逆推法
逆向推理法

逆向推理法在写作文时,我们往往会把一件事情反过来想想,这样会让你有很大的收获,如果只是顺着思路写,反而会漏掉好多。
下面我就给大家介绍几种常用的逆向推理法:逆推法就是把文章从头至尾读一遍,把不懂的、疑难的地方找出来,做上记号,再仔细阅读分析,看哪些地方能得到解决。
反推法就是从结果倒着推回原因,又从原因倒着推回结果。
如:《我最敬佩的一个人》:人们都说我们的总理周恩来敬爱老一代革命家朱德和贺龙元帅,但我却更敬爱周总理。
我问妈妈为什么?妈妈说:“这还不简单吗,别人夸自己的孩子都是怎么说的,你也可以照着这么说呀!”这就是逆向推理法,这样可以帮助我们弄清文章的思路,使文章的脉络更加清晰,不仅要看开头和结尾,中间的内容也要留心,可以把它叫做三段式作文法,也是很常用的一种写作方法,既保证了文章的完整性,又便于我们理解文章。
我们先分析第二段,第二段主要讲了总理身边的一位女护士,我们不难发现其实总理是被她所感动,所以他才敬佩她,接着读一读后面的内容,第二段讲述了这位女护士为何成为总理的特护,就是因为她在关键时刻挺身而出,抢救了总理,就连医生也说,这样的场景很少见。
根据反推法可知:原因是那位女护士救了总理。
因此答案也就呼之欲出,就是她在关键时刻救了总理。
这样我们又把文章的第三段补充完整了。
有些同学在写文章的时候喜欢随意地将文章中的内容复制粘贴,不加任何修改,这样文章就失去了原汁原味。
我们必须对文章中的语句进行精心地修改,力求通顺连贯、精彩到位。
这样文章的结构就会更加合理,同时也体现了考生良好的语言运用能力。
大家要注意修改文章中的病句,包括用词不当,搭配不当等,这样才能达到语言优美,准确流畅的效果。
还要养成修改习惯,坚持每写完一篇文章都要自己检查一遍,不断提高文章的质量。
这种逆向推理法其实在日常生活中无处不在,如我们看一本书,如果用顺序法,一页一页地看,那就无法了解全书的内容了,如果按逆向推理法来看,就可以迅速地了解全书的内容,而且从中悟出许多道理。
用逆推法解题

用逆推法解题用逆推法解题【知识要点】1.逆推法:是用还原思想解题的方法。
就是从题目的问题或结果出发,根据已知条件一步一步进行逆向推理,逐步靠拢原始的条件2.用逆推法解答某些题目时,比用顺推法解答更清晰容易3.解题关键:在从后往前推算的过程中,每一步都是同原来相反的运算、原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘【典型题解】例1.某数加上10,减去7,乘以3,除以5,等于12。
这个数是多少?分析:用逆推法思考:这个数没除以5时是多少?这个数没乘以3时是多少?这个数没减去7时是多少?这个数没加上10时是多少?也可以顺序画表如下:()()()()10735?12+-?÷??→??→??→??→③②① 从12入手逆推依次计算出①②③三个数,最后求出这个数是多少解:12560 60320 20727 271017?=÷=+=-= 答:这个数是17例2.在求几个数之和时,把其中的一个加数的十位数字少写了5,个位数字上本应该是零而写成了6,千位数应该是7而写成了1,这时得到的和是3212。
那么,原来要求的几个数的和应该是多少?分析:加数的十位上少写5,和就少了50;个位是0写成6,和就多了6;千位是7写成1,和就少了6000;这题可以看成是正确的和先减少了50,又增加了6,再减少了6000后是3212,用逆推法即可求解解:()32127110009212+-?= 921269206-= 92065109256+?= 答:原来要求的几个数的和应该是9256例3.小明的三层书架中共放着48本书。
有一次他清书,先从上层拿8本放入中层;又从中层拿6本放入下层,这时三层书的本数相等。
原来每层放多少本书?分析:以三层书的本数相等入手分析,可得现在每层书的本数48316÷=。
再分析各层书是怎样变化得到16本书的,即上层原有书的本数-8本=16本;下层原有书的本数+6本=16本;中层原有书的本数+8本-6本=16本,最后用逆运算使问题得解解:48316-=(本)166814+-=(本)+=(本)16610÷=(本)16824答:原来上层放24本,下层放10本,中层放14本书例4.在一只篮子里,有若干枚李子。
逆推法

逆推法同学们在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。
有些聪明的小朋友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。
由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些数学问题顺向思考很难解答,这时如果能从反向进行思考,有时能化难为易,很快找到解题途径。
其思考的方法是从问题或结果出发,一步一步倒着推理,逐步靠拢已知条件,这样,问题就很容易得到解决了。
这种从条件或问题反过去想而寻求解题途径的方法,叫做逆推法。
用逆推法解应用题列算式时,经常要根据加减互逆,乘除互逆的关系,把原题中的加用减算,减用加算;把原题中的乘用除算,除用乘算。
例1. 一种细菌,1小时增长1倍,现在有一批这样的细菌,10小时可增长到400万个,问增长到100万个需要多少小时?思路分析:因为细菌每小时增长1倍。
10小时增长到400万个,那么9小时就增长到400万个的一半,即9小时增长到200万个,8小时增长到100万个。
算式:100118-+=()(小时)答:增长到100万个时需要8小时。
例2. 四个小朋友共有课外读物120本,甲给了乙3本,乙给了丙4本,丙给了丁5本,丁给了甲6本,这时他们四个人课外读物的本数相等。
他们原来各有课外书多少本?思路分析:四个人互相给,总本数仍然是120本,那么每人应有120430÷=(本),然后各自把给别人的本数拿回来,再把别人给自己的本数退回去,就得到原有的本数。
算式:120430÷=(本)丁原有的本数:306531+-=(本)丙原有的本数:305431+-=(本)乙原有的本数:304331+-=(本)甲原有的本数:303627+-=(本)答:甲、乙、丙、丁四人原来各有书27本、31本、31本、31本。
例3. 粮仓里存大米若干袋,第一天卖出的比存米的一半少8袋,第二天又卖出剩余米的一半,这时粮仓里还存米32袋,这个粮仓原存大米多少袋?思路分析:根据粮仓里最后还有32袋,一步一步地求出粮仓原存大米多少袋。
逆推法在数学解题中的应用

解析: 本题要是从1到100这些自然数中找出10个数的倒数试着加费力
费时,还不一定计算的正确,如果采用逆推法解题就轻松得多。
•
1= 1-
1 2
+
1-1
23
+1
3
-
1 4
+
1 4
-
1+
5
1-
5
1 6
+
...
• =(1 - 1)+(1
银行里取出了 350 元,因此还要逆推一步。 • 逆推第三步: • 妈妈从银行里取出 350 元之前是多少元?就是原有存款数。 • 用加法计算得:1450+ 350= 1800(元) • 列综合式计算:1200+400-150+350 • = 1600— 150+350 • = 1450+ 350=1800(元) • 答:妈妈在银行里原有存款是 1800 元。
练习题
• 1.一桶油,第一次倒出 12 公斤后,倒进 15 公斤;第二次倒出 20 公斤,桶里还有 18 公斤。这桶油原有多少公斤?
• 2 .一筐水果,卖出42 斤后,又卖出余下的 1 ,这时筐里还有15斤,这
筐水果原有多少斤?
4
2 6 12 30 42 56 72 90 10
→例2:上月,妈妈从银行里取出存款 350 元,本月中旬存入 150 元。本月下旬,又取出 400 元,这样在银行里还有存款 1200 元。 问妈妈在银行里原有存款多少元?
• 解析: • 本题“在银行里原有存款虚”是原数。 • 该原数根据题意,经过了三次变化。 • 第一次变化,是上月从“原存款中取出 350 元; • 第二次变化:是本月中旬存入了 150 元; • 第三次变化:是本月下旬又取出了 400 元。 • 原数是经过这三次变化,才是 1200 元的。
解题方法与技巧之逆推法_

(一)从结果出发逐步逆推 例 1 一个数除以 4,再乘以 2,得 16,求这个数。(适于三年级程度) 解:由最后再乘以 2 得 16,可看出,在没乘以 2 之前的数是:
让每个家庭都为自己的孩子感到骄傲
解题方法与技巧之逆推法
小朋友在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。有些聪明的小朋 友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。由于从出口 返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果 出 发,从后往前逐步推理,问题就很容易得到解决了。
让每个家庭都为自己的孩子感到骄傲
答略。
例 5 仓库里原有化肥若干吨。第一次取出全部化肥的一半多 30 吨,第二次取出余下 的一半少 100 吨,第三次取出 150 吨,最后剩下 70 吨。这批化肥原来是多少吨?(适于 四年级程度)
解:从“第三次取出 150 吨,最后剩下 70 吨”可看出,在第三次取出之前仓库里有化 肥:
1500+610=2110(千克) 在没运进 720 千克之前,粮库里有大米:
2110-720=1390(千克) 在没运走 450 千克之前,粮库里有大米:
1390+450=1840(千克) 答:粮库里原来有大米 1840 千克。
行动感召行动、灵魂唤醒灵魂
1
让每个家庭都为自己的孩子感到骄傲
例 3 某数加上 9 后,再乘以 9,然后减去 9,最后再除以 9,得 9。问这个数原来是 多少?(适于三年级程度)
17、逆推法

逆推法小朋友在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。
有些聪明的小朋友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。
由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题就很容易得到解决了。
这种从条件或问题反过去想而寻求解题途径的方法,叫做逆推法。
用逆推法解应用题列算式时,经常要根据加减互逆,乘除互逆的关系,把原题中的加用减算,减用加算;把原题中的乘用除算,除用乘算。
(一)从结果出发逐步逆推例1一个数除以4,再乘以2,得16,求这个数。
(适于四年级程度)解:由最后再乘以2得16,可看出,在没乘以2之前的数是:16÷2=8在没除以4之前的数是:8×4=32答:这个数是32。
*例2 粮库存有一批大米,第一天运走450千克,第二天运进720千克,第三天又运走6 10千克,粮库现有大米1500千克。
问粮库原来有大米多少千克?(适于四年级程度)解:由现有大米1500千克,第三天运走610千克,可以看出,在没运走610千克之前,粮库中有大米:1500+610=2110(千克)在没运进720千克之前,粮库里有大米:2110-720=1390(千克)在没运走450千克之前,粮库里有大米:1390+450=1840(千克)答:粮库里原来有大米1840千克。
*例3 某数加上9后,再乘以9,然后减去9,最后再除以9,得9。
问这个数原来是多少?(适于四年级程度)解:由最后除以9,得9,看得出在除以9之前的数是:9×9=81在减去9之前的数是:81+9=90在乘以9之前的数是:90÷9=10在加上9之前,原来的数是:10-9=1答:这个数原来是1。
*例4 解放军某部进行军事训练,计划行军498千米,头4天每天行30千米,以后每天多行12千米。
逆推法例题

逆推法例题(原创版)目录1.逆推法的概念和基本原理2.逆推法的解题步骤3.逆推法在实际问题中的应用4.逆推法的优点和局限性正文一、逆推法的概念和基本原理逆推法,顾名思义,是一种从结果出发,逆向推导出过程或原因的解题方法。
在数学、物理、化学等自然科学领域中,逆推法被广泛应用。
它的基本原理是:已知某个问题的结果,通过分析结果产生的原因或条件,从而找到解决问题的方法。
二、逆推法的解题步骤1.确定题目所给条件:首先要对题目进行仔细阅读,了解题目所描述的问题,明确题目所给出的已知条件。
2.分析题目要求:根据题目要求,明确需要求解的问题,并思考如何通过已知条件来解决这个问题。
3.逆向推导:从题目所求的问题出发,沿着思路逆向推导,逐步分析问题产生的原因或条件,直到找到解决问题的方法。
4.验证答案:将推导出的答案代入原题中,验证答案是否符合题意,以确保解题正确。
三、逆推法在实际问题中的应用逆推法在解决实际问题中具有很高的实用价值。
例如,在物理学中,当我们需要求解一个物体在给定力的作用下的运动状态时,可以先根据物体的运动状态,逆向推导出物体所受到的力的大小和方向;在数学中,逆推法可以帮助我们求解复杂的组合问题,如排列组合、概率等问题。
四、逆推法的优点和局限性逆推法的优点在于它能帮助我们快速找到解决问题的方法,尤其在面对复杂问题时,逆推法能够化繁为简,使得问题变得容易解决。
然而,逆推法也有其局限性,那就是它要求解题者具备较强的逻辑思维能力和分析问题的能力。
对于一些问题,逆推法可能无法直接找到答案,这时需要结合其他解题方法,如正向推导法、归纳法等,共同解决问题。
总之,逆推法是一种有效的解题方法,通过从结果出发,逆向推导出过程或原因,帮助我们快速找到解决问题的方法。
算术技巧:逆推法

有些题目只给出对未知数量经过某些运算而得到的最后结果,要想求出未知量,可以从最后结果出发,运用加与减,乘与除之间的互逆关系,从后往前一步一步地推算,这种方法叫做逆推法。
这种思维方法我们称作逆向思维,在处理一些问题时经常要用到。
有些应用题按顺向处理比较困难,或者会出现繁杂的运算,如果根据题目的条件,运用逆推法去解则方便得多。
公考考试中经常会出现这样一类题,题目形式如下:A、B、C三堆货物,从A中取出一部分给B,再从B中取出一部分给C,然后再从C中取出一部分给A。
已知经过变换后A、B、C的数量,求变换前A、B、C的数量。
对于这类题,运用常规方法列出三元一次方程求解固然可以求出数值,但通常运算量很大,耗时长且易出错,也违背了出题人的本意。
数量关系中一般不会出太繁琐的运算,看似复杂的题目一般都有简捷的方法。
解这类题常用的方法就是逆推法。
下面我们就通过下面几道例题看一下逆推法的应用。
例1:有砖26块,兄弟两人争着挑,弟弟抢在前面,刚摆好砖,哥哥赶到了,哥哥看弟弟挑太多,就抢过一半,弟弟不肯,又从哥哥那儿抢走一半,哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块,问最初弟弟挑多少块?( )A. 14B.16C.18D.20----‘2008年河北省招警考试’【解析】B。
哥哥挑了(26+2)÷2=14块,弟弟是26-14=12块。
逆推:(1)哥哥还给弟弟5块,则哥哥是14-5=9块,弟弟是12+5=17块;(2)弟弟抢走哥哥的一半,抢走了一半,则剩下的就是另一半,所以哥哥就应该是9+9=18块,弟弟是17-9=8块;(3)哥哥抢走弟弟的一半,则弟弟原来就是8+8=16块。
故本题正确答案为B。
例2:甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逆推法解题(A卷)
一、填空题
1.将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.那么这个数是 .
2.李白提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,壶中原
有斗酒.
3.甲、乙两个车站共停135辆汽车,如果从甲站开36辆到乙站,从乙站开45辆到甲站,这时乙站车是甲站的1.5倍.乙原来停辆车.
4.农业站有一批化肥,第一天卖出一半又多15吨,第二次卖出余下的一半多8吨,第三次卖出180吨,正好卖完,这批化肥原来有吨.
5.四个袋子共有168粒棋子,小红过来一看,把棋子作如下的调整,把丁袋调3粒到丙袋,丙调6粒到乙袋,乙又调6粒到甲袋,甲袋调2粒到丁袋,这时,四个袋子的棋子一样多,乙袋原来有粒棋子.
6.一筐桔子,把它四等分后多一个,取走3份又一个,剩下的四等分后又剩一个,再取走3份又一个,剩下的四等分又剩一个,那么原来至少有个桔子.
7.袋子里有若干个球,小华每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球,那么,袋中原来共有个球.
8.3÷7的小数点后面第1999位上的数是 .
9.已知A,B,C,D四数之和为45,且A+2=B-2=C×2=D÷2,那么,这四个数依次
是 .
10.两个小于1000的质数之积是一个偶数,这个偶数最大可能是 .
二、解答题
11.池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池塘的 ?
12.一条幼虫长成成虫,每天长大一倍,40天长到20厘米,问第36天长多少厘米?
13.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多10元,最后剩下125元,求他原来有多少元?
14.王大爷把他所有西瓜的一半又半个卖给第一个顾客,把余下的一半又半个卖给第二个顾客,……这样一直到他卖给第六个人以后,他一个西瓜也没有,求他原来有西瓜多少个?
逆推法解题(A卷)答案
一、填空题
1. (100×4+20-112)÷4=77
2. 斗
第三次见花前应有一斗;
第三次遇店前应有 (斗);
第二次见花前应有 (斗);
第二次遇店前应有 (斗);
第一次见花前应有 (斗);
第一次遇店前应有 (斗).
3. 甲:45辆;乙:90辆.
把后来甲站所停汽车的辆数看为"1"的倍数,那么乙站所停的是1.5倍,那么"135"辆就是2.5倍,这样
甲站后来有:135÷2.5=54(辆)
乙站后来有:54×1.5=81(辆)
甲原有:54+36-45=45(辆)
乙原有:81+45-36=90(辆)
4. 782吨.
[(180+8)×2+15]×2=782(吨)
5. 甲38粒;乙42粒,丙45粒,丁43粒. 现各有168÷4=42(粒).
甲:42-6+2=38
乙:42-6+6=42
丙:42-3+6=45
丁:42-2+3=43
6. 85个.
1×4+1=5(个)
5×4+1=21(个)
21×4+1=85(个)
7. 34个.
(3-1)×2=4(个)
(4-1)×2=6(个)
(6-1)×2=10(个)
(10-1)×2=18(个) (18-1)×2=34(个)
8. 4
3÷7=0.42857142……6位
1999÷6=333 (1)
所以是4.
9. 设C数为M,则
A=2M-2
B=2M+2
C=M
D=4M
9M=45,M=5
∴A=8;B=12;C=5;D=20.
10. 1994
由于质数除2以外便都是奇数,奇数×奇数=奇数.
所以其中一个质数定是2,1000以最大的质数是:997. 997×2=1994
二、解答题
11. 第14天占 ;第13天占 .
12. 39天长:40÷2=20(厘米);
38天长:20÷2=10(厘米);
37天长:10÷2=5(厘米);
36天长:5÷2=2.5(厘米).
13. [(125+10)×2+5]×2=550(元)
14. 第七个人:0个;
第六个人:(0.5+0)×2=1(个);
第五个人:(1+0.5)×2=3(个);
第四个人:(3+0.5)×2=7(个);
第三个人:(7+0.5)×2=15(个);
第二个人:(15+0.5)×2=31(个);
第一个人:(31+0.5)×2=63(个);
一共有:(63+0.5)×2=127(个).。