割补法和分割法

合集下载

小学五年级数学《组合图形面积的计算》优秀教案三篇

小学五年级数学《组合图形面积的计算》优秀教案三篇

小学五年级数学《组合图形面积的计算》优秀教案三篇组合图形面积的计算是平面图形知识在小学阶段的综合应用。

计算一个组合图形的面积,有时可以有多种方法,下面就是我给大家带来的小学五年级数学《组合图形面积的计算》优秀教案三篇,希望能帮助到大家!小学五年级数学《组合图形面积的计算》优秀教案一教学目标:1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。

教学方法:讲解法、演示法教学过程:一、割补法这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。

Ppt演示变化过程,并出示解题过程。

二、等积变形法。

这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。

Ppt演示变化过程,并出示解题过程。

三、旋转法。

这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。

Ppt演示变化过程,并出示解题过程。

四、小结方法求组合图形面积可按以下步骤进行1、弄清组合图形所求的是哪些部分的面积。

2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。

小学五年级数学《组合图形面积的计算》优秀教案二教学内容:《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”教学目标:1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

(完整)几何图形解题方法

(完整)几何图形解题方法

几何图形解题方法在实际生产和生活中,几何形体往往不是以标准的形状出现,而是以比较复杂的组合图形出现,很难直接利用公式计算其面积或体积.如果在保持图形的面积或体积不变的前提下,对图形进行适当的变换,就容易找出计算其面积或体积的方法。

(一)添辅助线法有些组合图形按一般的思考方法好像已知条件不足,很难解答。

如果在图形中添加适当的辅助线,就可能找到解题的途径。

辅助线一般用虚线表示。

*例1 求图40-1阴影部分的面积。

(单位:平方米)(适于三年级程度)解:图40-1中,右边两个部分的面积分别是20平方米和30平方米,所以可如图40—2那样添上三条辅助线,把整个长方形分成5等份。

这样图中右边的五个小长方形的面积相等。

同时,左边五个小长方形的面积也相等.左边每个小长方形的面积是:25÷2=12。

5(平方米)所以,阴影部分的面积是:12。

5×3=37.5(平方米)答略。

*例2 如图40—3,一个平行四边形被分成两个部分,它们的面积差是10平方厘米,高是5厘米.求EC的长.(单位:厘米)(适于五年级程度)解:如图40—4,过E点作AB的平行线EF,则△AEF与△ABE是等底等高的三角形。

所以,△AEF的面积与△ABE的面积相等.小平行四边形EFDC的面积就是10平方厘米。

因为它的高是5厘米,所以,EC=10÷5=2(厘米)答:EC长2厘米。

*例3 如图40-5,已知图中四边形两条边的长度和三个角的度数,求这个四边形的面积.(单位:厘米)(适于五年级程度)解:这是一个不规则的四边形,无法直接计算它的面积。

如图40—6,把AD和BC两条线段分别延长,使它们相交于E点.这样,四边形ABCD的面积就可以转化为△ABE的面积与△DCE的面积之差。

在△ABE中,∠A是直角,∠B=45°,所以∠E=45°,即△ABE是等腰直角三角形。

所以AB=AE=7(厘米),则△ABE的面积是:7×7÷2=24。

巧用割补法求阴影部分面积

巧用割补法求阴影部分面积

巧用割补法求阴影部分面积作者:刘昆来源:《学苑创造·C版》2014年第02期九年级上册学完扇形的面积公式后,细心的同学一定会发现,与扇形有关的练习题常常以“与圆有关的求解阴影部分面积”的形式出现.这类题目看起来复杂,其实只要掌握好解题技巧,就能化繁为简. 下面通过几个例子详细介绍解决这类题目最常用的割补法.类型一:分割法例1 如图1所示的阴影部分,其形状称为“弓形”,其面积为所对扇形与三角形面积之差.即:S阴影=S扇形AOB-S△AOB【拓展练习】练习1 如图2所示,求阴影部分面积.【分析】阴影部分实际上是两个弓形,其面积可表示为半圆面积减去直角三角形的面积.解:S阴影=S半圆-S三角形=[12]π×52-6×8×[12]=12.5π-24练习2 如图3,正方形ABCD的边长为a,以顶点B,D为圆心,以边长a为半径分别画弧,求在正方形内两弧所围成的图形的面积.【分析】连接AC,将这阴影的图形,分割转化为两个相同的弓形求解。

解:S阴影=2(S扇形ADC-S△ADC)=2([90πa2360-12][a2])=[12πa2]-[a2]练习3 如图4,正方形的边长为2a,以各边为直径在正方形内分别作半圆,求四弧所围成的阴影部分图形的面积.【分析】方法一,可以将整个图形分割成4个练习2中的图形,然后按照练习2中的解题方法求解,解答略. 方法二,这个图形是正方形内4个半圆互相重叠,阴影部分刚好是正方形对角线在4个半圆中切出的8个弓形之和,因此阴影部分面积可表示为4个半圆面积减4个等腰直角三角形面积,而这4个等腰直角三角形面积之和正是该正方形的面积. 解答如下:解:S阴影=4S半圆-S正方形=4×[12]π[a2]-4[a2]=(2π-4)[a2]类型二:拼补法.此类题目一般是将几个图形进行拼、接补全后,形成较规则的图形,再解答.例2 (1)如图5,⊙A,⊙B,⊙C两两不相交,且它们的半径都是0.5cm,则图中三个扇形(即三个阴影部分)的面积之和为多少?(2)若在题(1)的条件下,增加一个圆,变成如图6所示图形,设这四个圆的半径都是r,则这四个圆中阴影部分面积之和为多少?(3)若在题(1)的条件下,有n个这样的半径都是r的圆,如图7所示,那么这n个圆中阴影部分的面积之和又为多少呢?请说明理由.【分析】这些扇形所在圆的半径均相同,但是各自圆心角度数不确定,但当我们将其拼接后,会发现图5中圆心角的度数之和就是△ABC的内角和,这样就可以化零为整,将阴影部分整合成一个图形求解. 问题(2)和问题(3)都可以按照此方法求解,只是阴影部分拼接成的图形圆心角度数变成了多边形的内角和.解:(1)[S阴影=180π×0.52360=0.125π](2)[S阴影=360πr2360=πr2](3)[S阴影=180(n-2)πr2360=(n-2)πr22]【拓展练习】练习4 如图8,在Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为多少?【分析】由于这两个扇形半径相等,且∠A+∠B=90°,可以将这两个扇形拼接在一起形成一个圆心角为90°的扇形.类型三:等积变形法,又可以分为平移法、对称法、等底同高法几类.例3 平移法.如图9,两个半圆中长为4的弦AB与直径CD平行,且弦AB与小半圆相切,那么图中阴影部分的面积为多少?【分析】在大半圆中,任意移动小半圆的位置,阴影部分面积都保持不变,所以可将小半圆平移至两个半圆共圆心,位置如图10所示.例4 对称法.如图11,PA,PB是半径为1的⊙O的两条切线,点A,B分别为切点,∠APB=60°,OP 与弦AB交于点C,与⊙O交于点D. 求阴影部分的面积(结果保留π).【分析】△ACO与△BCO关于直线OP对称,可将△BCO换为△ACO,即可将阴影部分合为一个扇形.[解:∵PA,PB是半径为1的⊙O的两条切线,点A,B分别为切点∴PA=PB且OA⊥PA,∠APO=12∠APB=12×60°=30°又∵OA=OB∴OP垂直平分AB. 即AB⊥OC,AC=BC 又∵OC=OC∴△BCO≌△ACO(SAS)∴S△ACO=SΔBCO,即S阴影=S扇形AOD∵在Rt△APO中∠AOP=90°-30°=60°∴S阴影=60π×12360=16π]例5 等底同高法.如图12所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积的比例为多少?【分析】阴影部分图形不规则,需要将其进行图形变换,拼接在一起. 如图13,连接OD,OC,根据图形的轴对称性和等底等高的三角形的面积相等,易知阴影部分的面积即为扇形OCD的面积,再根据正方形的四个顶点是圆的四等分点,即可求解.用割补法求阴影部分面积,其核心的数学思想就是化归思想,即,将我们不熟悉的、不规则的图形,通过割补的方式转化为我们常见的、熟悉的、规则的图形来求解.下次再碰到这样的题目,同学们应该能轻松解决.。

求阴影部分面积的常用方法

求阴影部分面积的常用方法
如 图1 . 连 接 C, ・ . ・ DC是 oA的 切 线 , . ・ √ 4 C上


B D= 2 、 / 了 。 A B = 3 , /D BC = 6 0 。 .

. ・
O B = O E 9 o ・  ̄ AO B E 是等 边 三角 形 . ・ . ‘ B O=
0 、 / 了, . . . 、 / 了, 0 ÷. ・ . ‘ c D 为o 0 的切
阴影部分面积 的常用方法
仇 金 祥
把 不 规 则 的 图形 的 面积 分 割成 几 个 规
求 阴影 部 分 面积 是 圆 中 的重 要 题 型 之


进 而得 到 问题 的答 案 . 也 是 中考 中 的 常 见 题 型 . 下 面 以 中 考 则 图形 的面积 来计 算 .
题为例 . 举 例 说 明 解 决 这 类 问 题 的 常 用 方


3 6 0

二 、分 割 法
例3 ( 2 0 0 9 ・ 四川 凉山州 ) 将 △ B C绕
T n t e l l i g e n t ma t h e ma t i c s
1 ■ 慧数 学
2 2

1 8 0
3 、 / 3 2 号
3 2 2
2 1 3 、 /

解得 : r = 2 , . ・ . S 影 s c D — s 扇 形 A c E ÷x 2 x 2 -
45, r r x2 , 、 " i T

三 、割 补 法 将 不 规 则 图 形 的 面 积 进 行 割 补 转 化 为 规 则 图形 的 面 积来 计 算 .

【初一方法归纳专题】平面直角坐标系中图形面积的求法

【初一方法归纳专题】平面直角坐标系中图形面积的求法

【初⼀⽅法归纳专题】平⾯直⾓坐标系中图形⾯积的求法Hello,各位⽼铁周末愉快应部分⽼铁的要求今天分享平⾯直⾓坐标系中⾯积的求法好了话不多说~~上货~~回顾篇——知识链接1.⾯积公式:(1)三⾓形的⾯积:S三⾓形=1/2×底×⾼(2)梯形的⾯积:S梯形=1/2×(上底+下底)×⾼2.两点间的距离:(1)当两点横坐标相同时,两点间的距离为这两点纵坐标差的绝对值(2)当两点纵坐标相同时,两点间的距离为这两点横坐标差的绝对值基础篇——三⾓形⾯积的求法题型1 三⾓形有⼀边在坐标轴上【例1】如图,平⾯直⾓坐标系中,已知三⾓形ABC的三个顶点的坐标分别是A(2,3),B(-4,0),C(4,0),求三⾓形ABC的⾯积.温馨提⽰:【思路及解答】请观看视频【⽅法归纳】当三⾓边有⼀边在坐标轴上时,将此边作为底边,那么⾼便垂直于坐标轴,底和⾼就能通过两点间的距离很快求出.题型2 三⾓形有⼀边与坐标轴平⾏【例2】如图,平⾯直⾓坐标系中,已知三⾓形ABC的三个顶点的坐标分别是A(-1,-4),B(2,0),C(-4,-4),求三⾓形ABC的⾯积.温馨提⽰:【思路及解答】请观看视频【⽅法归纳】当三⾓边有⼀边与坐标轴平⾏时,将此边作为底边,那么⾼便垂直于坐标轴,底和⾼就能通过两点间的距离很快求出.根据图形特殊,我们通常把平⾏于坐标轴的⼀边作为底边.题型3 三⾓形三边均不与坐标轴平⾏【例3】在如图所⽰的正⽅形⽹格中,每个⼩正⽅形的单位长度均为1,三⾓形ABC的三个顶点恰好是正⽅形⽹格的格点.(1)写出图中所⽰各顶点的坐标;(2)求三⾓形ABC的⾯积.温馨提⽰:【思路及解答】请观看视频【⽅法归纳】当三⾓边的三边均不与坐标轴平⾏时:(1)将原三⾓形围在⼀个梯形或长⽅形中,⽤长⽅形或梯形的⾯积,减去长⽅形或梯形边缘的直⾓三⾓形的⾯积,即可求得原三⾓形的⾯积,这种⽅法叫做补形法;(2)若三⾓形内⼀割线长度已知,并且它平⾏于坐标轴,那么可将其作为底边,把原三⾓形拆分为两个三⾓形,则两⾼的长度可得,⾯积即可求得,这种⽅法叫做分割法.以上两种⽅法就是数学⼏何图形运算中常⽤的割补法.例题讲授视频三⾓形⾯积的求法同学们,例题看明⽩了吗?⽅法掌握了吧!快来试试下⾯的变式训练吧!变式训练【变式训练1】如图,在平⾯直⾓坐标系中,三⾓形ABC的顶点坐标分别为A(-3,0),B(0,3),C(0,-1),则三⾓形ABC的⾯积为.答案6【变式训练2】如图,三⾓形ABC三个顶点的坐标分别为A(4,2),B(4,6),C(-1,3),三⾓形ABC的⾯积为.答案10【变式训练3】如图,在平⾯直⾓坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三⾓形ABC的⾯积吗?答案提升篇——四边形⾯积的求法【例4】如图,在平⾯直⾓坐标系中,四边形ADCB各顶点的坐标分别是A(-3,4),D(2,3),C(2,0),B(-4,-2),且AB与x轴交点E的坐标为(,0),求这个四边形的⾯积.【变式训练4】在如图所⽰的平⾯直⾓坐标系中,四边形OABC各顶点的坐标分别是O(0,0),A(-4,10),B(-12,8),C(-14,0),求四边形OABC的⾯积.答案总结篇——割补法求⾯积我们将不能直接求解的图形的⾯积转化为可直接求解的⾯积,常⽤的⽅法是“分割”和“补形”.1.利⽤“补形法”求图形的⾯积:2.利⽤“分割法”求图形的⾯积:好记性不如烂笔头快快整理到笔记本上吧!找题⽬练练哦题⽬都给同学们准备好啦!专题⼩练1.已知点A(-2,3),B(4,3),C(-1,-3).(1)在平⾯直⾓坐标系中标出点A,B,C的位置;(2)线段AB的长为_______;(3)点C到x轴的距离为_______,点C到AB的距离为_______;(4)三⾓形ABC的⾯积为_______.2.(1)在平⾯直⾓坐标系中,描出下列3个点:A(﹣1,0),B(3,﹣1),C(4,3);(2)顺次连接A,B,C,组成△ABC,求△ABC的⾯积.。

割补法巧算面积

割补法巧算面积

割补法巧算面积割补法巧算面积知识精讲:分割法:把不规则的的大图形化为规则的小图形添补法:把不规则图形周围添上规则的小图形,使总面积便于计算例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)练习1如图中的每个数字分别表示所对应的线段的长度(单位:米).这个图形的面积等于多少平方米?例题2如图,在正方形ABCD内部有一个长方形.EFGH.已知正方形ABCD的边长是6厘米,图中线段AE、AH都等于2厘米.求长方形EFGH 的面积.例题4. 如图1和图2,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点.已知图1中阴影部分的面积是294平方分米.请问:图2中的阴影部分的面积是多少平方分米?练习47.如图所示,将三个相同的长方形从上到下排列,依次进行两等分、三等分、四等分,各取出其中的一份画上阴影,则阴影部分的面积占全部面积的几分之几?选做题例5 如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A的面积是36平方厘米,那么正方形B的面积是多少平方厘米?例6.已知一个四边形ABCD的两条边的长度和三个角(如下图所示),求四边形ABCD的面积是多少?作业:1.如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连. 图中阴影部分的面积总和是多少?2. .(2013秋•诸暨市校级期中)如图,已知一个四边形的四条边AB,BC,CD和DA的长分别是3,4,13和12,其中∠B=90°,求这个四边形的面积3. 求阴影部分面积.4.求阴影部分面积.5. 求阴影部分面积:6.求阴影部分面积.7. 求阴影部分面积.8.(2011秋•宁波期中)求阴影部分的面积.9. 求阴影部分的面积.10. 求阴影部分的面积.11.求阴影部分的面积.12.求阴影部分的面积.。

初中几何题解题技巧

初中几何题解题技巧

初中几何题解题技巧在小学阶段,我们学过很多对于几何图形面积计算的知识。

在计算几何图形面积时,除了能正确运用面积计算公式外,还需要掌握必定的解题技巧。

一、割补法割补法是指将一些不规则的、分别的几何图形经过切割、移补,拼成一个规则的几何图形,进而求出头积的方法。

例 1 如图 1,已知正方形的边长是 6 厘米,求暗影部分的面积。

剖析与解:如图 2 所示,连结正方形的对角线,能够将暗影 I 切割成 I1 和 I2 两部分,而后将暗影 I1 移至空白 I1 处′,将暗影 I2 移至空白 I2 ′,这样暗影部分处就拼成了一个等腰直角三角形。

要求暗影部分的面积,只需求出这个等腰直角三角形的面积即可,列式为: 6×6÷2=18(平方厘米)。

练一练 1:如图 3,已知 AB= BC= 4 厘米,求暗影部分的面积。

二、平移法平移法是指把一些不规则的几何图形沿水平或垂直方向挪动,拼成一个规则的几何图形,进而求出头积的方法。

例 2 如图 4,已知长方形的长是12 厘米,宽是 6 厘米,求暗影部分的面积。

剖析与解:如图 5 所示,连结长方形两条长的中点,把暗影部分分红左右两部分,而后把左侧的暗影部分向右平移至空白处,这样暗影部分就转变成了一个边长为 6 厘米的正方形。

要求暗影部分的面积,只需求出这个正方形的面积,列式为: 6×6= 36(平方厘米)。

练一练 2:如图 6,求暗影部分的面积(单位:分米)。

三、旋转法旋转法是指把一些几何图形绕某一点沿顺时针(或逆时针)方向转动必定的角度,使分别的、不规则的几何图形归并成一个规则的几何图形,进而求出头积的方法。

例3 如图 7,已知 ABC是等腰直角三角形,斜边 AB=20 厘米,D 是 AB 的中点,扇形 DAE和 DBF都是圆的,求暗影部分的面积。

剖析与解:如图 8 所示,把扇形 DBF绕 D 点沿顺时针方向旋转180°后,扇形DBF与扇形 DAE就归并成了一个半径为 10 厘米的半圆,两个空白三角形也归并成了一个直角边为 10 厘米的等腰直角三角形,要求暗影部分的面积,只需用半圆的面积减去空白部分的面积即可,列式为: 3.14 ×( 20÷2)2÷2-(20÷2)2÷2= 107(平方厘米)。

利用“分割法和填补法”计算多边形的面积PPT课件

利用“分割法和填补法”计算多边形的面积PPT课件

340 + 70 + 70
A B
C 6cm = 480 cm2
6cm
10cm
10cm
14cm
下一題
填補法
大長方形的面積 : 34 x 24
=
梯形 P 的面積 : (10+14)x72 =
梯形 P, Q, R 和 S 的面積之和 : 84 x 4
=
7cm 10cm 7cm
816 cm2 84 cm2 336 cm2
3cm 3cm 4cm
分割法
4cm
2cm 3cm
填補法
請選擇那一種分割法
分割法一
分割法二
3cm 3cm 4cm
3cm 3cm 4cm
4cm 2cm 3cm
4cm 2cm 3cm
分割法一
長方形 A 的面積 : 4 x 3 = 12 cm2 長方形 B 的面積 : 6 x 2 = 12 cm2 長方形 C 的面積 : 10 x 3 = 30 cm2
填補法
填補法
大梯形的面積 : 梯形 A 的面積 :
(29 + 37) x 18 = 594 cm2
2
(8 + 12) x 9 2 = 90
cm2
12cm
12cm 5cm
A
8cm
9cm
全圖面積 :
594 - 90
= 504 cm2
37cm
下一題
18cm
請選擇以甚麼方法去計算左 圖的面積
7cm 10cm 7cm 14cm
長方形 D 的面積 : 4 x 3
= 12 cm2
長方形 E 的面積 : 6 x 4
= 24 cm2
3cm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

割补法和分割法
什么叫做割补法和分割法?
割补法和分割法都是计算平面几何图形面积的推导方法,也是一种思考方法。

在面积和体积教学中,都有着广泛的应用。

割补法是指:把一个图形的某一部分割下来,填补在图形的另一部分,在原来面积不变的情况下,使其转化为已经掌握的旧的图形,以利于计算公式的推导。

平行四边形通过割补可转化为长方形(或正方形),梯形通过割补可转化为平行四边形,圆通过割补可转化为近似长方形等。

(1)平行四边形割补后转化为长方形:
(2)梯形割补后转化为平行四边形:
分割法是指:对一些不规则图形的面积,不能使用割补法,可以利用不规则图形的凹凸特点,将其分割成若干个可以计算的规则图形(如:长方形、三角形、梯形、……),先将各个规则图形的面积计算出来,然后再把这些规则图形的面积加在一起,总面积就是不规则图形的面积。

这种计算不规则图形的方法,叫做分割法。

下面两个图形就采用了分割法。

(1)
(2)
左图ABDE是一个不规则图形,用分割法可分成一个平行四边形ABDE,一个三角形BCD,把平行四边形和三角形的面积分别求出来,再把所得的结果加在一起,就是这个不规则图形的面积。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档