的倍数;9的倍数的特征:各个数位的数字之和是9的倍数。

同时是2、3和5倍数的特征:个位数字是0,并且各个数位的数字之和是3的倍数(3)质数(素数)、合数最小的质数是2,2是唯一的偶质数,没有最大的质数。

最小的合数是4,没有最大的合数。

1既不是质数,也不是合数。

(4)分解质因数的方法用短除法,先用这个合数的质因数(通常从最小的开始)去除,一般先试2、3、5这几个数,除到得出的商是质数为止,把出书和商写成相乘的形式。

(5)奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数2、典型练习(1)判断:因为48÷8=6,所以说48是倍数,8是因数。

()因数和倍数的关系式相互依存的,不能说某一个数是因数或倍数,可以说“谁是谁的倍数,谁是谁的因数”。

(2)用a表示一个大于1的自然数,则a2 一定是()。

A、奇数B、偶数C、质数D、合数二、两数互质的几种特殊情况:(1)两个不相同的质数一定是互质数。

如:7和13、17和19是互质数。

(2)两个连续的自然数一定是互质数。

如:4和5、13和14是互质数。

(3)相邻的两个奇数一定是互质数。

如:5和7、75和77是互质数。

(4)1和其他所有的自然数一定是互质数。

如:1和4、1和13是互质数。

(5)2和任意一个奇数都是互质数。

如2和1、2和9都是互质数。

(6)一个奇数和质因数只有2的偶数都是互质数。

如9和4、3和8都是互质数。

因数只有2的偶数,指的是如8=2×2×2,16=2×2×2×2;32=2×2×2×2×2 ……三、最大公因数和最小公倍数1、重点归纳(1)在求最小公因数和最大公倍数的时候,我们要区分两者的区别与联系。

两者都可以用短除法来求,但是前者是所有的除数相乘,而后者是把除数和商连乘起来而得到。

(2)求两个数的最大公因数和最小公倍数的特殊情况:①1与任意非零自然数的公因数只有1个,就是1。

②倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

举例:15和5,[15,5]=15,(15,5)=5③互质的两个数,最大公因数是1,最小公倍数是它们的乘积。

举例:[3,7]=21,(3,7)=1(3)在解决最大公因数和最小公倍数的实际问题中,一般问题中有“最大”、“最多”是求最大公因数的问题;一般问题中有“最少”、“至少”是求最小公倍数的问题。

(4)两个自然数的最大公因数与它们的最小公倍数的一个重要性质是:最大公因数×最小公倍数=两个数的乘积(5)求两个数的最小公倍数的方法:这两个数的公有质因数与独有质因数的连乘积就是这两个数的最小公倍数。

2 、典型练习例1、两个数的最大公因数是4,最小公倍数是252,其中一个是28,另一个是数()。

例2、两个自然数的积是360,最小公倍数是120,这两个数各是多少?例3、甲数=2×2×3×5,乙数=3×3×5×2,这两个数的最小公倍数是()。

分析:根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积,进行解答即可。

解答:因为甲数=2×2×3×5,乙数=3×3×5×2,所以这两个数的最小公倍数是2×3×5×2×3=180.分析:由六1班人数的8参加田赛,7参加径赛参加径赛”,求出要求六1班人数,也就是求7和8的最小公倍数。

7和8的最小公倍数是7×8=56,例5、能同时被2、3、5除余数为1的最小数是()分析:可先求出能同时被2、3、5整除的最小的数,也就是它们的最小公倍数为30(2、3、5互质,最小公倍数等于这三个数的乘积),由此解决问题。

解答:能被2、3、5整除的最小的数是30,30+1=31例6、一筐苹果(在100以内),按每份3个分多1个;每份5个分多3个,每份7个分多2个,这筐苹果原有()个。

分析:按每份3个分多1个;每份5个分多3个,每份7个分多2个,这筐苹果加上2个,就是3个分和5个分没有剩余,7个分剩4个,即是15的公倍数,求出100以内15的公倍数,然后再满足7个分多4个的数,最后减去2即可。

解:100以内15的公倍数有:30、45、60、75、90,7个分多4个是:60,所以这筐苹果原有:60-2=58个例7、从学校到文化中心的这段公路一侧,一共有37盏路灯(两端均安装),原来每两盏灯之间相距50米,选择要改成每两盏之间相距60米,除去两端不移动外,中间有多少盏路灯不需要重新安装?分析:即求出50和60的最小公倍数,是300,也就是说每300米就有一盏灯不需要重新安装;再求出这段路的总长里有多少个300米即可。

6段,共有7个点,除去两头,还有5根不动,可以看图.___.___.___.___.___.___.解答:[50,60]=300 (37-1)×50=1800(米)1800÷300=6 6+1-2+5例8:用96朵红花和72朵黄花做花束,如果每个花束里的红花朵数同样多,每个花束里的黄花也同样多,且两种花都没有剩余。

每个花束里最少有多少朵花?分析:看到最少,不能错认为是求最小公倍数,花束例的花朵数要最少,说明花束要最多,也就是96和72最大公因数,再把每束花例的红花朵数和黄花朵数加起来即可。

解答:96和72的最大公因数是24,96÷24+72÷24=7(朵)练习一、填空题1、两个数的最大公因数是42,最小公倍数是2940,且两个数的和是714,这两个数各是()和()。

2、一个数与48的最大公约数是12,最小公倍数是144,这个数是()。

3、既有因数3,又是5的倍数的最小三位数是()【分析】根据3的倍数的特征,各个数位上的数字之和是3的倍数,这个数就是3的倍数.5的倍数特征是:个位上是0或5的数是5的倍数.所以既有因数3又是5的倍数最小三位数是105.4、甲数=2×3×5×A,乙数=2×3×7×A,当A=()时,甲、乙两数的最小公倍数是630。

解答:因为甲数=2×3×5×A,乙数=2×3×7×A,所以这两个数的最小公倍数是2×3×5×7×A=630,210×A=630 ,A=3二、选择题1、a÷b=9(a、b都是整数),那么a与b的最小公倍数是()A、aB、bC、abD、9 注:成倍数关系的两个数,大的数是小的数的最小公倍数。

2、甲数×3=乙数,(甲乙都是非0自然数),则乙数是甲数的()A、倍数B、因数C、自然数D、质数3、下面的数,因数个数最少的是()A、16B、36C、40【考点】找一个数的因数的方法.【分析】根据找一个数因数的方法分别找出16、36、40的因数,然后数出个数,比较即可.【解答】解:16的因数有:1、2、4、8、16,共5个;36的因数有:1、2、3、4、6、9、12、18、36,共9个;40的因数有:1、2、4、5、8、10、20、40,共8个;故选:A.4、1、3、7都是21的()A、质因数B、公因数C、奇数D、因数解:因为1×3×7=21,所以1、3、7是21的因数;因3、7都是质数,3、7是21的质因数,但1既不是质数,也不是合数,.故选D.5、28□同时是2、3的倍数,□中可能是()A、0或2或4或6或8B、2或5或8C、2或8D、以上说法都不正确考点:找一个数的倍数的方法;数的整除特征.分析:根据能被2和3整除的数的特征:个位是偶数,并且该数各个数位上数的和能被3整除;进行解答即可.解答:因为2+8+2=12,2+8+8=18,12和18都能被3整除,所以□中可能是2或8;三、解决问题1、已知两数的积是3072,最大公约数是16,求这两个数。

2、小明家房间的地面正好是正方形,要铺地砖,不论选择边长是50厘米的方砖,还是选择边长是60厘米的方砖都正好铺满,小明房间的地面至少是多少平方米?分析:房间的面积要最小,也就是房间的面积要同时是两种方砖面积的最小整数倍,也就是房间的边长要是两种方砖边张的最小公倍数。

3、一张长24厘米,宽18厘米的长方形纸,要分成大小相等的小正方形,且没有剩余.最少可以分成几个这样的小正方形?分析:看到最少,不能错认为是求最小公倍数,截的块数要最少,说明每块在正方形截得的面积要最大,也就是边长要最大。

即求长、宽的最大公因数,再用长方形纸的面积÷截得的每块小正方形的面积。

4、某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人。

这个学校五年级至少有()名学生。

分析:由每排3人、5人或7人,最后一排都只有2人可知:这个学校五年级减去2人就是3、5、7的公倍数,求至少就是、5、7的最小公倍数加2,据此解答。

解答:3、5、7两两互质,它们最小公倍数等于它们的乘积;3、5、7的最小公倍数:3×5×7=105;105+2=107(名);因数、倍数、质数、合数一、因数倍数的特征1、重点归纳(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身:一个数的倍数的个数是无限的,其中最小的因数是它本身,没有最大的因数:一个数,既是它本身的因数,也是它本身的倍数。

(2)2、3、5、9倍数的特征:2的倍数的特征:个位数字是0,2,4,6,8;5的倍数的特征:个位数字是0或5;同时是2、5倍数的特征:个位数字是0;3的倍数的特征:各个数位的数字之和是3的倍数;9的倍数的特征:各个数位的数字之和是9的倍数。

同时是2、3和5倍数的特征:个位数字是0,并且各个数位的数字之和是3的倍数(3)质数(素数)、合数最小的质数是2,2是唯一的偶质数,没有最大的质数。

最小的合数是4,没有最大的合数。

相关文档
最新文档