含参数的二次函数最值问题

合集下载

二次函数相关的定义域与最值问题

二次函数相关的定义域与最值问题

二次函数相关的定义域与最值问题一.定义域为R的含参不等式题型例1.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为( )A.k<0或k>4 B.0≤k<4C.0<k<4 D.k≥4或k≤0变式:函数y=√ax²+ax+2的定义域为R,则实数a的取值范围为练习:1.函数f(x)=1ax2+4ax+3的定义域为R,求实数a的取值范围。

2.不等式ax²-2ax+3≥0的解集为R,求实数a的取值范围。

二.求二次函数在某一闭区间上的最值(定轴定区间型)例2.求函数y=x²-2x-3在x∈[-2,2]上的最大值与最小值。

练习:(1)求函数y=x²-6x+1在[0,4]的最值。

(2)求函数y=-2x²-4x+7在下列范围内的最值①x∈[-3,0]② x∈[0,4]三.含参二次函数在某一闭区间上的最值(动轴定区间型)二次函数随着参数的变化而变化,即其图像是运动的,但定义域区间是固定的,我们称这种情况为“动二次函数在定区间上的最值”例3.求函数f(x)=x²-2a x+3在x∈[0,4]上的最值变式:已知函数f(x)=-x²+2a x+1-a,在x∈[0,1]上的最大值为2,求实数a的值。

练习:求函数f(x)=-2x²+2ax+1在x∈[-1,1]上的最大值四.二次函数在动闭区间上的最值(定轴动区间型)二次函数是确定的,但它的定义域区间是随着参数的变化而变化的,我们称这种情况是“定函数在动区间上的最值”例4.求函数f(x)=x²-2x-5在x∈[t,t+1]上的最小值(其中t为常数)练习:求函数f(x)=x²-2x+3在x∈[a,a+3]上的最值课后练习1.函数f(x)的图象如图,则其最大值、最小值分别为( )A.f32,f −32B.f(0),f32C.f −32,f(0) D.f(0),f(3)2.若函数f(x)=2x+6,x∈[1,2],x+7,x∈[−1,1),则f(x)的最大值为,最小值为.3.若不等式a≤x2-4x对任意x∈[0,4]恒成立,则a的取值范围为.4.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f13=1.(1)求f(1)的值.(2)若存在实数m,使得f(m)=2,求m的值.(3)若f(x-2)>2,求x的取值范围.。

含参二次函数的最值问题

含参二次函数的最值问题

5a x
(2)当1 a 5时
f (x)min =f(1)=-4 f (x)max =f(-3)=12
(3)当a 5时
f (x)min=f(1)=-4 f (x)max =f(a)= a2-2a-3
小结:
本节课讨论了两类含参数的二次函数最 值问题:
(1)轴动区间定 (2)轴定区间动 核心思想仍然是判断对称轴与区间的 相对位置,从中体会到数形结合思想、分类 讨论思想。
❖第2类:函数对称轴固定,动区间 例2:
求函数f (x) x2 2x 5在区间t,t 2上的最大值
对称轴:x=1
(1)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递 增当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
(2)t<1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
若0 a 2,则函数f(x)的最小值为f (a) a2 1
若 a 2 ,则函数f(x)的最小值为f(2)=3—4a.
所以,
1, (a 0) f (x)min a2 1, (0 a 2)
3 4a, (a 2)
变式作业上第9题
已知函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值 23:求二次函数f(x)=x2-2x-3 在[-3,a] (a>-3)上的最值
y
a -3 o 1
(1)当 3 a 1时
f (x)min=f(a)=a2-2a-3 x f (x)max =f(-3)=12
f(x)=x2-2x-3,x∈[-3,a] (a>-3)

“有限区间上含参数的二次函数最值问题”一课的教学策略研究

“有限区间上含参数的二次函数最值问题”一课的教学策略研究

“有限区间上含参数的二次函数最值问题”一课的教学策略研究上海市桐柏高级中学刘国友一、本课例教学策略的设计背景(一)以往课堂教学的弊病我国的课堂教学长期以来形成的特点是:以教师的教为本位,教师讲,学生练,学生围绕教师转,学生失去了学习过程中的自主性和主动性;以书本知识为本位,学生死记数学定理、公式,机械地模仿教科书上解决问题的方法,忽视了师生之间、生生之间应有的合作学习与情感交流,丧失了学习过程中的情感性和发展性;以静态教案为本位,教师对教材、教案的认识过程代替了学生对学习内容的认知过程,学生只能被动适应,丧失了学习过程中的能动性和创造性。

(二)时代对教师教学理念转变的要求心理学、教育学、社会学、时代的发展,要求数学教育注重让学习者根据自己的经验基础进行建构来学习数学。

同样,数学教师不但要向学习者传授正规的外在知识,更重要的是激发学生主动学习,更应该为学生设计一种动态的、能够探索的、实验和体验的数学情境。

我们的原则应该是:第一,我们必须非常细心的对待研究中的结论,不要随意跳过结论对学生学习过程和结果作错误的推断。

第二,我们应该精心设计教学内容,为学生真正理解或应用这些内容提供丰富的平台。

我们应该认识到,不存在任何内容能保证学生将知识或能力,从一种情境迁移到另一种情境,学生必须有效的积累那些知识或能力。

上海二期课改不断深入,新课程标准提出“以人为本,以学生发展为本”的教学理念,突出了学生学习的自主性、创新精神、实践能力以及终身学习的能力的培养。

身处改革大潮的我们急需转变自己的教学理念,要为学生今天的学习服务,又要为学生明天的可持续发展奠基。

(三)按照“三个阶段、两次反思”的“行动教育”模式开展课堂教学策略研究我们在日常教学实践中往往会遇到各种各样的问题或困惑,尤其是新理念与学生实际之间的差距。

我们迫切需要更加广泛的、深入的沟通与交流,需要对课堂教学进行现场指导和帮助,需要通过具体的教学设计案例,让专家、教研员与我们共同参与校本教研。

二次函数求最值的六种考法(含答案)

二次函数求最值的六种考法(含答案)

二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题在数学中,含参数的二次函数在闭区间上的最值问题是一个常见且重要的数学概念。

这个问题涉及到求解一个含参数的二次函数在指定闭区间内的最大值或最小值,并且需要考虑参数对函数图像的影响。

在本文中,我们将深入探讨这个问题,并根据不同的参数取值情况给出具体的解决方法和结论。

1. 含参数的二次函数的一般形式我们来回顾一下含参数的二次函数的一般形式。

一个含参数的二次函数通常可以写成如下形式:\[ f(x) = ax^2 + bx + c \]其中,\(a\)、\(b\) 和 \(c\) 分别是函数的参数,\(x\) 是自变量。

在这个函数中,参数 \(a\) 的取值会对函数的开口方向产生影响,参数 \(b\) 会对函数的位置产生影响,而参数 \(c\) 则会对函数的纵向平移产生影响。

在求解含参数的二次函数在闭区间上的最值问题时,我们需要关注这些参数的取值对函数图像的影响。

2. 含参数的二次函数在闭区间上的最值问题的求解方法接下来,我们将按照从简到繁、由浅入深的方式来讨论含参数的二次函数在闭区间上的最值问题的求解方法。

我们将分析当参数 \(a\) 的取值为正、负和零时,函数图像的特点及最值的情况。

2.1 当参数 \(a\) 的取值为正时当参数 \(a\) 的取值为正时,函数的图像是一个开口向上的抛物线。

在闭区间上,这样的抛物线的最小值一定在抛物线的顶点处取得。

要求解函数在闭区间上的最小值,只需要找到抛物线的顶点,并判断这个顶点是否在给定的闭区间内。

2.2 当参数 \(a\) 的取值为负时当参数 \(a\) 的取值为负时,函数的图像是一个开口向下的抛物线。

同样地,在闭区间上,这样的抛物线的最大值一定在抛物线的顶点处取得。

要求解函数在闭区间上的最大值,也只需要找到抛物线的顶点,并判断这个顶点是否在给定的闭区间内。

2.3 当参数 \(a\) 的取值为零时当参数 \(a\) 的取值为零时,函数退化成一次函数或常数函数,最值情况可以直接通过函数的表达式和给定的闭区间进行分析和判断。

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题含参数的二次函数在闭区间上的最值问题导语:含参数的二次函数在闭区间上的最值问题是数学中常见的优化问题之一。

通过分析函数的性质和求导,我们可以找到函数在给定闭区间上的最大值或最小值。

本文将从简单到复杂的方式,深入探讨这个主题,并提供一些实际例子来帮助读者更好地理解。

引言: 含参数的二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0。

在闭区间[a, b]上求函数的最值,可以通过以下步骤进行。

一、函数的性质分析1. 我们可以观察函数的开口方向。

如果a>0,函数开口向上,最值为最小值;如果a<0,函数开口向下,最值为最大值。

这个性质对于我们确定最值的区间非常重要。

2. 我们可以通过求导来确定函数的驻点。

驻点是指函数斜率为零的点,可能是最值点的候选。

对于f(x) = ax^2 + bx + c,求导得到f'(x) =2ax + b。

令f'(x) = 0,解得x = -b/2a。

这个x值就是函数的驻点,我们需要判断它是否在闭区间[a, b]上。

3. 我们可以通过比较函数在闭区间的端点值和驻点值来确定最值。

根据前述观察,如果a>0,我们比较f(x)在[a, b]的端点值和驻点值,取较小的值作为最小值;如果a<0,我们比较f(x)在[a, b]的端点值和驻点值,取较大的值作为最大值。

二、实际例子假设我们要找到函数f(x) = x^2 + bx + c在闭区间[1, 3]上的最小值。

1. 观察函数的开口方向。

由于a=1>0,说明函数开口向上,最值为最小值。

2. 求导。

对函数f(x)求导得f'(x) = 2x + b。

令f'(x) = 0,解得x = -b/2。

这个x值就是函数的驻点。

3. 比较端点值和驻点值。

在闭区间[1, 3]中,我们计算f(1),f(3)和f(-b/2)的值。

含参数二次函数最值问题解法

含参数二次函数最值问题解法

含参数二次函数最值问题解法作者:温春桃来源:《理科考试研究·高中》2013年第11期引起二次函数最值变化的是对称轴和区间,根据对称轴相对定义域区间的位置,利用分类讨论思想方法。

为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类,通常分为三类,即对称轴在区间左边,对称轴在区间中间(有时对中间再分两类)及在区间右边。

常见的有以下几种类型:一种是“动区间定轴” 型二次函数求最值。

如:已知f (x)=x2-2x+2在x∈[t,t+1]上的最小值为g(t),求g(t)的表达式。

解f(x)=(x-1)2+1。

(1)当t+1(2)当t≤1≤t+1,即0≤t≤1时,g(t)=f(1)=1。

(3)当t>1时,g(t)=f(t)=t2-2t+2。

综合(1)、(2)、(3)得:g(t)=t2+1,1,t2-2t+2,t0≤t≤1,t>1。

第二种是“动轴定区间”型,如:已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.解f(x)≥0恒成立,等价于f(x)的最小值≥0,即转化为求f(x)在[-2,2]上的最小值.令f(x)的最小值为g(a),则(1)当-21a4,g(a)=f(-2)=7-3a≥0,得a≤713,又a>4,故a不存在。

(2)当-a12∈[-2,2],即-4≤a≤4时,g(a)=f(-a12)=3-a-a214≥0,得-6≤a≤2,又-4≤a≤4,故-4≤a≤2。

(3)当-a12>2,即a综上可得-7≤a≤2。

第三种是“开口不确定,对称轴也变动”的类型。

如:设函数f(x)=ax2-2x+2,对于满足10,求实数a的取值范围.解当a>0时,f(x)=(x-11a)2+2-11a。

所以11a≤1,f(1)=a-2+2≥0,或1f(11a)=2-11a>0,或11a≥4,f(4)=16a-8+2≥0。

所以a≥1,a≥0,或114a>112,或a≤114,a≤318。

求解含参二次函数最值问题的步骤

求解含参二次函数最值问题的步骤

解题宝典∴椭圆离心率:e =c a=,∴正确答案为选项C .该题是与弦中点有关的圆锥曲线离心率问题,需首先设出交点A 和B 的坐标,将其代入椭圆的方程中并作差,求得直线的斜率的表达式,便可根据中点的坐标建立关于a 、b 的等式,求得椭圆的离心率.运用点差法解答中点弦问题,关键是将两个交点的坐标代入圆锥曲线的方程中,并作差,据此建立关系式.三、弦长问题直线与圆锥曲线的弦长问题比较常见,通常要利用弦长公式求解.若斜率为k (k ≠0)的直线l 与圆锥曲线的交点为A ()x 1,y 1,B (x 2,y 2),则弦AB 的长|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=|y 1-y 2|=(y 1+y 2)2-4y 1y 2,这就是弦长公式.运用弦长公式求弦长,通常要将直线与圆锥曲线的方程联立,构造一元二次方程,利用韦达定理来求得x 1+x 2和y 1+y 2.例3.已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的离心率为,焦距为22.一条斜率为k 的直线l 与椭圆M 交于A 、B 两点.(1)求椭圆M 的方程;(2)若k =1,试求|AB |的最大值.解:(1)椭圆M 的方程为:x 23+y 2=1(过程略);(2)设直线l 的方程为y =x +m ,A ()x 1,y 1,B (x 2,y 2),由ìíîïïy =x +m ,x 23+y 2=1,消去y 可得4x 2+6mx +3m 2-3=0,则x 1+x 2=-3m 2,x 1x 2=3m 2-34,可得||AB =()x 2-x 12+()y 2-y 122()x 2-x 12=2[]()x 2-x 12-4x 1x 2=.当m =0,即直线l 过原点时,||AB 最大,故||AB 的最大值为6.求直线l 被椭圆所截的弦长的最值,关键要求||AB 的表达式.联立直线与椭圆的方程,消去y 得到一元二次方程后,便可运用弦长公式求得||AB 的表达式,根据二次函数的性质即可求得|AB |的最大值.综上可见,无论是求直线的斜率、解答中点弦问题,还是解答弦长问题,都需重点研究直线与圆锥曲线的方程,可将两个方程联立,构造一元二次方程,也可将交点的坐标代入圆锥曲线的方程,并将两个方程作差.(作者单位:江苏省徐州市铜山区夹河中学)含参二次函数最值问题比较常见,通常要求求含参二次函数在给定区间或实数集R 上的最值.由于问题中涉及参数,所以解答此类问题通常需要利用分类讨论思想来对参数进行分类讨论,进而求得函数的最值.对于二次函数f ()x =ax 2+bx +c (x ∈R ,a ≠0),当a >0时,在对称轴x =-b2a左侧的函数单调递减,在对称轴x =-b2a 右侧的函数单调递增;当a <0时,在对称轴x =-b2a左侧的函数单调递增,在对称轴x =-b 2a右侧的函数单调递减.根据函数的定义域和单调性即可求得函数的最值.而对于含参二次函数在给定区间上的最值问题,需要讨论函数图象的对称轴与定义域的位置关系,以便利用二次函数的单调性求函数的最值.求二次函数f ()x =ax 2+bx +c (a ≠0)在区间[]m ,n 上的最值的步骤如下:1.根据函数的解析式求得函数图象的对称轴x =-b 2a,并判断a 的符号;2.判断-b2a 与m 、n 之间的大小关系,即确定函数的对称轴x =-b2a 在[]m ,n 内、在[]m ,n 左侧、在[]m ,n 右侧;3.画出相应的函数图象,结合图象寻找取得最值的点,并求得最值.(1)若a >0,则函数图象的开口向上,(ⅰ)当-b2a ∈[]m ,n 时,函数图象的对称轴在所给李令军41解题宝典区间内,由二次函数的性质可知f()x的最小值在对称轴处取得,其值是fæèöø-b2a=4ac-b24a,f()x的最大值在离对称轴较远的端点处取得,即f()m、f()n中的较大者,如上图;(ⅱ)当-b2a<m时,对称轴在给定区间的左侧,f()x在区间[]m,n上单调递增,此时f()x的最小值是f()m,最大值是f()n;(ⅲ)当n<-b2a时,对称轴在给定区间的右侧,f()x在区间[]m,n上单调递减,此时f()x的最小值是f()n,最大值是f()m.(1)若a<0,则函数图象的开口向下,(ⅰ)当-b2a∈[]m,n时,函数图象的对称轴在所给区间内,由二次函数的性质可知f()x的最大值在对称轴处取得,其值是fæèöø-b2a=4ac-b24a,f()x的最小值在离对称轴较远的端点处取得,即f()m、f()n中的较小者;(ⅱ)当-b2a<m时,对称轴在给定区间的左侧,f()x在区间[]m,n上单调递减,此时f()x的最大值是f()m,最小值是f()n;(ⅲ)当n<-b2a时,对称轴在给定区间的右侧,f()x在区间[]m,n上单调递增,此时f()x的最大值是f()n,最小值是f()m.下面举例说明.例1.求f()x=ax2-2x在0≤x≤1上的最小值.解:(1)当a=0时,f()x=-2x为一次函数,在[]0,1上单调递减,所以f()x min=f()1=-2,即函数的最小值为-2.(2)当a>0时,函数f()x=ax2-2x图象的开口向上,且对称轴为x=1a>0.①当1a≤1,即a≥1时,函数f()x=ax2-2x图象的对称轴x=1a在[]0,1内,由函数的图象可知f()x在éëùû0,1a上单调递减,在éëùû1a,1上单调递增,所以f()x min=fæèöø1a=-1a,即函数的最小值为-1a.②当1a>1,即0<a<1时,函数f()x=ax2-2x图象的对称轴在[]0,1的右侧,所以f()x在[]0,1上单调递减,所以f()x min=f()1=a-2,即函数的最小值为a-2.(3)当a<0时,f()x=ax2-2x图象的开口向下,且对称轴x=1a<0,在y轴的左侧,所以f()x=ax2-2x在[]0,1上单调递减,所以f()x min=f()1=a-2,即函数的最小值为a-2.综上所述,f()x min=ìíîïïa-2,a<1,-1a,a≥1.本题中a为参数,需利用分类讨论思想,分a=0、a>0、a<0三种情况进行讨论.尤其要注意a=0的情形,此时函数为一次函数,需利用一次函数的单调性来求最值.当a>0、a<0时,函数为二次函数,再利用分类讨论思想讨论对称轴与定义域[]0,1的位置关系,结合二次函数的图象,即可判断出函数的单调性,根据函数的单调性便能求得函数的最值.例2.已知函数f()x=ax2+2ax+1在区间[]-1,2上有最大值4,求实数a的值.解:f()x=ax2+2ax+1=a()x+12+1-a.可知其图象的对称轴为x=-1,在[]-1,2的左侧,(1)当a=0时,f()x=1,函数无最大值,所以a=0不符合题意,舍去;(2)当a>0时,函数f()x图象的开口向上,在区间[]-1,2上单调递增,所以函数的最大值为f()2=8a+1=4,解得a=38;(3)当a<0时,函数f()x图象的开口向下,在区间[]-1,2上单调递减,所以函数f()x最大值为f()-1=1-a=4,解得a=-3.综上可知,a的值为38或-3.本题中函数的对称轴和定义域固定,而函数的开口方向不确定,所以只需讨论a>0,a<0时函数的单调性,即可解题.若函数的定义域中含有参数,则需根据参数的取值确定定义域端点值的大小,进而将其与函数图象的对称轴进行比较,以确定定义域与函数图象的对称轴的位置关系,判断函数的单调性.可见,解答含参二次函数最值问题,往往要灵活运用分类讨论思想和数形结合思想,这样能有效地提升解题的效率.在运用分类讨论思想解题时,要注意两点:一是对二次项的系数进行讨论;二是要对对称轴与定义域的位置关系进行讨论.而结合二次函数的图象来分析函数的对称轴与所给区间之间的位置关系,往往能达到事半功倍的效果.(作者单位:扬州大学附属中学)42。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
6
6
8
8
8
8
10
10
10
4
解:(1)当k+2≤1即k ≤-1时
2
x=1 k+2
f(x)max=f(k)=k2-2k-3
5 10 15
k
2
f(x)min=f(k+2) =(k+2)2-2(k+2)-3 =k2+2k-3
4
6
8
10
4
x=1
2
(2)当 k <1 < k+2 时 即-1 <k <1时 f(x)min=f(1)=- 4
课堂小结
含参数的二次函数最值问题: 轴动区间定 轴定区间动
核心 : 区间与对称轴的相对位置
注意数形结合和分类讨论
5
k
10
k+2
①当f(k)>f(k+2)时,
10
15
8 2
即k2-2k-3 > k2+2k-3 即-1<k<0时 f(x)max=f(k)=k2-2k-3
6
4
4
6
②当f(k) ≤f(k+2)时,
x=1
2
8
即k2-2k-3 ≤ k2+2k-3 即0≤ k<1时
k k+2
5
10
2
f(x)max=f(k+2)=(k+2)2-2(k+2)-3 =k2+2k-3
y y y
-1
O
1
x
-1
O 1
x
-1
O
1
x
综上所述:
y y y
-1
O
1
x
-1
O
1
x
-1
O 1
x
当 a 2 时 当-2<a<2时
f(x)min=f(1)=4+a
f min
当a≥2时
f(x)min=f(-1)=4-a
a a f 3 4 2
2
评注:探究2属于“轴动区间定”的问题,
10
15
4
6
4
(3)当k ≥1时
x=1 k k+2
5
2
f(x) max=f(k+2)=k2+2k-3
10 15
2
f(x) min=f(k)=k2-2k-3
4
6
8
10
综上所述:
6 4 2
6
6
6
4
4
4
x=1
x=1 k+2
5
2
x=1
2
2
k
10
k+2
5
k
10
10
k+2
10
5
x=1
15
15
k
2
5
15
5
15
要看区间[k,k+2]与对称轴 x=1的位置,则
从以下几个方面解决如图:
y=x
2∙x
3
y = x2 y=x
2
2∙x 2∙x
8
3 3
10
10
8
8
8
6
6
6
6
4
4
4
x=1
2
4
x=1 k+2
2
x=1
2
2
k
5
10
k+2
5
k
10
10
k+2
15
5
x=1
15
5
10 5
k+2
2
2
2
2
4
4
4
4
6
b (1)判断x0= 是否属于 [ m,n]; 2a
(2)当x0∈[m,n]时,f(m)、f(n)、f(x0) 中的较大者是最大值,较小者是最小值; (3)当x0 [m,n]时,f(m)、f(n)中的较大 者是最大值,较小者是最小值.
探究1:若x∈[-1,1],求函数y =x2+ax+3的 最小值:
10
f(x)max=f(k+2)=k2+2k-3
10
当k ≥1
时 f(x) max=f(k+2)=k2+2k-3
评注:探究1属于“轴定区间动”的问题,
看作动区间沿 x 轴移动的过程中,函数最 值的变化,即动区间在定轴的左、右两侧 及包含定轴的变化,要注意开口方向及端 点情况。
b (1)讨论对称轴x= 与区间 [ a,b]的相对位置; 2a b (2)当对称轴在区间[a,b]内时,f(a)、f(b)、f( ) 2a 中的较大者是最大值,较小者是最小值; b (3)当区间[a,b]在对称轴x= 一侧时,f(a)、f(b) 2a 中的较者是最大值,较小者是最小值.
看作对称轴沿x轴移动的过程中,函数最值的 变化,即对称轴在定区间的左、右两侧及对 称轴在定区间上变化情况,要注意开口方向 及端点情况。
探究2:如何 求函数y=x2-2x-3,x∈[k,k+2] 时的最值?
解析: 因为函数 y=x2-2x-3=(x-1)2-4的对称
轴为 x=1 固定不变,要求函数的最值,即
5
k
10
k+2
2
5
2
2
4
4
4
4
当k ≤-1时
8
6
6
6
f(x)max=f(k)=k2-2k-3
8
f(x)min=f(k+2)=k2+2k-3
8
8
6
当-1<k <0时 当0≤ k<1时
10
f(x)max=f(k)=k2-2k-3
10
f(x)min=f(1)=- 4 f(x)min=f(1)=- 4 f(x) min=f(k)=k2-2k-3
含参数的二次函数
最值问题
课前热身
已知函数f(x)= x2 –2x – 3
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4 ],求函数f(x)的最值;
1 5 , ],求函数f(x)的最值; (3)若x∈[ 2 2
求二次函数f(x)=ax2+bx+c在[m,n]上的 最值或值域的一般方法是:
相关文档
最新文档