一次函数教案设计

合集下载

《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《二元一次方程与一次函数》教学设计精选4篇在教学工作者开展教学活动前,时常需要用到教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

八年级《一次函数》教学设计

八年级《一次函数》教学设计

课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。

2、会作正比例函数的图象。

3、理解一次函数及其图象的有关性质。

4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。

教学难点一次函数的图象的性质。

教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。

经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。

本节课我们进一步来研究一次函数的图象的其他性质。

2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。

请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。

如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。

(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。

(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。

(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。

5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。

一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。

◆2、会根据数量关系,求正比例函数、一次函数的解析式。

◆3、会求一次函数的值。

〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。

◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。

〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。

定义:一般地,函数叫做一次函数。

当时,一次函数就成为叫做正比例函数,常数叫做比例系数。

强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。

(2)正方形周长与面积之间的关系。

(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。

本钱与所存月数之间的关系。

此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。

解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。

得,是的一次函数,也是正比例函数。

(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。

(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。

练习:1.已知若是的正比例函数,求的值。

2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。

(2)求当时,的值。

例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

《二元一次方程与一次函数》教学设计【优秀4篇】

《二元一次方程与一次函数》教学设计【优秀4篇】

《二元一次方程与一次函数》教学设计【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《二元一次方程与一次函数》教学设计【优秀4篇】教学建议下面是本店铺精心为大家整理的4篇《《二元一次方程与一次函数》教学设计》,可以帮助到您,就是本店铺最大的乐趣哦。

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。

初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。

一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。

一次函数教案设计

一次函数教案设计

一次函数教案设计一、教学目标1、知识与技能目标理解一次函数的概念,掌握一次函数的表达式。

能够根据已知条件,求出一次函数的解析式。

学会用待定系数法求一次函数的解析式。

2、过程与方法目标通过实际问题的引入,培养学生的数学建模能力和解决实际问题的能力。

经历探索一次函数图象和性质的过程,体会数形结合的思想方法。

3、情感态度与价值观目标激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。

让学生体会数学与生活的紧密联系,增强学生应用数学的意识。

二、教学重难点1、教学重点一次函数的概念和表达式。

用待定系数法求一次函数的解析式。

2、教学难点理解一次函数与正比例函数的关系。

一次函数图象的性质及其应用。

三、教学方法讲授法、讨论法、练习法、多媒体辅助教学法。

四、教学过程1、导入新课展示生活中常见的一些函数关系的例子,如汽车行驶的路程与时间的关系、电话费与通话时间的关系等。

引导学生思考这些例子中变量之间的关系,并提问:如何用数学式子来表示这些关系?2、讲解新课给出一次函数的定义:一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。

当 b = 0 时,y = kx 叫做正比例函数,所以正比例函数是一种特殊的一次函数。

通过具体的例子,如 y = 3x + 2,y =-2x 等,让学生判断哪些是一次函数,哪些是正比例函数,并说明理由。

讲解用待定系数法求一次函数的解析式。

例如,已知一次函数的图象经过点(1,3)和(-2,-1),求这个一次函数的解析式。

设这个一次函数的解析式为 y = kx + b,将两个点的坐标代入解析式中,得到方程组,解方程组求出 k 和 b 的值,从而得到解析式。

3、课堂练习给出一些练习题,让学生判断哪些函数是一次函数,哪些是正比例函数。

给出一些已知点坐标求一次函数解析式的题目,让学生练习用待定系数法求解。

4、探究一次函数的图象和性质让学生在同一坐标系中画出 y = 2x,y = 2x + 1,y = 2x 1 的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数教学设计建宁二中朱术洪一、教学目标的确定教学目标是教学的出发点和归宿。

因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

1、知识目标:(1)能用“两点法”画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

2、能力目标(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

3、情感目标(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

二、教学重点、难点用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。

直线y=kx+b (k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。

关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

三、教学方法我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。

而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

四、教学设计一、设疑,导入新课(2分钟)师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。

生3:正比例函数也是一次函数。

师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?让我们一起来研究“一次函数的图象”。

(板书)二、自主探究——小组交流、归纳——问题升华:1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)生:不知道。

师:那就让我们一起做一做,看一看:(出示幻灯片)用描点法作出下列一次函数的图象。

(1) y= 0.5x (2) y= 0.5x+2 (3) y= 3x (4) y= 3x + 2师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。

画完后,小组订正,看是否画的正确?然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?小组汇报:一次函数的图象是直线。

师:所有的一次函数图象都是直线吗?生:是。

师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。

(板书)师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

小组1:正比例函数图象经过原点。

小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

师出示幻灯片3(使学生再一次加深印象)师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?(一边思考,可以和同桌交流)(2分钟)生1:用3个点。

生2:老师我这个更简单,用两个点。

因为两点确定一条直线嘛!生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

师:我们都认为画一次函数图象,只过两个点画直线就行。

(幻灯片4:师,动画演示用“两点法”画一次函数的过程)师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。

(比一比谁画的既快又好)(4分钟)师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,1)点。

这样找的坐标都是整数。

组2:我们认为尽量都找整数。

组3:我们认为都从两条坐标轴上找点,比较准确。

如y=3x+2,我们取点(0,3)和点(-2/3,0)组4:,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

师:同学们说的都很好。

我觉得可以根据情况来取点。

2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟)①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。

生1:①y=0.5x与y=0.5x+2;两直线平行。

生2:②y=3x与y=3x+2;两直线平行。

生3:③y=0.5x与y=3x;两直线相交。

生4:④y=0.5x+2与y=3x+2;两直线相交。

师:其他同学有没有补充?生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

师:问(2),直线y=kx+b(k≠0)中常数k和b的值对于两个函数的图象的位置关系——平行或相交,有没有影响?说说你的看法。

(5分钟)(学生自主探究——小组交流、归纳——师生共同总结)组1:我们组发现,常数k和b的值对于两个函数的图象的位置关系——平行或相交,有影响,当k的值相同时,两直线平行;当k的值不同时,两直线相交。

生:我认为他的说法不确切,当k值相同,且b值不同时,两直线相交。

因为当k值相同,且b值也相同时,两个函数关系式不就成为一个函数关系式了吗?组2:我们组同意生的看法,当k值相同,且b值不同时,两直线平行;当k值不同时,两直线相交当k值相同,且b值不同时,两直线相交。

组3:我们组还发现,当k值相同,且b值不同时,两直线相交;当k值相同,且b值也相同时,两直线相交的交点特殊。

如③y=0.5x与y=3x;相交,交点是(0,0)④y=0.5x+2与y=3x+2,相交,交点是(0,2)。

我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。

师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力!师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答)生:重合。

师:老师考一考你,有没有信心?生:有。

师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗?①直线y=-2x-1与直线y=-2x+5;②直线y=0.6x-3与直线y=-x-3。

生1:①两直线平行。

②两直线相交,交点是(0,-3)。

生2:①两直线平行。

②两直线相交,交点是(0,-3)。

师:一次函数的图象都是直线,它们的形状都,只是位置。

问(3):我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合。

你试试看。

(自主探索——同桌交流)(3分钟)生1:(幻灯片5)①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2。

生2:③y=0.5x与y=3x;将y=0.5x旋转后能得到y=3x。

生3:②y=3x与y=3x+2;通过平移能得到y=3x+2。

④y=0.5x+2与y=3x+2。

通过旋转能得到y=3x+2。

师:同学们规律找得都很好,我们这节课只研究平移。

问(4):①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向(向上或向下),平行移动单位得到y=0.5x+2?组②呢?(5分钟)(学生动力操作尝试——小组交流归纳——小组汇报)组1:直线y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向上(向上或向下),平行移动2个单位得到y=0.5x+2。

组2:直线y=3x向上平移2个单位能得到直线y=3x+2。

组3:直线y=3x+2向下平移2个单位能得到直线y=3x。

生4:老师,我发现直线y=0.5x+2向下平移2个单位能得到直线y=0.5x。

生5:老师,我们组发现直线y=0.5x沿y轴向上(向上或向下),平行移动2个单位得到y=0.5x+2。

在这个过程中,都是0.5,却加上了个2。

师:(同学们说的都很好,生5的发现更好,)师:出示幻灯片7,然后按↑↓来通过动画演示平行移动的过程。

问(5):在上面的2个变化过程中,观察关系式中k和b的值有没有变化?有什么样的变化?(生独立思考,回答)(3分钟)生1:k值不变,b值变化。

生2:k值不变,b值变化;当向上平移几个单位,b值就加上几;当向下平移几个单位,b就减去几。

师:出示幻灯片7上的小规律。

做一做:(独立完成——小组交流—师生总结)(4分钟)(1)将直线y= -3x沿y轴向下平移2个单位,得到直线()。

(2)直线y=4x+2是由直线y=4x-1沿y轴向()平移()个单位得到的。

(3)将直线y=-x-5向上平移6个单位,得到直线()。

(4)先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线()。

组1汇报结果。

师:在这些问题中还有没有需要老师帮忙解决的?生:没有。

三、你能谈谈你这节课的收获吗?(2分钟)生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k≠0)我还学会了用“两点法”画一次函数的图象。

生2:我觉得学习一次函数,既离不开数,也离不开图形。

生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交。

生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况。

……四、测一测:(6分钟)师:老师觉得你们学的不错,你们认为自己学的怎么样?生:好师:让我们比一比,看一看谁是这节课学得最好的?哪个小组是最优秀的小组?师出示幻灯片,提出要求:独立完成测试题,不能偷看别人的,也不能别人看,否则按作弊处理,给个人和小组都扣分)一、填空:1、一次函数y=kx+b(k≠0)的图象是(),函数图象过原点,那么它是()。

2、直线y=kx+b与直线y=0.5x平行,与直线y=3x+2交于点(0,2),该直线函数关系式是()。

3、把直线y=2/3x+1向上平行移动3个单位,得到的图象的关系式是()4、直线y=-2x+1与直线y=-2x-1的关系是(),直线y=-x+4与直线y=3x+4是()。

5、直线y1=(2m-1)x+1与直线y2=(m+4)x-3m平行,则m的取值是()。

二、选择:6、在函数y=kx+3中,当k取不同的非零实数时,直线,那么这些直线必定()A、交于同一个点B、互相平行C、有无数个不同的交点D、交点的个数与k的具体取值有关7、函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是()A、交于同一个点B、互相平行的直线C、有无数个不同的交点D、交点个数的多少与b的具体取值有关在做完之后,师:小组之间交换测试题,老师出示幻灯片上的答案。

相关文档
最新文档